ac'l!
On Solving a Generalized Constrained Longest Common
Subsequence Problem

— Seminar talk —

M. Djukanovic!, A. Kartelj?, D. Matic*, M. Grbic*, G. Raidl*, C. Blum?

Linstitute of Logic and Computation, TU Wien, Vienna, Austria,
2 Artificial Intelligence Research Institute (I11A), Spanish National Research Council (CSIC),
Barcelona, Spain
3Faculty of Mathematics, Univeristy of Belgrade, Serbia
4Faculty of Science and Mathematics, Univerity of Banja Luka, B & H

March 16, 2021

ac I I I 1 ALGORITHMS AND
COMPLEXITY GROUP

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 1/ 39

i
Introduction ac

A string is a finite sequence of characters over some (finite) alphabet X.

Strings are commonly as models for presenting DNA and RNA molecules,
proteins, texts, etc.

Bioinformatics and strings:

e finding similarities between molecules: understanding of biological
processes

o (discrete) optimization problems

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 2/ 39

ac'l!
Longest Common Subsequence (LCS) Problem

Object to measure similarity: A subsequence of string s is any sequence
of characters obtained by deleting zero or more characters from s.

LCS Problem:

@ Input: set of strings S = {s1,...,5m}, m € N, alphabet ¥

@ Objective: find a subsequence of maximum length that is common for
all strings from S

o N'P-hard problem for arbitrary large set S

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 3/ 39

i
Constrained Longest Common Subsequence (CLCS) ac

CLCS Problem (m-CLCS):

@ Input: a set of strings S = {s1,...,5n}, m € N, and alphabet ¥, and
a pattern string ps.

@ Objective: find a subsequence of maximum length that is common for
all strings from S and has p; as its subsequence.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 4/ 39

i
Constrained Longest Common Subsequence (CLCS) ac

CLCS Problem (m-CLCS):

@ Input: a set of strings S = {s1,...,5n}, m € N, and alphabet ¥, and
a pattern string p;.

@ Objective: find a subsequence of maximum length that is common for
all strings from S and has p; as its subsequence.

o Generalized constrained longest common subsequence problem
((m, k)-CLCS): apart of m—CLCS problem, it has an arbitrary set of
k pattern strings in input.

Example:
sila b c
ss|a ¢ b c a
p1|a ¢
p2| b ¢
CLCS: abcaa

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 4/ 39

|
. . ac'h
Literature Overview

Practical relevance: identifying homology between biological sequences
which posses a specific or putative structure in common:

@ RNase, Kinase, Protease posses patterns such as KHK, KKH, HKH,
etc. in common.

2—CLCS problem:
@ Introduced by Tsai (2003)

e Polynomially solvable by dynamic programming (DP) in
O(|s1] - [s2] - [pal)

» A few sparse DP approaches

m—CLCS problem:
e N'P-hard if m arbitrary, and a fixed pattern
e Approximation algorithm by Gotthilf et al. (2008)

@ A Greedy heuristic, Beam Search, and A* proposed by Djukanovic et
al. (2020)

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 5/ 39

i
Literature approach ac

(m, k)-CLCS problem:
@ (2, k)-CLCS problem is NP-hard, Gothilf et al. (2011)

@ Moreover, approximation algorithms (with guaranteeing ratio) cannot
exist for (2, k)-CLCS problem

@ Interestingly, we were able to prove that the problem of finding at
least one feasible solution for (m, k)~CLCS problem is N"P-hard

» was not the case of m—CLCS = (m, 1)-CLCS problem

@ (m, k)-CLCS solved by Farhana and Rahman (2015), Automaton
approach

So, developing algorithms in three different directions makes sense
o feasibility check
@ high-quality solutions

@ proving optimality

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 6/ 39

i
Notation and Data Structures ac

An instance of (m, k)-CLCS problem is given in the following way:
e S={s1...,5m}

o P= {pl;---:pk}: and
° X

Given a position vector 6 eNm,

o S[A] :={si[0;,|si]]|i =1,...,m} denotes a subproblem of the original
(m, k)-CLCS instance w.r.t. input strings

A cover position vector A € N¥, indicates a subproblem
o P[A] .= {pj[\;,Ipjll|j =1,..., k} concerning set of pattern strings P

Data structures:

e Succli,j, a] = x, position x > j in string s; such that s;[x] = a; or —1
otherwise;

@ Embed[/, r,j] = x for all i € [m], j € [k] and r € [|pj| 4 1] stores the
right-most (largest) position x of s; such that pj[r, |p;|] is a
subsequence of s;[x, |si|].

