
On Solving a Generalized Constrained Longest Common
Subsequence Problem

– Seminar talk –

M. Djukanovic1, A. Kartelj3, D. Matic4, M. Grbic4, G. Raidl1, C. Blum2

1Institute of Logic and Computation, TU Wien, Vienna, Austria,
2 Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC),

Barcelona, Spain
3Faculty of Mathematics, Univeristy of Belgrade, Serbia

4Faculty of Science and Mathematics, Univerity of Banja Luka, B & H

March 16, 2021

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

1/ 39

Introduction

A string is a finite sequence of characters over some (finite) alphabet Σ.

Strings are commonly as models for presenting DNA and RNA molecules,
proteins, texts, etc.

Bioinformatics and strings:

finding similarities between molecules: understanding of biological
processes
(discrete) optimization problems

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

2/ 39

Longest Common Subsequence (LCS) Problem

Object to measure similarity: A subsequence of string s is any sequence
of characters obtained by deleting zero or more characters from s.

LCS Problem:

Input: set of strings S = {s1, . . . , sm},m ∈ N, alphabet Σ

Objective: find a subsequence of maximum length that is common for
all strings from S

NP–hard problem for arbitrary large set S

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

3/ 39

Constrained Longest Common Subsequence (CLCS)

CLCS Problem (m–CLCS):

Input: a set of strings S = {s1, . . . , sm},m ∈ N, and alphabet Σ, and
a pattern string p1.

Objective: find a subsequence of maximum length that is common for
all strings from S and has p1 as its subsequence.

Generalized constrained longest common subsequence problem
((m, k)–CLCS): apart of m–CLCS problem, it has an arbitrary set of
k pattern strings in input.

Example:
s1 a b c a c a
s2 a c b c c a a
p1 a c
p2 b c

CLCS: abcaa

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

4/ 39

Constrained Longest Common Subsequence (CLCS)

CLCS Problem (m–CLCS):

Input: a set of strings S = {s1, . . . , sm},m ∈ N, and alphabet Σ, and
a pattern string p1.

Objective: find a subsequence of maximum length that is common for
all strings from S and has p1 as its subsequence.

Generalized constrained longest common subsequence problem
((m, k)–CLCS): apart of m–CLCS problem, it has an arbitrary set of
k pattern strings in input.

Example:
s1 a b c a c a
s2 a c b c c a a
p1 a c
p2 b c

CLCS: abcaa

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

4/ 39

Literature Overview
Practical relevance: identifying homology between biological sequences
which posses a specific or putative structure in common:

RNase, Kinase, Protease posses patterns such as KHK, KKH, HKH,
etc. in common.

2–CLCS problem:
Introduced by Tsai (2003)
Polynomially solvable by dynamic programming (DP) in
O(|s1| · |s2| · |p1|)

I A few sparse DP approaches

m–CLCS problem:
NP-hard if m arbitrary, and a fixed pattern
Approximation algorithm by Gotthilf et al. (2008)
A Greedy heuristic, Beam Search, and A∗ proposed by Djukanovic et
al. (2020)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

5/ 39

Literature approach
(m, k)–CLCS problem:

(2, k)–CLCS problem is NP–hard, Gothilf et al. (2011)

Moreover, approximation algorithms (with guaranteeing ratio) cannot
exist for (2, k)–CLCS problem

Interestingly, we were able to prove that the problem of finding at
least one feasible solution for (m, k)–CLCS problem is NP–hard

I was not the case of m–CLCS = (m, 1)–CLCS problem

(m, k)–CLCS solved by Farhana and Rahman (2015), Automaton
approach

So, developing algorithms in three different directions makes sense
feasibility check
high-quality solutions
proving optimality

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

6/ 39

Notation and Data Structures
An instance of (m, k)–CLCS problem is given in the following way:

S = {s1. . . , sm}
P = {p1,. . . , pk}, and
Σ

Given a position vector ~θ ∈ Nm,

S [~θ] := {si [θi , |si |] | i = 1, . . . ,m} denotes a subproblem of the original
(m, k)–CLCS instance w.r.t. input strings

A cover position vector ~λ ∈ Nk , indicates a subproblem
P[~λ] := {pj [λj , |pj |] | j = 1, . . . , k} concerning set of pattern strings P

Data structures:
Succ[i , j , a] = x , position x ≥ j in string si such that si [x] = a; or −1
otherwise;
Embed[i , r , j] = x for all i ∈ [m], j ∈ [k] and r ∈ [|pj |+ 1] stores the
right-most (largest) position x of si such that pj [r , |pj |] is a
subsequence of si [x , |si |].

