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Introduction ac

A string is a finite sequence of characters over some (finite) alphabet X.

Strings are commonly as models for presenting DNA and RNA molecules,
proteins, texts, etc.

Bioinformatics and strings:

e finding similarities between molecules: understanding of biological
processes

o (discrete) optimization problems
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Longest Common Subsequence (LCS) Problem

Object to measure similarity: A subsequence of string s is any sequence
of characters obtained by deleting zero or more characters from s.

LCS Problem:

@ Input: set of strings S = {s1,...,5m}, m € N, alphabet ¥

@ Objective: find a subsequence of maximum length that is common for
all strings from S

o N'P-hard problem for arbitrary large set S
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Constrained Longest Common Subsequence (CLCS) ac

CLCS Problem (m-CLCS):

@ Input: a set of strings S = {s1,...,5n}, m € N, and alphabet ¥, and
a pattern string ps.

@ Objective: find a subsequence of maximum length that is common for
all strings from S and has p; as its subsequence.
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Constrained Longest Common Subsequence (CLCS) ac

CLCS Problem (m-CLCS):

@ Input: a set of strings S = {s1,...,5n}, m € N, and alphabet ¥, and
a pattern string p;.

@ Objective: find a subsequence of maximum length that is common for
all strings from S and has p; as its subsequence.

o Generalized constrained longest common subsequence problem
((m, k)-CLCS): apart of m—CLCS problem, it has an arbitrary set of
k pattern strings in input.

Example:
sila b c
ss|a ¢ b c a
p1|a ¢
p2| b ¢
CLCS: abcaa
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Literature Overview

Practical relevance: identifying homology between biological sequences
which posses a specific or putative structure in common:

@ RNase, Kinase, Protease posses patterns such as KHK, KKH, HKH,
etc. in common.

2—CLCS problem:
@ Introduced by Tsai (2003)

e Polynomially solvable by dynamic programming (DP) in
O(|s1] - [s2] - [pal)

» A few sparse DP approaches

m—CLCS problem:
e N'P-hard if m arbitrary, and a fixed pattern
e Approximation algorithm by Gotthilf et al. (2008)

@ A Greedy heuristic, Beam Search, and A* proposed by Djukanovic et
al. (2020)
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Literature approach ac

(m, k)-CLCS problem:
@ (2, k)-CLCS problem is NP-hard, Gothilf et al. (2011)

@ Moreover, approximation algorithms (with guaranteeing ratio) cannot
exist for (2, k)-CLCS problem

@ Interestingly, we were able to prove that the problem of finding at
least one feasible solution for (m, k)~CLCS problem is N"P-hard

» was not the case of m—CLCS = (m, 1)-CLCS problem

@ (m, k)-CLCS solved by Farhana and Rahman (2015), Automaton
approach

So, developing algorithms in three different directions makes sense
o feasibility check
@ high-quality solutions

@ proving optimality
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Notation and Data Structures ac

An instance of (m, k)-CLCS problem is given in the following way:
e S={s1...,5m}

o P= {pl;---:pk}: and
° X

Given a position vector 6 eNm,

o S[A] :={si[0;,|si]]|i =1,...,m} denotes a subproblem of the original
(m, k)-CLCS instance w.r.t. input strings

A cover position vector A € N¥, indicates a subproblem
o P[A] .= {pj[\;,Ipjll|j =1,..., k} concerning set of pattern strings P

Data structures:

e Succli,j, a] = x, position x > j in string s; such that s;[x] = a; or —1
otherwise;

@ Embed[/, r,j] = x for all i € [m], j € [k] and r € [|pj| 4 1] stores the
right-most (largest) position x of s; such that pj[r, |p;|] is a
subsequence of s;[x, |si|].
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Greedy method ac

Based on the well-known Best-Next heuristic:

o At each step, a letter with the best greedy value appended (to the
end) to current greedy sol. s

Candidates for extension are letters ¢ € ¥2¢ which fulfill:

o Condition 1: Letter ¢ appears at least once in each of the prefix
strings s;[0;,|sil], i=1,...,m,
o where dominated nodes removed from ¥4 (w.r.t. positions 0,X): We
say that a dominates by b iff
> Succ[i, 67, a] < Succ[i, b;, b] and

e Condition 2: After appending c to s (and updating g, X) we ensure all
remaining pi[Xi, |pil],i € [k] may be embedded into each 51[67,, |si|],
J € [m] = values of structure Embed not pre-computed, calculated on
demand w.r.t. X
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Greedy criterion — additional conditions

To maximize chances for feasibility in our Greedy we add:

@ Condition 3. Those letters which contribute to cover at least one

not-yet-covered letter of any p; preferred: T2
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Example

—

Initialize: § = (1,...,1), A=(1,...,1),s = ¢, greedy heuristic:

m

- Succli,f;,¢c] —0;+1
g(s,0,¢c) = Z ] '_9i n 1' V c g yhdstr
i=1

where s is the current greedy sol. g current position vector.
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Example ac

—

Initialize: § = (1,...,1), A=(1,...,1),s = ¢, greedy heuristic:

m

- Succ[i,@i,C]—0i+1 nd,str
g(s.0,c)=>" ST 61 V¢ e zdst (1)
i=1 ! '

where s is the current greedy sol. g current position vector.

Note that the proposed greedy heuristic can not guarantee the construction
of a feasible solution.
Example. Instance S = {abbba, babb}, P = {bb,a}, and ¥ = {a,b}.

o Step | of the greedy heuristic: Y24 = {a, b} are the candidates to
extend the empty solution. Their greedy heuristic values are equal.

@ Choosing b automatically leads to an unfeasible solution, that is,
solution bbb is not feasible.
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Search space of the (m, k)-CLCS problem ac

Nodes are v = (é’v, AV, 1Y) where

@ 0" is a position vector,
@ )\ is a cover position vector, and

@ /Y is the length of a partial solution represented by node v

We say that partial solution sV induces node v = (5", AV, 1Y) iff

e 6" is defined such that si[1,8Y — 1] is the shortest possible prefix
string of s; of which s¥ is a subsequence.

e )\ is defined such that p;[1, A = 1] is the longest prefix string of p;
which is a subsequence of s".

o IV :=|s|
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Node Extension ac

A child node w of v is generated as follows (suppose we extend v by letter
ac ynd = yudy.

@ 0 :=Succli,#Y,a]+ 1, foralli=1,...,m

o If pj[)\J‘-’] = a then )\J‘-"’ = )\J‘-’ +1; )\J‘f" = )\J‘-’ otherwise;

o /" :=/IV+1
The root node: r=((1,...,1),(1,...,1),0): induced by the empty partial
solution ¢.

A node v is called non-extensible if ¥24 = ().

A node is called feasible iff \Y = |p;| + 1, forall j=1,... k.
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T ac'lh
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(S = {s1 = bcaacbdba, s, = cbccadcbbd}, P = {cbb,ba}, X = {a,b, c,d}).
Only one node in the space (light-gray color) corresponds to a feasible solution

s = bcacbb

Djukanovic et al.
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The Concept of Restricted Search Space

@ The full state space adapted towards maximizing the chances of finding at least
one feasible solution

@ Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (X84 = F0dstr £ ()
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The Concept of Restricted Search Space

@ The full state space adapted towards maximizing the chances of finding at least
one feasible solution

@ Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (X84 = F0dstr £ ()
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Figure: The restricted search space (same instance from the last slide).
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Beam Search ac

Beam search (BS):

@ Works in a restricted Breadth-First-Search manner

@ 3 > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h
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Beam Search ac

Beam search (BS):
@ Works in a restricted Breadth-First-Search manner
@ > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h

Heuristic guidances:

@ Reasonably tight UB for LCS problem as the combination of an
occurrences—based and a dynamic-programming based upper bound

@ A new probability—based heuristic guidance developed (next slide)
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Probability—based Heuristic Guidances ac

From Mousavi and Tabataba (2012), assuming
@ independence among the input strings,
@ randomness of input strings

the probability that a random string s of length r is a common subsequence
of all input strings from S is

Prob(s < S) = [ [ Px(r, |sil), (2)
i=1

Pr: pre-processed (by DP).
In order to make use of Eq. (2) in the case of the (m, k)-CLCS problem,
we assume

@ each such string s is extensible towards a feasible (m, k)-CLCS
solution (s has at least one feasible completion)
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[Cont'd] ac
Choosing the value of r (length of extension):
@ to make fair comparison to all nodes of the same level of BS, r shall

be common to all nodes

AP = min (I =AY +1) =1k 3)

and then summing up all the values (heuristic choice for the number
min

of safe extension w.r.t. our assumption), we get p™" = Ejlle P,
and finally

r=pm™" + min
VEVext

{minizl,...,m {Isi| — 0y +1} — pminJ @)

pa

The heuristic guidance is stated for each node v (at same level) by

H(v) = [ Pr(r,|si| — 6 + 1),
i=1
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An A* search ac

Introduced by Hart et al. (1968)
Works in best-first-search manner (always most promising nodes
expanded first)