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 7/ 39

(]
Greedy method ac

Based on the well-known Best-Next heuristic:

o At each step, a letter with the best greedy value appended (to the
end) to current greedy sol. s

Candidates for extension are letters ¢ € ¥2¢ which fulfill:

o Condition 1: Letter ¢ appears at least once in each of the prefix
strings s;[0;,|sil], i=1,...,m,
o where dominated nodes removed from ¥4 (w.r.t. positions 0,X): We
say that a dominates by b iff
> Succ[i, 67, a] < Succ[i, b;, b] and

e Condition 2: After appending c to s (and updating g, X) we ensure all
remaining pi[Xi, |pil],i € [k] may be embedded into each 51[67,, |si|],
J € [m] = values of structure Embed not pre-computed, calculated on
demand w.r.t. X

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 8/ 39

o . . ac'ln
Greedy criterion — additional conditions

To maximize chances for feasibility in our Greedy we add:

@ Condition 3. Those letters which contribute to cover at least one

not-yet-covered letter of any p; preferred: T2

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 9/ 39

Example

—

Initialize: § = (1,...,1), A=(1,...,1),s = ¢, greedy heuristic:

m

- Succli,f;,¢c] —0;+1
g(s,0,¢c) = Z] '_9i n 1' V c g yhdstr
i=1

where s is the current greedy sol. g current position vector.

On Solving a Generalized CLCS problem with Many Pattern Strings

ac'lt

(1)

Djukanovic et al. 10/ 39

(]
Example ac

—

Initialize: § = (1,...,1), A=(1,...,1),s = ¢, greedy heuristic:

m

- Succ[i,@i,C]—0i+1 nd,str
g(s.0,c)=>" ST 61 V¢ e zdst (1)
i=1 ! '

where s is the current greedy sol. g current position vector.

Note that the proposed greedy heuristic can not guarantee the construction
of a feasible solution.
Example. Instance S = {abbba, babb}, P = {bb,a}, and ¥ = {a,b}.

o Step | of the greedy heuristic: Y24 = {a, b} are the candidates to
extend the empty solution. Their greedy heuristic values are equal.

@ Choosing b automatically leads to an unfeasible solution, that is,
solution bbb is not feasible.

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 10/ 39

i
Search space of the (m, k)-CLCS problem ac

Nodes are v = (é’v, AV, 1Y) where

@ 0" is a position vector,
@)\ is a cover position vector, and

@ /Y is the length of a partial solution represented by node v

We say that partial solution sV induces node v = (5", AV, 1Y) iff

e 6" is defined such that si[1,8Y — 1] is the shortest possible prefix
string of s; of which s¥ is a subsequence.

e)\ is defined such that p;[1, A = 1] is the longest prefix string of p;
which is a subsequence of s".

o IV :=|s|

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 11/ 39

i
Node Extension ac

A child node w of v is generated as follows (suppose we extend v by letter
ac ynd = yudy.

@ 0 :=Succli,#Y,a]+ 1, foralli=1,...,m

o If pj[)\J‘-’] = a then)\J‘-"’ =)\J‘-’ +1;)\J‘f" =)\J‘-’ otherwise;

o /" :=/IV+1
The root node: r=((1,...,1),(1,...,1),0): induced by the empty partial
solution ¢.

A node v is called non-extensible if ¥24 = ().