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

7/ 39

Greedy method
Based on the well-known Best-Next heuristic:

At each step, a letter with the best greedy value appended (to the
end) to current greedy sol. s

Candidates for extension are letters c ∈ Σnd
s which fulfill:

Condition 1: Letter c appears at least once in each of the prefix
strings si [θi , |si |], i = 1, . . . ,m,
where dominated nodes removed from Σnd

s (w.r.t. positions ~θ,~λ): We
say that a dominates by b iff

I Succ[i , ~θi , a] ≤ Succ[i , ~θi , b] and

Condition 2: After appending c to s (and updating ~θ,~λ), we ensure all
remaining pi [~λi , |pi |], i ∈ [k] may be embedded into each sj [~θi , |si |],
j ∈ [m] ⇒ values of structure Embed not pre-computed, calculated on
demand w.r.t. ~λ

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

8/ 39

Greedy criterion – additional conditions

To maximize chances for feasibility in our Greedy we add:

Condition 3. Those letters which contribute to cover at least one
not-yet-covered letter of any pi preferred: Σnd,str

s

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

9/ 39

Example

Initialize: ~θ = (1, ..., 1), ~λ = (1, . . . , 1), s = ε, greedy heuristic:

g(s, ~θ, c) =
m∑
i=1

Succ[i , θi , c]− θi + 1
|si | − θi + 1

∀ c ∈ Σnd,str
s (1)

where s is the current greedy sol. ~θ: current position vector.

Note that the proposed greedy heuristic can not guarantee the construction
of a feasible solution.

Example. Instance S = {abbba, babb}, P = {bb, a}, and Σ = {a, b}.
Step I of the greedy heuristic: Σnd,str

s = {a, b} are the candidates to
extend the empty solution. Their greedy heuristic values are equal.

Choosing b automatically leads to an unfeasible solution, that is,
solution bbb is not feasible.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

10/ 39

Example

Initialize: ~θ = (1, ..., 1), ~λ = (1, . . . , 1), s = ε, greedy heuristic:

g(s, ~θ, c) =
m∑
i=1

Succ[i , θi , c]− θi + 1
|si | − θi + 1

∀ c ∈ Σnd,str
s (1)

where s is the current greedy sol. ~θ: current position vector.

Note that the proposed greedy heuristic can not guarantee the construction
of a feasible solution.

Example. Instance S = {abbba, babb}, P = {bb, a}, and Σ = {a, b}.
Step I of the greedy heuristic: Σnd,str

s = {a, b} are the candidates to
extend the empty solution. Their greedy heuristic values are equal.

Choosing b automatically leads to an unfeasible solution, that is,
solution bbb is not feasible.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

10/ 39

Search space of the (m, k)–CLCS problem

Nodes are v = (~θv , λv , lv) where

~θv is a position vector,
λv is a cover position vector, and
lv is the length of a partial solution represented by node v

We say that partial solution sv induces node v = (~θv , λv , lv) iff

~θv is defined such that si [1, θvi − 1] is the shortest possible prefix
string of si of which sv is a subsequence.
~λv is defined such that pj [1, λvj − 1] is the longest prefix string of pj
which is a subsequence of sv .
lv := |sv |

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

11/ 39

Node Extension

A child node w of v is generated as follows (suppose we extend v by letter
a ∈ Σnd

sv = Σnd
v):

θwi := Succ[i , θvi , a] + 1, for all i = 1, . . . ,m
If pj [λvj] = a then λwj := λvj + 1; λwj := λvj otherwise;
lw := lv + 1.

The root node: r = ((1, . . . , 1), (1, . . . , 1), 0): induced by the empty partial
solution ε.

A node v is called non-extensible if Σnd
v = ∅.

A node is called feasible iff λvj = |pi |+ 1, for all j = 1, . . . , k .

