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Algorithmic Problems

Model Checking

Given a graph G and a sentence ¢
Decide whether G = ¢

Counting

Given a graph G and a formula ¢(x)
Output number of tuples v in V(G) with G |= ¢(v)

Given a graph G and a formula ¢(x)
Enumerate all tuples v with G = (V)
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Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G)

Output a formula ¢(x)
such that G = ¢(v) forallv € S and G |~ ¢(v) forallv € S—

Sy ={vy,v3}
S_= {V4a V5}

Output ¢(x) =x=vi Vx=v3



Learning

MSO Consistent Learning



Learning

MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N



Learning

MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N

Output an MSO formula ¢(x) with gr(¢) < g using at most ¢ constants
such that G = ¢(v) forallv € S and G [~ ¢(v) forallv € S_



Learning

MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N

Output an MSO formula ¢(x) with gr(¢) < g using at most ¢ constants
such that G = ¢(v) forallv € S and G [~ ¢(v) forallv € S_

Reject if there is no such formula



Learning

MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N

Output an MSO formula ¢(x) with gr(¢) < g using at most ¢ constants
such that G = ¢(v) forallv € S and G [~ ¢(v) forallv € S_

Reject if there is no such formula

@ @ @ Sy ={vi,v3}
S_ ={vy4,vs}
=1

OBROERO T



Learning

MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N

Output an MSO formula ¢(x) with gr(¢) < g using at most ¢ constants
suchthat G = ¢(v) forallv € S; and G [~ ¢(v) forallv € S_

Reject if there is no such formula

@ @ @ Sy ={vi,v3}
S_ ={vy4,vs}
=1

OBROERO T

Output ¢(x) = 3Y (bipartite(Y) A Y (v1) A Y(x))
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MSO Consistent Learning

Given a graph G, sets of vertices S;,S_ C V(G),and ¢,q € N

Output an MSO formula ¢(x) with qr(yp) < g using at most ¢ constants
such that G = ¢(v) forallv € S; and G = ¢(v) forallv € S—

Reject if there is no such formula

v. B., Grohe, and Runde, CSL 2025

In general, the MSO consistent-learning problem is para-NP-hard.

v. B., Grohe, and Runde, CSL 2025

There is an algorithm that solves the MSO consistent-learning problem in
timef(¢,q,c) - |V(G)|. where c is the clique-width of Gand f is a
computable function.
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Proof idea

v. B., Grohe, and Runde, CSL 2025

The MSO consistent-learning problem is fixed-parameter linear on
classes of bounded clique-width.

@ Sy ={w,vs}
\\ S_ ={vy,vs}
=1
o

with placeholders instead of constants, the number of formulas only
dependson /,g — try all of them

encode examples using two colours S, ,S_

for formula ¢(x, y1, ..., Ye). check

G =y Fyevx ((S+(6) = 9(6,7)) A (S-(x) = = (x, 7))
model-checking is fixed-parameter linear for bounded clique-width
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k-Dimensional MSO Consistent Learning

Given a graph G, sets of tuples S, ,S_ C (V(G))k, and ¢,g € N

Output an MSO formula ¢(x, . .., xk) With gr(p) < g using at most ¢
constants
suchthat G = ¢(v) forallv € Sy and G [~ ¢(v) forallv € S_

Reject if there is no such formula

v. B., Grohe, and Runde, CSL 2025

There is an algorithm that solves the k-dimensional MSO consistent-
learning problem in time (m + 1)/ *£4.) . |V(G)|?, where ¢ is the
clique-width of G, m = |S+ US_|, and f is a computable function.

v. B,, Grohe, and Runde, CSL 2025
This is optimal.
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PAC Learning

Probably Approximately Correct Learning

assume probability distribution on (V(G))k x {+, -}
algorithm draws examples from the distribution
Goal: return formula with small expected error

v. B., Grohe, and Runde, CSL 2025

The MSO PAC-learning problem is fixed-parameter linear on classes of
bounded clique-width, even in higher dimensions k.
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1. In general, the MSO consistent-learning problem is para-NP-hard.

On classes of bounded clique-width:
2. The MSO consistent-learning problem is fixed-parameter linear.

3. The k-dim. consistent-learning problem can be solved in time

quadratic in the size of the graph, but XP in the number of examples.
This is optimal.

4. The MSO PAC-learning problem is fixed-parameter linear, even in
higher dimensions.



