
The Parameterized Complexity of Learning
Monadic Second-Order Logic

Steffen van Bergerem, Martin Grohe, and Nina Runde

Workshop on Logic, Graphs, and Algorithms 2025



Women in Logic, Graphs, and Algorithms

2020 2021 2022 2023 2024 2025
0%

10%

20%

30%

40%

50%

60%

ICALP invited

LICS invited

STOC invited

LOGALG regular

LOGALG invited



Women in Logic, Graphs, and Algorithms

2020 2021 2022 2023 2024 2025
0%

10%

20%

30%

40%

50%

60%

ICALP invited

LICS invited

STOC invited

LOGALG regular

LOGALG invited



Women in Logic, Graphs, and Algorithms

Sandra Kiefer

descriptive complexity theory

Weisfeiler–Leman algorithm

Nicole Schweikardt

counting logics

FO enumeration for nowhere
dense classes

Isolde Adler

nowhere dense = stable =
dependent

graph decompositions

Nina Runde

MSO learning

homomorphism
reconstructibility



The Parameterized Complexity of Learning
Monadic Second-Order Logic

Steffen van Bergerem, Martin Grohe, and Nina Runde

Workshop on Logic, Graphs, and Algorithms 2025



Algorithmic Problems

Model Checking

Given a graph G and a sentence ϕ

Decide whether G |= ϕ

Counting

Given a graph G and a formula ϕ(x̄)
Output number of tuples v̄ in V(G) with G |= ϕ(v̄)

Enumeration

Given a graph G and a formula ϕ(x̄)
Enumerate all tuples v̄ with G |= ϕ(v̄)
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Learning

Consistent Learning

Given a graph G, sets of vertices S+,S− ⊆ V(G)
Output a formula ϕ(x)

such that G |= ϕ(v) for all v ∈ S+ and G 6|= ϕ(v) for all v ∈ S−

v1 v2 v3

v4 v5 v6

S+ = {v1, v3}
S− = {v4, v5}

Output ϕ(x) = x=v1 ∨ x=v3
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Learning

MSO Consistent Learning

Given a graph G, sets of vertices S+,S− ⊆ V(G), and `,q ∈ N
Output an MSO formula ϕ(x) with qr(ϕ) 6 q using at most ` constants

such that G |= ϕ(v) for all v ∈ S+ and G 6|= ϕ(v) for all v ∈ S−

Reject if there is no such formula

v1 v2 v3

v4 v5 v6

S+ = {v1, v3}
S− = {v4, v5}
` = 1

q = 3

Output ϕ(x) = ∃Y
(
bipartite(Y) ∧ Y(v1) ∧ Y(x)

)
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Proof idea
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The MSO consistent-learning problem is fixed-parameter linear on
classes of bounded clique-width.

v1 v2 v3

v4 v5 v6

v1 v3

v4 v5

S+ = {v1, v3}
S− = {v4, v5}
` = 1

q = 3

– with placeholders instead of constants, the number of formulas only
depends on `,q −→ try all of them

– encode examples using two colours S+,S−

– for formula ϕ(x, y1, . . . , y`), check
G |= ∃y1 . . . ∃y`∀x

((
S+(x) → ϕ(x, ȳ)

)
∧

(
S−(x) → ¬ϕ(x, ȳ)

))
– model-checking is fixed-parameter linear for bounded clique-width
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Higher-Dimensional Learning

k-Dimensional MSO Consistent Learning

Given a graph G, sets of tuples S+,S− ⊆
(
V(G)

)k, and `,q ∈ N
Output an MSO formula ϕ(x1, . . . , xk) with qr(ϕ) 6 q using at most `

constants
such that G |= ϕ(v̄) for all v̄ ∈ S+ and G 6|= ϕ(v̄) for all v̄ ∈ S−

Reject if there is no such formula

v. B., Grohe, and Runde, CSL 2025

There is an algorithm that solves the k-dimensional MSO consistent-
learning problem in time (m + 1)f (k,`,q,c) · |V(G)|2, where c is the
clique-width of G, m = |S+ ∪ S−|, and f is a computable function.

v. B., Grohe, and Runde, CSL 2025

This is optimal.
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PAC Learning

– Probably Approximately Correct Learning

– assume probability distribution on
(
V(G)

)k × {+, −}

– algorithm draws examples from the distribution

– Goal: return formula with small expected error

v. B., Grohe, and Runde, CSL 2025

The MSO PAC-learning problem is fixed-parameter linear on classes of
bounded clique-width, even in higher dimensions k.
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Main Results

v1 v2 v3

v4 v5 v6

S+ = {v1, v3}
S− = {v4, v5}
` = 1

q = 3

1. In general, the MSO consistent-learning problem is para-NP-hard.

On classes of bounded clique-width:

2. The MSO consistent-learning problem is fixed-parameter linear.

3. The k-dim. consistent-learning problem can be solved in time
quadratic in the size of the graph, but XP in the number of examples.
This is optimal.

4. The MSO PAC-learning problem is fixed-parameter linear, even in
higher dimensions.
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