@ Nodes prioritized acc. to f(v) = g(v) + h(v) where

» g(v): the length of a longest path from root node r to node v
» h(v): estimated cost from v to a goal node (dual bound)

Data structures to set up an A* for (m, k)-CLCS:

» Hash map N of nodes whose keys are pairs (f, X) with values /* which
stores the length of longest path to all node assoc. to g, (nodes:
clusters of partial solutions)

» Priority queue Q@ C N: list of not-yet-expanded nodes

» UB: the upper bound for LCS known from literature, monotonic

» Goal nodes: non-extendable, feasible nodes

A problem—specific nodes’ filtering:
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Variable Neighborhood Search (VNS)

@ Proposed by Mladenovic and Hansen (1997)

@ Systematically change of neighborhood structures in order to escape
from local minima: diversification

@ Intensification: Local search, i.e. small-change-neighbor

Idea of VNS applied on (m.k)-CLCS problem based on

@ DP for two strings only when necessary

e insert/update/delete operations on current solution

@ penalty function counting the number of feasibility violations on a per
character basis
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VNS: details ac

o Fitness function:

>~ (|sol] — |[LCS(sol,si)]) + > (Ipj| — [LCS(pj, sol)|) if sol infeasible,
F(sol) -— { sies pjEP
Timin—sol| if sol feasible.

Npmin+1
(5)
@ Motivation for using this function:

» Until a feasible solution is found, focus is more on reaching feasibility
as soon as possible, by updating / removing characters.

» Once feasibility reached, the fitness function will thrive the algorithm
to increase solution, by adding letters.

On Solving a Generalized CLCS problem with Many Pattern Strings
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VNS details: shaking ac

Two kind of Shaking realized depending on the feasibility of the solution:

@ Shaking Delete(sol, r) applied if sol is feasible: randomly removing &
letters from sol in order to move away from the current solution;

@ Shaking Change(sol, k) applied if sol is unfeasible: it selects x
random positions in sol and changes the letters at the chosen
positions to randomly chosen letters from .

Purpose of the both shaking:
@ Shaking Delete(sol, x): for the shake of diversification

@ Shaking Change(sol, x): more aiming for solution feasibility
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VNS details: local search ac

It combines two first improvement strategies with a time complexity of
O(|sol| - |£]) per LS iteration.

@ Change-Based-LS: find a pair (i,0),i € {1,...,|sol|},c € ZU{e} so
that by changing sol[i] = o, fitness function F(sol) is improved;

@ Insert-Based-LS: find a pair (i,0),i € {1,...,|sol| + 1}, 0 € ¥ so
that F(sol) is improved by inserting letter o before position i in sol.
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VNS details: efficiency ac

The most time consuming part of VNS is fitness calculation in LS:

o Partial fitness function calculate (LCS(sol, s;) and LCS(pj, sol)),
i €[m],j € [k]: m+ k DP for two strings

o Fitness score F after operations like insert/update/delete of a single
letter in sol calculated partially (in linear time) = The two LS—based
procedure works without any application of DP
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VNS: remarks ac

Partial fitness calculation is a bit too technical, but based on the concept
of

@ determining the right-most embedding of s* = LCS(sol, s;) into s;,
i € [m]; and corresponding left-most (linearly)

@ detecting middle regions of s; between left—-most and right—most
embedding of s* which give relevant regions of s; for scanning
candidate letters for insertions able to improve F values

e after performing an edit operation (update/delete), in general, a tight
upper bound on current F value will be produced
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[[lustration

Table: Middle regions (shown with a light-gray background) for solution
sol = abccada w.r.t. input strings and patterns.
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Experimental Studies ac

Machine settings:

@ C++ using GCC 7.4

@ Intel Xeon E5-2640 processor with 2.40 GHz
Time & memory limit:

@ 1200 sec.

e Memory:
» 4 Gb for VNS
» 16 Gb for BS
» 32 Gb for A*

Algorithms tested:
@ Greedy algorithm (GREEDY);
@ BS on the full search space, labelled by BS-BASIC;
© BS on the restricted search space, labelled by RESTRICTED-BS;
© Variable neighborhood search (VNS);

© The hybrid BS& VNS in which RESTRICTED-BS provides an initial
solution for the VNS.
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Benchmark sets ac

Two different set of instances set up for experiments:

@ RANDOM instances where for each

length of input strings n € {100,500, 1000},

number of input strings m € {2,5, 10},

alphabet size |X| € {2, 4,20},

number of pattern strings k € {2,5,10}, and

length of pattern strings descried by a ratio p = ';°| S {5—10, %}

10 instances were generated (ensuring at least one feasible solution),
which gives us 1 620 instances.

vV v vV VvVY

e REAL-world benchmark set:
» 40 different sets of Bacteria where m ranges from 2 to 12 681 which
lengths range from around 600 to around 2 000.