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

12/ 39

((1,1), (1,1), 0)

((2,3), (1,2), 1) ((3,2), (2,1), 1)

((3,4), (2,2), 2)

((6,5), (2, 2), 3)((4,6), (2,3), 3)

((7,9), (3,2), 4)((6,8), (2,3), 4)

((8,7), (2,2), 3)

((9,9),(3,2),4)

((7,9), (3,3), 5)

((9,10),(4,3),6)

((9,10),(4,2),5)

((4,6), (2,1), 2) ((6,4), (2,1), 2)((7,3), (2,2), 2)

((7,9), (3,2), 3)

((9,10),(4,2), 4)

((6,8), (2,1), 3)

b c

c

ca

b

b

c

b

b

a cb

bd

b b

c

b

Figure:
(S = {s1 = bcaacbdba, s2 = cbccadcbbd},P = {cbb, ba},Σ = {a, b, c, d}).
Only one node in the space (light-gray color) corresponds to a feasible solution
s = bcacbb

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

13/ 39

The Concept of Restricted Search Space

The full state space adapted towards maximizing the chances of finding at least
one feasible solution

Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (Σnd

v ⇒ Σnd,str
v 6= ∅)

((1,1), (1,1), 0)

((2,3), (1,2), 1) ((3,2), (2,1), 1)

((3,4), (2,2), 2)

((4,6), (2,3), 3)

((6,8), (2,3), 4)

((7,9), (3,3), 5)

((9,10),(4,3),6)

((7,3), (2,2), 2)

((8,7), (2,2), 3)

((9,9), (3,2), 4)

b c

c

a

c

b

b

b

d

b

Figure: The restricted search space (same instance from the last slide).

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

14/ 39

The Concept of Restricted Search Space

The full state space adapted towards maximizing the chances of finding at least
one feasible solution

Set of child nodes of node v gets restricted: prefer those child nodes over others
which improve patterns coverage (Σnd

v ⇒ Σnd,str
v 6= ∅)

((1,1), (1,1), 0)

((2,3), (1,2), 1) ((3,2), (2,1), 1)

((3,4), (2,2), 2)

((4,6), (2,3), 3)

((6,8), (2,3), 4)

((7,9), (3,3), 5)

((9,10),(4,3),6)

((7,3), (2,2), 2)

((8,7), (2,2), 3)

((9,9), (3,2), 4)

b c

c

a

c

b

b

b

d

b

Figure: The restricted search space (same instance from the last slide).

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

14/ 39

Beam Search

Beam search (BS):

Works in a restricted Breadth-First-Search manner
β > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h

Heuristic guidances:

Reasonably tight UB for LCS problem as the combination of an
occurrences–based and a dynamic-programming based upper bound
A new probability–based heuristic guidance developed (next slide)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

15/ 39

Beam Search

Beam search (BS):

Works in a restricted Breadth-First-Search manner
β > 0 best nodes of each level selected for further expansions acc. to
a heuristic guidance h

Heuristic guidances:

Reasonably tight UB for LCS problem as the combination of an
occurrences–based and a dynamic-programming based upper bound
A new probability–based heuristic guidance developed (next slide)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

15/ 39

Probability–based Heuristic Guidances

From Mousavi and Tabataba (2012), assuming
independence among the input strings,
randomness of input strings

the probability that a random string s of length r is a common subsequence
of all input strings from S is

Prob(s ≺ S) =
m∏
i=1

Pr(r , |si |), (2)

Pr: pre-processed (by DP).
In order to make use of Eq. (2) in the case of the (m, k)–CLCS problem,
we assume

each such string s is extensible towards a feasible (m, k)–CLCS
solution (s has at least one feasible completion)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

16/ 39

[Cont’d]
Choosing the value of r (length of extension):

to make fair comparison to all nodes of the same level of BS, r shall
be common to all nodes

pmin
j = min

v∈Vext

(
|pj | − λvj + 1

)
, j = 1, . . . , k. (3)

and then summing up all the values (heuristic choice for the number
of safe extension w.r.t. our assumption), we get pmin =

∑k
j=1 p

min
j ,

and finally

r = pmin + min
v∈Vext

⌊
mini=1,...,m {|si | − θvi + 1} − pmin

|Σ|

⌋
. (4)

The heuristic guidance is stated for each node v (at same level) by

H(v) =
m∏
i=1

Pr(r , |si | − θvi + 1).

