
Knowledge Compilation

Simone Bova

Algorithms and Complexity Group Retreat
Semmering, June 29-May 1, 2015



Area

• Artificial Intelligence
AAAI, IJCAI, KR, . . .

• Logic in Computer Science
SAT, . . .

• Theory
CCC, ICALP, STACS, . . .



Generalities

• FWF Project currently led by Stefan
(supporting Ronald and Simone)

• International Workshop recently organized at TU
(http://www.vcla.at/kc2015)



Compilation

φ 7−→ c(φ)

where:
• φ represents some propositional knowledge

encoded in some source language (say CNFs);
• c(φ) represents the same knowledge

compiled in some target language (say OBDDs).

Allow a computationally hard compilation map c(·),
as long as c(φ) is “succinct” and “tractable”.
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Practice

A query of interest is posed multiple times
to the knowledge base.

The query is hard on the source language,
but polytime on the target language.

The high compilation cost is amortized,
by reusing the compiled knowledge over multiple queries.
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Example

Clause entailment (CE) queries are hard on CNFs,
but OBDDs support CE in polytime.

In practice,
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Theory

Let S and T be representation languages
(a representation language is a class of circuits).

S is polysize compilable into T (or T is at least as succinct as S) if
for all C ∈ S there exists D ∈ T st:
• D is equivalent to C;
• D is polysize in C.



Example

XORn(x1, . . . , xn) = 1 iff x1 + . . .+ xn ≡ 1 (mod 2):

• CNF size is 2Ω(n) (claim);
• OBDD size is 2n + 1 (board).

On the other hand, there is a class {fn}n∈N of functions with
• O(n) CNF size;
• 2Ω(n) OBDD size.

CNFs and OBDDs are incomparable in succinctness.
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Representation Languages
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Inclusion relation on representation languages.



Succinctness Relation

The succinctness relation is (partially) established in a series of results:

• Quine (1959),

• Chandra and Markowsky (1978),

• Bryant (1986),

• Wegener (1987),

• Gergov and Meinel (1994),

• Gogic, Kautz, Papdimitriou, and Selman (1995),

• Selman and Kautz (1996),

• Cadoli and Donini (1997),

• Darwiche (1999), and

• B, Capelli, Mengel, and Slivovsky (2015).



Succinctness Relation

MODS

DNNF

OBDD

dDNNF

FBDD

DNF CNF

NNF

IP PI

S 99K T means S T unknown. S 6→ T means S 6 T unless PH collapses.



Questions

In choosing a representation language,
there is a tradeoff between “succinctness” and “tractability”.

Important research questions:
1. Improve knowledge of existing languages.

− Complexity of equivalence on FBDDs?
Negation on deterministic DNNFs?

− Separate SDDs and OBBDs,
DNFs and deterministic DNNFs.

2. Find new languages challenging existing ones.
− Find language supporting counting

but incomparable to deterministic DNNFs.
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Parameterizations

S is fpt size compilable into T wrt parameterization κ : S→ N if
for all C ∈ S there exists D ∈ T st:
• D is equivalent to C;
• D is fpt size in C wrt parameterization κ.

Research questions:
• Study the succinctness/tractability tradeoff

in the parameterized setting.
• Find language supporting fpt size compilation of functions

wrt expression width (smallest treewidth over equivalent
circuits).
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Thank you for your attention!