» Number of pattern strings is 15, some of them are:
* gtgtagaggtgaaatgcgtagat
* caaacaggattagaaacccaagtagtccacgc

* aaaatcaaaaaaatagacggggacccgcacaag.
On Solving a Generalized CLCS problem with Many Pattern Strings
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Parameters’ tuning: ac

Our algorithms
e BS-BAsIC
@ RESTRICTED-BS
e VNS
tuned w.r.t solution-quality via irace.
@ results of RESTRICTED-BS passed to VNS — BS& VNS
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Results: feasibility check for |X| =2

Instances with n=100 and |Z| =2
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Results: feasibility check for |X| = 20

Instances with n=100 and |£| = 20
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Solution quality: Greedy vs. restricted-BS (common feasa.f

Instances with |Z|=2 Instances with |Z|=4
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(c) IZ| = 20. (d) REAL benchmark set.
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Solution quality: BS & VNS vs. restricted-BS

Instances with |Z|=4 Instances with |£|=20
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Significance between the algorithms: |X| =4

1 2 3 4 5 6 2 3 4 5

L L L L ) L L ),
BS-basc J resticed-85 BSEWNS j Greedy
BSEWNS & WS I3

(a) Solution quality (b) Feasibility comparison
comparison

Figure: Instances with |X| = 4.
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Significance between the algorithms: |£| = 20

2 3 4 5 2 3 4 5 6

L L L ), L L L L ),
BS-basic j restricted-BS BSAVNS —‘ A
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.

WS BS-basic

(a) Solution quality (b) Feasibility comparison
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Figure: Instances with |X| = 20.
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Benchmark set REAL ac

BSEWNS Testricled-8S BSEVNS Testicted-8S
WS Greedy Greedy BS-basic
BS-basc —————— A WS A
(a) Solution quality comparison (b) Feasibility comparison

Figure: Benchmark set REAL.
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A* vs. Automaton approach ac

Instance group  #inst A* Automaton

| 7[s] b opt[%] | [s] fs]  opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 841 100 841 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.
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A* vs. Automaton approach ac

Instance group  #inst A* Automaton

| 7[s] b opt[%] | [s] fs]  opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 841 100 841 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.

Instance A* Automaton
m n lpi|  k  inst | E[s]  ub opt[%] | Is| T[s]  opt[%]
2 100 40 1 10 0.02 445 100 445 1.70 100
2 250 45 2 10 14.2 107.6 70 1069 4.71 100
2 250 8 3 10 120.1 88.4 30 87.4 27.2 100
2 250 6 4 10 1549 87.1 80 87.0 82.6 100

Table: Results on random instances used for Automaton approach, |X| = 20.
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Conclusions & Future Work ac

Conclusions:
@ a few heuristic approaches proposed to deal with large—sized instances:

» efficient in various aspects such as finding high-quality solutions
(BS-BasIiC and BS& VNS ) as well as proving feasibility
(RESTRICTED-BS)

» the search guided by a probability—based heuristic guidance

» BS & VNS works best on benchmark set REAL

@ proposed an A* search to deal with the instances of moderate size:

» ~ 35% random instances solved to proven optimality
> 4 real-world instances solved to optimality
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Conclusions & Future Work ac

Conclusions:
@ a few heuristic approaches proposed to deal with large—sized instances:

» efficient in various aspects such as finding high-quality solutions
(BS-BasIiC and BS& VNS ) as well as proving feasibility
(RESTRICTED-BS)

» the search guided by a probability—based heuristic guidance

» BS & VNS works best on benchmark set REAL

@ proposed an A* search to deal with the instances of moderate size:

» =2 35% random instances solved to proven optimality
> 4 real-world instances solved to optimality

Future work:

e develop anytime algorithms for the large-sized instances (gaps)

@ develop more sophisticated search guidances

@ prove feasibility of remaining instances where our algorithms fail
(=~ 7 —8%) random instances, |X| =20 (why not MCTS?)
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Thank you for your attention!
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Edit operations and partial fitness calculation

Example. Consider the change operation:

sol = abcca@a to s"*" = abcca[ala.

@ It is never considered in the partial LCS calculation w.r.t. s; and sp,
since d is not part of a middle region.

@ Note that changing d to character a would produce
LCS(s1,5™") = abcaaa, which has length 6

@ But, the result of partial calculation would be 5
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