A node is called feasible iff \Y = |p;| + 1, forall j=1,... k.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 12/ 39

Figure:

1
T ac'lh

(23). (1.2). 1) ((32). (21). 1)
c a b c
¥ \
(4. 22).2)) ((®6). 21). 2)) (((7.3). 22). 2)] (((6:4). (2.1). 2))
a c c d b

(). 2.3). 3)) (((65). (2. 2). 3)) (((6.8). 2.1). 3)) ((B7). 2:2). 3)] (((7.9). B.2). 3))
\ \

b

c b b b
(«e.8). 23). 9)) (((7.9). B:2). 9) ((0:9).32).4)) (((9.10),(4.2). 4))
\
b b

¥ |
((@9). 33).5) (((9.10).(4.2).5))

|

b

((9.10).(4.3).6)

(S = {s1 = bcaacbdba, s, = cbccadcbbd}, P = {cbb,ba}, X = {a,b, c,d}).
Only one node in the space (light-gray color) corresponds to a feasible solution

s = bcacbb

Djukanovic et al.

On Solving a Generalized CLCS problem with Many Pattern Strings
13/ 39

ac'lt

The Concept of Restricted Search Space

@ The full state space adapted towards maximizing the chances of finding at least
one feasible solution

@ Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (X84 = F0dstr £ ()

On Solving a Generalized C problem with Many Pattern Strings

14/ 39

ac'lt

The Concept of Restricted Search Space

@ The full state space adapted towards maximizing the chances of finding at least
one feasible solution

@ Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (X84 = F0dstr £ ()

(@1, (11). 0

z b 3 ~
(23). (1.2). 1) ((32). (21). 1)
c
2
(34). (22).2) (@3). (2.2). 2)

((46). (2.3). 3) (7). (22). 3)
c

((68). (2.3). 4) ((99). (3.2). 4)

b

(7.9). 3.3). 5)

b

b
y
2 d
¥
b

((9.,10),(4,3).6)

Figure: The restricted search space (same instance from the last slide).

Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 14/ 39

1L
Beam Search ac

Beam search (BS):

@ Works in a restricted Breadth-First-Search manner

@ 3 > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 15/ 39

1L
Beam Search ac

Beam search (BS):
@ Works in a restricted Breadth-First-Search manner
@ > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h

Heuristic guidances:

@ Reasonably tight UB for LCS problem as the combination of an
occurrences—based and a dynamic-programming based upper bound

@ A new probability—based heuristic guidance developed (next slide)

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 15/ 39

i
Probability—based Heuristic Guidances ac

From Mousavi and Tabataba (2012), assuming
@ independence among the input strings,
@ randomness of input strings

the probability that a random string s of length r is a common subsequence
of all input strings from S is

Prob(s < S) = [[Px(r, |sil), (2)
i=1

Pr: pre-processed (by DP).
In order to make use of Eq. (2) in the case of the (m, k)-CLCS problem,
we assume

@ each such string s is extensible towards a feasible (m, k)-CLCS
solution (s has at least one feasible completion)

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 16/ 39

i
[Cont'd] ac
Choosing the value of r (length of extension):
@ to make fair comparison to all nodes of the same level of BS, r shall

be common to all nodes

AP = min (I =AY +1) =1k 3)

and then summing up all the values (heuristic choice for the number
min

of safe extension w.r.t. our assumption), we get p™" = Ejlle P,
and finally

r=pm™" + min
VEVext

{minizl,...,m {Isi| — 0y +1} — pminJ @)

pa

The heuristic guidance is stated for each node v (at same level) by

H(v) = [Pr(r,|si| — 6 + 1),
i=1

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 17/ 39

i
An A* search ac

Introduced by Hart et al. (1968)
Works in best-first-search manner (always most promising nodes
expanded first)

@ Nodes prioritized acc. to f(v) = g(v) + h(v) where

» g(v): the length of a longest path from root node r to node v
» h(v): estimated cost from v to a goal node (dual bound)

Data structures to set up an A* for (m, k)-CLCS:

» Hash map N of nodes whose keys are pairs (f, X) with values /* which
stores the length of longest path to all node assoc. to g, (nodes:
clusters of partial solutions)

» Priority queue Q@ C N: list of not-yet-expanded nodes

» UB: the upper bound for LCS known from literature, monotonic

» Goal nodes: non-extendable, feasible nodes

A problem—specific nodes’ filtering:

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 18/ 39

: : ac'lt
Variable Neighborhood Search (VNS)

@ Proposed by Mladenovic and Hansen (1997)

@ Systematically change of neighborhood structures in order to escape
from local minima: diversification

@ Intensification: Local search, i.e. small-change-neighbor

Idea of VNS applied on (m.k)-CLCS problem based on

@ DP for two strings only when necessary

e insert/update/delete operations on current solution

@ penalty function counting the number of feasibility violations on a per
character basis

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 19/ 39

1L
VNS: details ac

o Fitness function:

>~ (|sol] — |[LCS(sol,si)]) + > (Ipj| — [LCS(pj, sol)|) if sol infeasible,
F(sol) -— { sies pjEP
Timin—sol| if sol feasible.

Npmin+1
(5)
@ Motivation for using this function:

» Until a feasible solution is found, focus is more on reaching feasibility
as soon as possible, by updating / removing characters.

» Once feasibility reached, the fitness function will thrive the algorithm
to increase solution, by adding letters.

On Solving a Generalized CLCS problem with Many Pattern Strings
20/ 39

Djukanovic et al.

1L
VNS details: shaking ac

Two kind of Shaking realized depending on the feasibility of the solution:

@ Shaking Delete(sol, r) applied if sol is feasible: randomly removing &
letters from sol in order to move away from the current solution;

@ Shaking Change(sol, k) applied if sol is unfeasible: it selects x
random positions in sol and changes the letters at the chosen
positions to randomly chosen letters from .

Purpose of the both shaking:
@ Shaking Delete(sol, x): for the shake of diversification

@ Shaking Change(sol, x): more aiming for solution feasibility

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 21/ 39

1L
VNS details: local search ac

It combines two first improvement strategies with a time complexity of
O(|sol| - |£]) per LS iteration.

@ Change-Based-LS: find a pair (i,0),i € {1,...,|sol|},c € ZU{e} so
that by changing sol[i] = o, fitness function F(sol) is improved;

@ Insert-Based-LS: find a pair (i,0),i € {1,...,|sol| + 1}, 0 € ¥ so
that F(sol) is improved by inserting letter o before position i in sol.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 22/ 39

1L
VNS details: efficiency ac

The most time consuming part of VNS is fitness calculation in LS:

o Partial fitness function calculate (LCS(sol, s;) and LCS(pj, sol)),
i €[m],j € [k]: m+ k DP for two strings

o Fitness score F after operations like insert/update/delete of a single
letter in sol calculated partially (in linear time) = The two LS—based
procedure works without any application of DP

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 23/ 39

1L
VNS: remarks ac

Partial fitness calculation is a bit too technical, but based on the concept
of

@ determining the right-most embedding of s* = LCS(sol, s;) into s;,
i € [m]; and corresponding left-most (linearly)

@ detecting middle regions of s; between left—-most and right—most
embedding of s* which give relevant regions of s; for scanning
candidate letters for insertions able to improve F values

e after performing an edit operation (update/delete), in general, a tight
upper bound on current F value will be produced

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 24/ 39

ac'lt

[[lustration

Table: Middle regions (shown with a light-gray background) for solution
sol = abccada w.r.t. input strings and patterns.

s1 laJ]a b
left mapping | a b
right mapping a b
So a
left mapping
right mapping
pl

left mapping
right mapping
p2

left mapping
right mapping

a a b ala
a

® |

L LL | Qo O

[}
O o0 |w

O|T T|T|O oo

a
la_b]
a

Lo 0|0

(bl b
b

a b

L VLY VILV|O OO

L L LW

|NNO_O_O_

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 25/ 39

(]
Experimental Studies ac

Machine settings:

@ C++ using GCC 7.4

@ Intel Xeon E5-2640 processor with 2.40 GHz
Time & memory limit:

@ 1200 sec.

e Memory:
» 4 Gb for VNS
» 16 Gb for BS
» 32 Gb for A*

Algorithms tested:
@ Greedy algorithm (GREEDY);
@ BS on the full search space, labelled by BS-BASIC;
© BS on the restricted search space, labelled by RESTRICTED-BS;
© Variable neighborhood search (VNS);