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

17/ 39

An A∗ search
Introduced by Hart et al. (1968)
Works in best-first-search manner (always most promising nodes
expanded first)

Nodes prioritized acc. to f (v) = g(v) + h(v) where
I g(v): the length of a longest path from root node r to node v
I h(v): estimated cost from v to a goal node (dual bound)

Data structures to set up an A∗ for (m, k)–CLCS:

I Hash map N of nodes whose keys are pairs (~θ,~λ) with values lv which
stores the length of longest path to all node assoc. to ~θ,~λ (nodes:
clusters of partial solutions)

I Priority queue Q ⊆ N: list of not-yet-expanded nodes
I UB: the upper bound for LCS known from literature, monotonic
I Goal nodes: non-extendable, feasible nodes

A problem–specific nodes’ filtering:
UB(v) < lv + max{|pi | − λvi + 1 | i = 1, . . . , k}

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

18/ 39

Variable Neighborhood Search (VNS)

Proposed by Mladenovic and Hansen (1997)
Systematically change of neighborhood structures in order to escape
from local minima: diversification
Intensification: Local search, i.e. small-change-neighbor

Idea of VNS applied on (m.k)–CLCS problem based on

DP for two strings only when necessary
insert/update/delete operations on current solution
penalty function counting the number of feasibility violations on a per
character basis

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

19/ 39

VNS: details

Fitness function:

F (sol) :=


∑
si∈S

(|sol | − |LCS(sol , si)|) +
∑
pj∈P

(|pj | − |LCS(pj , sol)|) if sol infeasible,

nmin−|sol|
nmin+1 if sol feasible.

(5)

Motivation for using this function:

I Until a feasible solution is found, focus is more on reaching feasibility
as soon as possible, by updating / removing characters.

I Once feasibility reached, the fitness function will thrive the algorithm
to increase solution, by adding letters.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

20/ 39

VNS details: shaking

Two kind of Shaking realized depending on the feasibility of the solution:

Shaking_Delete(sol , κ) applied if sol is feasible: randomly removing κ
letters from sol in order to move away from the current solution;

Shaking_Change(sol , κ) applied if sol is unfeasible: it selects κ
random positions in sol and changes the letters at the chosen
positions to randomly chosen letters from Σ.

Purpose of the both shaking:
Shaking_Delete(sol , κ): for the shake of diversification
Shaking_Change(sol , κ): more aiming for solution feasibility

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

21/ 39

VNS details: local search

It combines two first improvement strategies with a time complexity of
O(|sol | · |Σ|) per LS iteration.

1 Change-Based-LS: find a pair (i , σ), i ∈ {1, . . . , |sol |}, σ ∈ Σ ∪ {ε} so
that by changing sol [i] = σ, fitness function F (sol) is improved;

2 Insert-Based-LS: find a pair (i , σ), i ∈ {1, . . . , |sol |+ 1}, σ ∈ Σ so
that F (sol) is improved by inserting letter σ before position i in sol .

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

22/ 39

VNS details: efficiency

The most time consuming part of VNS is fitness calculation in LS:

Partial fitness function calculate (LCS(sol , si) and LCS(pj , sol)),
i ∈ [m], j ∈ [k]: m + k DP for two strings

Fitness score F after operations like insert/update/delete of a single
letter in sol calculated partially (in linear time) ⇒ The two LS–based
procedure works without any application of DP

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

23/ 39

VNS: remarks

Partial fitness calculation is a bit too technical, but based on the concept
of

determining the right–most embedding of s∗ = LCS(sol , si) into si ,
i ∈ [m]; and corresponding left-most (linearly)

detecting middle regions of si between left–most and right–most
embedding of s∗ which give relevant regions of si for scanning
candidate letters for insertions able to improve F values

after performing an edit operation (update/delete), in general, a tight
upper bound on current F value will be produced

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

24/ 39

Illustration

Table: Middle regions (shown with a light-gray background) for solution
sol = abccada w.r.t. input strings and patterns.

s1 a a b c a a b a a d
left mapping a b c a d
right mapping a a b c a a d
s2 a a a b c a b a d a
left mapping a b c a d a
right mapping a a b c b a d a
p1 b c a b a a
left mapping b c a a
right mapping b c b a a
p2 a a b b a a
left mapping a b a a
right mapping a a b b a a

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

25/ 39

Experimental Studies
Machine settings:

C++ using GCC 7.4
Intel Xeon E5–2640 processor with 2.40 GHz

Time & memory limit:
1200 sec.
Memory:

I 4 Gb for VNS
I 16 Gb for BS
I 32 Gb for A∗

Algorithms tested:
1 Greedy algorithm (Greedy);
2 BS on the full search space, labelled by BS-basic;
3 BS on the restricted search space, labelled by restricted-Bs;
4 Variable neighborhood search (VNS);
5 The hybrid BS&VNS in which restricted-BS provides an initial

solution for the VNS.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

26/ 39

Benchmark sets
Two different set of instances set up for experiments:

Random instances where for each
I length of input strings n ∈ {100, 500, 1000},
I number of input strings m ∈ {2, 5, 10},
I alphabet size |Σ| ∈ {2, 4, 20},
I number of pattern strings k ∈ {2, 5, 10}, and
I length of pattern strings descried by a ratio p = |p0|

n ∈
{ 1

50 ,
1
20

}
10 instances were generated (ensuring at least one feasible solution),
which gives us 1 620 instances.

