Model Checking

Simone Bova

Algorithms and Complexity Group Retreat Semmering, June 29-May 1, 2015

Area

• Logic in Computer Science LICS, CSL, ...

- Database Theory PODS, ICDT,
- Theory

FOCS, STOC, ICALP, STACS, ...

Problem

Problem MODEL-CHECKING (MC) Instance A finite structure **A** and a logical sentence ϕ .* Question **A** $\models \phi$?

^{*}In this talk, ϕ is a first-order sentence.

Exercise (Board)

E is a binary relation symbol.

A is a digraph on n + 1 vertices $\{0, 1, ..., n\}$ and arcs:

 $E^{\mathbf{A}} = \{(0,1),\ldots,(0,n)\}$

 $\mathbf{A} \models \exists y \forall x E(y, x)?$

Exercise (Board)

E is a binary relation symbol.

A is a digraph on n + 1 vertices $\{0, 1, \dots, n\}$ and arcs: $E^{\mathbf{A}} = \{(0, 1), \dots, (0, n)\}$

 $\mathbf{A} \models \exists y \forall x E(y, x)?$

MC is in PSPACE and decidable in time

 $O(\text{size}(\mathbf{A})^{\text{size}(\phi)})$

$\mathbf{G} = (G, E^{\mathbf{G}})$ is a graph. $E^{\mathbf{G}} \subseteq G^2$ symmetric irreflexive.

$$\phi_k = \exists x_1 \cdots \exists x_k \bigwedge_{1 \le i < j \le k} (x_i \ne x_j \land \neg E(x_i, x_j)).$$
$$\mathbf{G} \models \phi_k?$$

 $\mathbf{G} = (G, E^{\mathbf{G}})$ is a graph. $E^{\mathbf{G}} \subseteq G^2$ symmetric irreflexive.

$$\phi_k = \exists x_1 \cdots \exists x_k \bigwedge_{1 \le i < j \le k} (x_i \ne x_j \land \neg E(x_i, x_j)).$$
$$\mathbf{G} \models \phi_k?$$

 $\mathbf{G} \models \phi_k$ iff

 $\mathbf{G} = (G, E^{\mathbf{G}})$ is a graph. $E^{\mathbf{G}} \subseteq G^2$ symmetric irreflexive.

$$\phi_k = \exists x_1 \cdots \exists x_k \bigwedge_{1 \le i < j \le k} (x_i \ne x_j \land \neg E(x_i, x_j)).$$

 $\mathbf{G} \models \phi_k$?

 $\mathbf{G} \models \phi_k \text{ iff} \\ \mathbf{G} \text{ contains } k \text{ distinct nonadjacent vertices iff}$

 $\mathbf{G} = (G, E^{\mathbf{G}})$ is a graph. $E^{\mathbf{G}} \subseteq G^2$ symmetric irreflexive.

$$\phi_k = \exists x_1 \cdots \exists x_k \bigwedge_{1 \le i < j \le k} (x_i \ne x_j \land \neg E(x_i, x_j)).$$

 $\mathbf{G} \models \phi_k$?

 $\mathbf{G} \models \phi_k$ iff \mathbf{G} contains *k* distinct nonadjacent vertices iff $(\mathbf{G}, k) \in \text{INDEPENDENT-SET}$

Research programs:

1. MC not in P (but in PSPACE).

Research programs:

1. MC not in P (but in PSPACE). Classify polynomial-time tractable cases.

- 1. MC not in P (but in PSPACE). Classify polynomial-time tractable cases.
- 2. MC not in FPT (but in XP) param. by size(ϕ).

- 1. MC not in P (but in PSPACE). Classify polynomial-time tractable cases.
- 2. MC not in FPT (but in XP) param. by size(ϕ). (Why?)

- 1. MC not in P (but in PSPACE). Classify polynomial-time tractable cases.
- 2. MC not in FPT (but in XP) param. by size(ϕ). (Why?) Classify fixed-parameter tractable cases.

Research programs:

- 1. MC not in P (but in PSPACE). Classify polynomial-time tractable cases.
- 2. MC not in FPT (but in XP) param. by size(ϕ). (Why?) Classify fixed-parameter tractable cases.

If **A** is a gigantic database and ϕ a small query, then

 $f(\operatorname{size}(\phi))\operatorname{size}(\mathbf{A})^{O(1)}$

is an interesting runtime.

Polynomial-time tractability results:

Polynomial-time tractability results:

1. MC restricted to a fixed sentence.

Polynomial-time tractability results:

1. MC restricted to a fixed sentence. (Why?)

Polynomial-time tractability results:

- 1. MC restricted to a fixed sentence. (Why?)
- 2. MC restricted to a fixed graph class and primitive positive logic is in P iff all graphs in the class are bipartite.

Fixed-Parameter Tractability

Fixed-parameter tractability results:

[†]Closed under subgraphs. [‡]Having bounded arity.

Fixed-parameter tractability results:

 MC restricted to a fixed graph class[†] is in FPT iff "the graph class is nowhere dense".

[†]Closed under subgraphs. [‡]Having bounded arity. Fixed-parameter tractability results:

- MC restricted to a fixed graph class[†] is in FPT iff "the graph class is nowhere dense".
- 2. MC restricted to a fixed class of primitive positive sentences[‡] is in FPT iff "the treewidth of the cores of the sentences in the class is bounded".

[†]Closed under subgraphs. [‡]Having bounded arity. Thank you for your attention!