© The hybrid BS& VNS in which RESTRICTED-BS provides an initial
solution for the VNS.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 26/ 39

i
Benchmark sets ac

Two different set of instances set up for experiments:

@ RANDOM instances where for each

length of input strings n € {100,500, 1000},

number of input strings m € {2,5, 10},

alphabet size |X| € {2, 4,20},

number of pattern strings k € {2,5,10}, and

length of pattern strings descried by a ratio p = ';°| S {5—10, %}

10 instances were generated (ensuring at least one feasible solution),
which gives us 1 620 instances.

vV v vV VvVY

e REAL-world benchmark set:
» 40 different sets of Bacteria where m ranges from 2 to 12 681 which
lengths range from around 600 to around 2 000.

» Number of pattern strings is 15, some of them are:
* gtgtagaggtgaaatgcgtagat
* caaacaggattagaaacccaagtagtccacgc

* aaaatcaaaaaaatagacggggacccgcacaag.
On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 27/ 39

i
Parameters’ tuning: ac

Our algorithms
e BS-BAsIC
@ RESTRICTED-BS
e VNS
tuned w.r.t solution-quality via irace.
@ results of RESTRICTED-BS passed to VNS — BS& VNS

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 28/ 39

Results: feasibility check for |X| =2

Instances with n=100 and |Z| =2

100

80

Greedy
restricted-8S
VNS
BS-basic

BS & VNS

Instances with n=500 and |Z| =2

64 m—
-

62

60

(a) n=100.

—p =)
58
56
54
I 52
2 5 10
m

80

Greedy
restricted-8S
VNS
BS-basic

BS &

"

~

Instances with n=1000 and |Z|

5 10
m

(b) n = 500.

=2

= Greedy

e restricted-BS
VNS
BS-basic

= BS & VNS

X‘n “ “ ‘
2 5
m

(c) n=1000.

10

ng a Generalized CLCS problem with Many Pattern St

Results: feasibility check for |X| = 20

Instances with n=100 and |£| = 20

100
= Greedy
e restricted-BS
80 VNS
BS-basic
= BS & VNS
60 { mmm A+
40
20 I |
0 I ¥ y
2 5 10
m
Instances with n=1000 and |Z| = 20
100
= Greedy
e restricted-BS
80 VNS
BS-basic
= BS & NS
60| mmm A®
40
20
LA I
2 5 10
m

Number of instances

100

80

60

Instances with n=500 and |£| = 20

= Greedy
= restricted-8S
VNS
BS-basic
mmm BS & VNS
-— A

|| || ‘I ‘ |
2 5 10
,

(b) n=500.

Real benchmark set

Greedy restricted-BS VNS BS-basic BS & VNS A*

(d) REAL benchmark set.

ac'lt

Djukanovic et al

i
Solution quality: Greedy vs. restricted-BS (common feasa.f

Instances with |Z|=2 Instances with |Z|=4

£20 £ 30
£ s g g
H ° H
¢ g 25 8
S 15 8 °
[o o 20
3 3
@ "
@ @ 15
3 10 K
g g
g 8
5 e s o
2 ° ° £ o o o
0 o o o
5 3 8 g g 8
g ° g 8
E-s > £-10
- 2 5 10 - 2 5 10
m m
g Instances with |Z|=20 Real benchmark set
3 2z
g w0 g o
g &
© g
5 3 40
g 3
20
2 8 g
2
g 8 2
£ g
g 0 %
4 g
[5 0
o -20 2
£ @ -20
£
£ g
H g
3 —40 & -40
g £ °
g E
- 2 5 10

m

(c) IZ| = 20. (d) REAL benchmark set.

On Solving a Generalized CLCS problem with Many Pattern Strings
anovic et al. 31/ 39

. . . aclll'
Solution quality: BS & VNS vs. restricted-BS

Instances with |Z|=4 Instances with |£|=20

o
3

w
8

Iy
8

S

=
5

improvements of BS & VNS over restri
N
o

=

improvements of BS & VNS over restricted-BS
w
&

<]
10

o

<]
2 5 10
m

(a) 1] =4. (b) || = 20.

improvements of BS & VNS over restricted-85

Real benchmark set
o

(c) REAL benchmark set.
On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al.

