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Area

• Logic in Computer Science
LICS, CSL, . . .

• Database Theory
PODS, ICDT, . . .

• Theory
FOCS, STOC, ICALP, STACS, . . .



Problem

Problem MODEL-CHECKING (MC)
Instance A finite structure A and a logical sentence φ.∗

Question A |= φ?

∗In this talk, φ is a first-order sentence.



Exercise (Board)

E is a binary relation symbol.

A is a digraph on n + 1 vertices {0, 1, . . . ,n} and arcs:

EA = {(0, 1), . . . , (0,n)}

A |= ∃y∀xE(y, x)?

MC is in PSPACE and decidable in time

O(size(A)size(φ))
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Example

G = (G,EG) is a graph.
EG ⊆ G2 symmetric irreflexive.

φk = ∃x1 · · · ∃xk
∧

1≤i<j≤k(xi 6= xj ∧ ¬E(xi, xj)).

G |= φk?

G |= φk iff
G contains k distinct nonadjacent vertices iff
(G, k) ∈ INDEPENDENT-SET
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Algorithms and Complexity

Research programs:

1. MC not in P (but in PSPACE).
Classify polynomial-time tractable cases.

2. MC not in FPT (but in XP) param. by size(φ). (Why?)
Classify fixed-parameter tractable cases.

If A is a gigantic database and φ a small query, then

f (size(φ))size(A)O(1)

is an interesting runtime.
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Polynomial-Time Tractability

Polynomial-time tractability results:

1. MC restricted to a fixed sentence. (Why?)
2. MC restricted to a fixed graph class and primitive positive

logic is in P iff all graphs in the class are bipartite.
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Fixed-Parameter Tractability

Fixed-parameter tractability results:

1. MC restricted to a fixed graph class† is in FPT iff
“the graph class is nowhere dense”.

2. MC restricted to a fixed class of primitive positive
sentences‡ is in FPT iff “the treewidth of the cores of the
sentences in the class is bounded”.

†Closed under subgraphs.
‡Having bounded arity.
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Thank you for your attention!