Real–world benchmark set:
I 40 different sets of Bacteria where m ranges from 2 to 12 681 which

lengths range from around 600 to around 2 000.

I Number of pattern strings is 15, some of them are:
F gtgtagaggtgaaatgcgtagat
F caaacaggattagaaacccaagtagtccacgc
F aaaatcaaaaaaatagacggggacccgcacaag.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

27/ 39

Parameters’ tuning:

Our algorithms
BS-basic

restricted-BS

VNS

tuned w.r.t solution-quality via irace.
results of restricted-BS passed to VNS – BS&VNS

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

28/ 39

Results: feasibility check for |Σ| = 2

2 5 10
m

0

20

40

60

80

100
Instances with n=100 and | | = 2

Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(a) n = 100.

2 5 10
m

50

52

54

56

58

60

62

64

Instances with n=500 and | | = 2
Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(b) n = 500.

2 5 10
m

0

20

40

60

80

100
Instances with n=1000 and | | = 2

Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(c) n = 1000.

Figure: Feasibility check of our approaches for the instances with |Σ| = 2.Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

29/ 39

Results: feasibility check for |Σ| = 20

2 5 10
m

0

20

40

60

80

100
Instances with n=100 and | | = 20

Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(a) n = 100.

2 5 10
m

0

20

40

60

80

100
Instances with n=500 and Σ = 20

Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(b) n = 500.

2 5 10
m

0

20

40

60

80

100
Instances with n=1000 and | | = 20

Greedy
restricted-BS
VNS
BS-basic
BS & VNS
A*

(c) n = 1000.

Greedy restricted-BS VNS BS-basic BS & VNS A*
0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f i
ns

ta
nc

es

Real benchmark set

(d) Real benchmark set.

Figure: Feasibility check comparison of our approaches.Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

30/ 39

Solution quality: Greedy vs. restricted-BS (common feas.)

2 5 10
m

−5

0

5

10

15

20

Im
pr

ov
em

en
ts

 o
f r

es
tri

ct
ed

-B
S

ov
er

 G
re

ed
y[

%
] Instances with |Σ|=2

(a) |Σ| = 2.

2 5 10
m

−10

−5

0

5

10

15

20

25

30

Im
pr

ov
em

en
ts

 o
f r

es
tri

ct
ed

-B
S
ov

er
 G
re
ed

y[
%
] Instances with |Σ|=4

(b) |Σ| = 4.

2 5 10
m

−40

−20

0

20

40

Im
pr

ov
em

en
ts

 o
f r

es
tri

ct
ed

-B
S

ov
er

 G
re

ed
y[

%
] Instances with |Σ|=20

(c) |Σ| = 20.

−40

−20

0

20

40

60

Im
pr

ov
em

en
ts

 o
f r

es
tri

ct
ed

-B
S

ov
er

 G
re

ed
y

Real benchmark set

(d) Real benchmark set.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

31/ 39

Solution quality: BS & VNS vs. restricted-BS

2 5 10
m

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

im
pr

ov
em

en
ts

 o
f B

S
&

VN
S

ov
er

 re
st

ric
te

d-
BS

 Instances with |Σ|=4

(a) |Σ| = 4.

2 5 10
m

0

10

20

30

40

50

60

im
pr

ov
em

en
ts

 o
f B

S
&

VN
S

ov
er

 re
st

ric
te

d-
BS

 Instances with |Σ|=20

(b) |Σ| = 20.

−10

0

10

20

30

40

im
pr

ov
em

en
ts

 o
f B

S
&

VN
S

ov
er

 re
st

ric
te

d-
BS

 Real benchmark set

(c) Real benchmark set.