32/ 39

— _ ac!it
Significance between the algorithms: |X| =4

1 2 3 4 5 6 2 3 4 5

L L L L) L L),
BS-basc J resticed-85 BSEWNS j Greedy
BSEWNS & WS I3

(a) Solution quality (b) Feasibility comparison
comparison

Figure: Instances with |X| = 4.

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 33/ 39

— _ ac!it
Significance between the algorithms: |£| = 20

2 3 4 5 2 3 4 5 6

L L L), L L L L),
BS-basic j restricted-BS BSAVNS —‘ A
BSAVNS Greedy festicted-BS Greedy

.

WS BS-basic

(a) Solution quality (b) Feasibility comparison
comparison

Figure: Instances with |X| = 20.

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 34/ 39

im
Benchmark set REAL ac

BSEWNS Testricled-8S BSEVNS Testicted-8S
WS Greedy Greedy BS-basic
BS-basc —————— A WS A
(a) Solution quality comparison (b) Feasibility comparison

Figure: Benchmark set REAL.

Solving a Generalized C problem with Many Pattern Strings

Djukanovic et al. 35/ 39

i
A* vs. Automaton approach ac

Instance group #inst A* Automaton

| 7[s] b opt[%] | [s] fs] opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 841 100 841 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 36/ 39

i
A* vs. Automaton approach ac

Instance group #inst A* Automaton

| 7[s] b opt[%] | [s] fs] opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 841 100 841 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.

Instance A* Automaton
m n lpi| k inst | E[s] ub opt[%] | Is| T[s] opt[%]
2 100 40 1 10 0.02 445 100 445 1.70 100
2 250 45 2 10 14.2 107.6 70 1069 4.71 100
2 250 8 3 10 120.1 88.4 30 87.4 27.2 100
2 250 6 4 10 1549 87.1 80 87.0 82.6 100

Table: Results on random instances used for Automaton approach, |X| = 20.

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 36/ 39

i
Conclusions & Future Work ac

Conclusions:
@ a few heuristic approaches proposed to deal with large—sized instances:

» efficient in various aspects such as finding high-quality solutions
(BS-BasIiC and BS& VNS) as well as proving feasibility
(RESTRICTED-BS)

» the search guided by a probability—based heuristic guidance

» BS & VNS works best on benchmark set REAL

@ proposed an A* search to deal with the instances of moderate size:

» ~ 35% random instances solved to proven optimality
> 4 real-world instances solved to optimality

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 37/ 39

i
Conclusions & Future Work ac

Conclusions:
@ a few heuristic approaches proposed to deal with large—sized instances:

» efficient in various aspects such as finding high-quality solutions
(BS-BasIiC and BS& VNS) as well as proving feasibility
(RESTRICTED-BS)

» the search guided by a probability—based heuristic guidance

» BS & VNS works best on benchmark set REAL

@ proposed an A* search to deal with the instances of moderate size:

» =2 35% random instances solved to proven optimality
> 4 real-world instances solved to optimality

Future work:

e develop anytime algorithms for the large-sized instances (gaps)

@ develop more sophisticated search guidances

@ prove feasibility of remaining instances where our algorithms fail
(=~ 7 —8%) random instances, |X| =20 (why not MCTS?)

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 37/ 39

ac'lt

Thank you for your attention!

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al. 38/ 39

. . e . ac'lt
Edit operations and partial fitness calculation

Example. Consider the change operation:

sol = abcca@a to s"*" = abcca[ala.

@ It is never considered in the partial LCS calculation w.r.t. s; and sp,
since d is not part of a middle region.

@ Note that changing d to character a would produce
LCS(s1,5™") = abcaaa, which has length 6

@ But, the result of partial calculation would be 5

On Solving a Generalized CLCS problem with Many Pattern Strings
Djukanovic et al. 39/ 39

