
Model Checking

Simone Bova

Algorithms and Complexity Group Retreat
Semmering, June 29-May 1, 2015



Area

• Logic in Computer Science
LICS, CSL, . . .

• Database Theory
PODS, ICDT, . . .

• Theory
FOCS, STOC, ICALP, STACS, . . .



Problem

Problem MODEL-CHECKING (MC)
Instance A finite structure A and a logical sentence φ.∗

Question A |= φ?

∗In this talk, φ is a first-order sentence.



Exercise (Board)

E is a binary relation symbol.

A is a digraph on n + 1 vertices {0, 1, . . . ,n} and arcs:

EA = {(0, 1), . . . , (0,n)}

A |= ∃y∀xE(y, x)?

MC is in PSPACE and decidable in time

O(size(A)size(φ))



Exercise (Board)

E is a binary relation symbol.

A is a digraph on n + 1 vertices {0, 1, . . . ,n} and arcs:

EA = {(0, 1), . . . , (0,n)}

A |= ∃y∀xE(y, x)?

MC is in PSPACE and decidable in time

O(size(A)size(φ))



Example

G = (G,EG) is a graph.
EG ⊆ G2 symmetric irreflexive.

φk = ∃x1 · · · ∃xk
∧

1≤i<j≤k(xi 6= xj ∧ ¬E(xi, xj)).

G |= φk?

G |= φk iff
G contains k distinct nonadjacent vertices iff
(G, k) ∈ INDEPENDENT-SET



Example

G = (G,EG) is a graph.
EG ⊆ G2 symmetric irreflexive.

φk = ∃x1 · · · ∃xk
∧

1≤i<j≤k(xi 6= xj ∧ ¬E(xi, xj)).

G |= φk?

G |= φk iff

G contains k distinct nonadjacent vertices iff
(G, k) ∈ INDEPENDENT-SET



Example

G = (G,EG) is a graph.
EG ⊆ G2 symmetric irreflexive.

φk = ∃x1 · · · ∃xk
∧

1≤i<j≤k(xi 6= xj ∧ ¬E(xi, xj)).

G |= φk?

G |= φk iff
G contains k distinct nonadjacent vertices iff

(G, k) ∈ INDEPENDENT-SET



Example

G = (G,EG) is a graph.
EG ⊆ G2 symmetric irreflexive.

φk = ∃x1 · · · ∃xk
∧

1≤i<j≤k(xi 6= xj ∧ ¬E(xi, xj)).

G |= φk?

G |= φk iff
G contains k distinct nonadjacent vertices iff
(G, k) ∈ INDEPENDENT-SET



Algorithms and Complexity

Research programs:

1. MC not in P (but in PSPACE).
Classify polynomial-time tractable cases.

2. MC not in FPT (but in XP) param. by size(φ). (Why?)
Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.
2. MC not in FPT (but in XP) param. by size(φ). (Why?)

Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.

2. MC not in FPT (but in XP) param. by size(φ). (Why?)
Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.
2. MC not in FPT (but in XP) param. by size(φ).

(Why?)
Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.
2. MC not in FPT (but in XP) param. by size(φ). (Why?)

Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.
2. MC not in FPT (but in XP) param. by size(φ). (Why?)

Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Algorithms and Complexity

Research programs:
1. MC not in P (but in PSPACE).

Classify polynomial-time tractable cases.
2. MC not in FPT (but in XP) param. by size(φ). (Why?)

Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.



Polynomial-Time Tractability

Polynomial-time tractability results:

1. MC restricted to a fixed sentence. (Why?)
2. MC restricted to a fixed graph class and primitive positive

logic is in P iff all graphs in the class are bipartite.



Polynomial-Time Tractability

Polynomial-time tractability results:
1. MC restricted to a fixed sentence.

(Why?)
2. MC restricted to a fixed graph class and primitive positive

logic is in P iff all graphs in the class are bipartite.



Polynomial-Time Tractability

Polynomial-time tractability results:
1. MC restricted to a fixed sentence. (Why?)

2. MC restricted to a fixed graph class and primitive positive
logic is in P iff all graphs in the class are bipartite.



Polynomial-Time Tractability

Polynomial-time tractability results:
1. MC restricted to a fixed sentence. (Why?)
2. MC restricted to a fixed graph class and primitive positive

logic is in P iff all graphs in the class are bipartite.



Fixed-Parameter Tractability

Fixed-parameter tractability results:

1. MC restricted to a fixed graph class† is in FPT iff
“the graph class is nowhere dense”.

2. MC restricted to a fixed class of primitive positive
sentences‡ is in FPT iff “the treewidth of the cores of the
sentences in the class is bounded”.

†Closed under subgraphs.
‡Having bounded arity.



Fixed-Parameter Tractability

Fixed-parameter tractability results:
1. MC restricted to a fixed graph class† is in FPT iff

“the graph class is nowhere dense”.

2. MC restricted to a fixed class of primitive positive
sentences‡ is in FPT iff “the treewidth of the cores of the
sentences in the class is bounded”.

†Closed under subgraphs.
‡Having bounded arity.



Fixed-Parameter Tractability

Fixed-parameter tractability results:
1. MC restricted to a fixed graph class† is in FPT iff

“the graph class is nowhere dense”.
2. MC restricted to a fixed class of primitive positive

sentences‡ is in FPT iff “the treewidth of the cores of the
sentences in the class is bounded”.

†Closed under subgraphs.
‡Having bounded arity.



Thank you for your attention!