Figure: Improvements of BS & VNS over restricted-BS.Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

32/ 39

Significance between the algorithms: |Σ| = 4

1 2 3 4 5 6

BS−basic

BS&VNS

VNS

restricted−BS

A*

Greedy

(a) Solution quality
comparison

2 3 4 5

BS&VNS

VNS

BS−basic

Greedy

A*

restricted−BS

(b) Feasibility comparison

Figure: Instances with |Σ| = 4.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

33/ 39

Significance between the algorithms: |Σ| = 20

2 3 4 5

BS−basic

BS&VNS

A*

restricted−BS

Greedy

VNS

(a) Solution quality
comparison

2 3 4 5 6

BS&VNS

restricted−BS

BS−basic

A*

Greedy

VNS

(b) Feasibility comparison

Figure: Instances with |Σ| = 20.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

34/ 39

Benchmark set Real

1 2 3 4 5 6

BS&VNS

VNS

BS−basic

restricted−BS

Greedy

A*

(a) Solution quality comparison

2 3 4 5 6

BS&VNS

Greedy

VNS

restricted−BS

BS−basic

A*

(b) Feasibility comparison

Figure: Benchmark set Real.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

35/ 39

A∗ vs. Automaton approach
Instance group #inst A* Automaton

t[s] ub opt[%] |s| t[s] opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 84.1 100 84.1 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.

Instance A* Automaton

m n |pi | k #inst t[s] ub opt[%] |s| t[s] opt[%]
2 100 40 1 10 0.02 44.5 100 44.5 1.70 100
2 250 45 2 10 14.2 107.6 70 106.9 4.71 100
2 250 8 3 10 120.1 88.4 30 87.4 27.2 100
2 250 6 4 10 154.9 87.1 80 87.0 82.6 100

Table: Results on random instances used for Automaton approach, |Σ| = 20.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

36/ 39

A∗ vs. Automaton approach
Instance group #inst A* Automaton

t[s] ub opt[%] |s| t[s] opt[%]
Rnase 3 0.12 68.33 100 68.33 4.78 100
Protease 15 0.7 55.6 100 55.6 4.71 100
Kinase 3 0.1 111 100 111 13.4 100
Globin 10 0.11 84.1 100 84.1 7.8 100
Input100 1 0.06 2 100 2 48.38 100

Table: Results on real-world benchmark set used for Automaton approach.

Instance A* Automaton

m n |pi | k #inst t[s] ub opt[%] |s| t[s] opt[%]
2 100 40 1 10 0.02 44.5 100 44.5 1.70 100
2 250 45 2 10 14.2 107.6 70 106.9 4.71 100
2 250 8 3 10 120.1 88.4 30 87.4 27.2 100
2 250 6 4 10 154.9 87.1 80 87.0 82.6 100

Table: Results on random instances used for Automaton approach, |Σ| = 20.

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

36/ 39

Conclusions & Future Work
Conclusions:

a few heuristic approaches proposed to deal with large–sized instances:

I efficient in various aspects such as finding high-quality solutions
(BS-basic and BS&VNS) as well as proving feasibility
(restricted-BS)

I the search guided by a probability–based heuristic guidance
I BS & VNS works best on benchmark set Real

proposed an A∗ search to deal with the instances of moderate size:
I ≈ 35% random instances solved to proven optimality
I 4 real–world instances solved to optimality

Future work:
develop anytime algorithms for the large-sized instances (gaps)
develop more sophisticated search guidances
prove feasibility of remaining instances where our algorithms fail
(≈ 7− 8%) random instances, |Σ| = 20 (why not MCTS?)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

37/ 39

Conclusions & Future Work
Conclusions:

a few heuristic approaches proposed to deal with large–sized instances:

I efficient in various aspects such as finding high-quality solutions
(BS-basic and BS&VNS) as well as proving feasibility
(restricted-BS)

I the search guided by a probability–based heuristic guidance
I BS & VNS works best on benchmark set Real

proposed an A∗ search to deal with the instances of moderate size:
I ≈ 35% random instances solved to proven optimality
I 4 real–world instances solved to optimality

Future work:
develop anytime algorithms for the large-sized instances (gaps)
develop more sophisticated search guidances
prove feasibility of remaining instances where our algorithms fail
(≈ 7− 8%) random instances, |Σ| = 20 (why not MCTS?)

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

37/ 39

Thank you for your attention!

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

38/ 39

Edit operations and partial fitness calculation

Example. Consider the change operation:

sol = abcca d a to snew = abcca a a.

It is never considered in the partial LCS calculation w.r.t. s1 and s2,
since d is not part of a middle region.

Note that changing d to character a would produce
LCS(s1, s

new) = abcaaa, which has length 6

But, the result of partial calculation would be 5

Djukanovic et al.
On Solving a Generalized CLCS problem with Many Pattern Strings

39/ 39

