acılıı

On Solving a Generalized Constrained Longest Common Subsequence Problem – Seminar talk –

M. Djukanovic¹, A. Kartelj³, D. Matic⁴, M. Grbic⁴, G. Raidl¹, C. Blum²

 ¹Institute of Logic and Computation, TU Wien, Vienna, Austria,
 ² Artificial Intelligence Research Institute (IIIA), Spanish National Research Council (CSIC), Barcelona, Spain
 ³Faculty of Mathematics, University of Belgrade, Serbia
 ⁴Faculty of Science and Mathematics, University of Banja Luka, B & H

March 16, 2021

Introduction

A *string* is a finite sequence of characters over some (finite) alphabet Σ .

Strings are commonly as models for presenting DNA and RNA molecules, proteins, texts, etc.

Bioinformatics and strings:

- finding similarities between molecules: understanding of biological processes
- (discrete) optimization problems

Longest Common Subsequence (LCS) Problem

Object to measure similarity: A *subsequence* of string *s* is any sequence of characters obtained by deleting zero or more characters from *s*.

LCS Problem:

- Input: set of strings $S = \{s_1, \ldots, s_m\}, m \in \mathbb{N}$, alphabet Σ
- Objective: find a *subsequence* of *maximum* length that is *common* for all strings from *S*
- \mathcal{NP} -hard problem for arbitrary large set S

Constrained Longest Common Subsequence (CLCS)

CLCS Problem (*m*-CLCS):

• Input: a set of strings $S = \{s_1, \ldots, s_m\}, m \in \mathbb{N}$, and alphabet Σ , and a pattern string p_1 .

acili

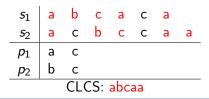
• Objective: find a subsequence of maximum length that is common for all strings from S and has p_1 as its subsequence.

Constrained Longest Common Subsequence (CLCS)

CLCS Problem (*m*-CLCS):

- Input: a set of strings $S = \{s_1, \ldots, s_m\}, m \in \mathbb{N}$, and alphabet Σ , and a pattern string p_1 .
- Objective: find a subsequence of maximum length that is common for all strings from S and has p_1 as its subsequence.
- Generalized constrained longest common subsequence problem ((*m*, *k*)-CLCS): apart of *m*-CLCS problem, it has an arbitrary set of *k* pattern strings in input.

Example:



acilii

Literature Overview

Practical relevance: identifying homology between biological sequences which posses a specific or putative structure in common:

• RNase, Kinase, Protease posses patterns such as KHK, KKH, HKH, etc. in common.

2-CLCS problem:

- Introduced by Tsai (2003)
- Polynomially solvable by dynamic programming (DP) in $O(|s_1| \cdot |s_2| \cdot |p_1|)$
 - A few sparse DP approaches

m-CLCS problem:

- \mathcal{NP} -hard if m arbitrary, and a fixed pattern
- Approximation algorithm by Gotthilf et al. (2008)
- A Greedy heuristic, Beam Search, and A* proposed by Djukanovic et al. (2020)

Literature approach (*m*, *k*)–CLCS problem:

- (2, k)–CLCS problem is \mathcal{NP} –hard, Gothilf et al. (2011)
- Moreover, approximation algorithms (with guaranteeing ratio) cannot exist for (2, k)-CLCS problem
- Interestingly, we were able to prove that the problem of finding at least one feasible solution for (m, k)-CLCS problem is \mathcal{NP} -hard
 - ▶ was not the case of m-CLCS = (m, 1)-CLCS problem
- (*m*, *k*)–CLCS solved by Farhana and Rahman (2015), Automaton approach
- So, developing algorithms in three different directions makes sense
 - feasibility check
 - high-quality solutions
 - proving optimality

Notation and Data Structures

An instance of (m, k)-CLCS problem is given in the following way:

• $S = \{s_1, ..., s_m\}$ • $P = \{p_1, ..., p_k\}$, and • Σ

Given a position vector $\vec{\theta} \in \mathbb{N}^m$,

S[θ] := {s_i[θ_i, |s_i|] | i = 1,..., m} denotes a subproblem of the original (m, k)−CLCS instance w.r.t. input strings

A cover position vector $\vec{\lambda} \in \mathbb{N}^k$, indicates a subproblem

• $P[\vec{\lambda}] := \{p_j[\lambda_j, |p_j|] | j = 1, \dots, k\}$ concerning set of pattern strings P

Data structures:

- Succ[i, j, a] = x, position $x \ge j$ in string s_i such that $s_i[x] = a$; or -1 otherwise;
- Embed[i, r, j] = x for all $i \in [m]$, $j \in [k]$ and $r \in [|p_j| + 1]$ stores the right-most (largest) position x of s_i such that $p_j[r, |p_j|]$ is a subsequence of $s_i[x, |s_i|]$.

Greedy method

Based on the well-known Best-Next heuristic:

• At each step, a letter with the best greedy value appended (to the end) to current greedy sol. *s*

Candidates for extension are letters $c \in \sum_{s}^{nd}$ which fulfill:

- Condition 1: Letter c appears at least once in each of the prefix strings $s_i[\theta_i, |s_i|]$, i = 1, ..., m,
- where dominated nodes removed from $\Sigma_s^{\rm nd}$ (w.r.t. positions $\vec{\theta}, \vec{\lambda}$): We say that a dominates by b iff

• Succ
$$[i, \vec{\theta_i}, a] \leq$$
Succ $[i, \vec{\theta_i}, b]$ and

<u>Condition 2:</u> After appending c to s (and updating θ, λ), we ensure all remaining p_i[λ_i, |p_i|], i ∈ [k] may be embedded into each s_j[θ_i, |s_i|], j ∈ [m] ⇒ values of structure Embed not pre-computed, calculated on demand w.r.t. λ

Greedy criterion - additional conditions

To maximize chances for feasibility in our Greedy we add:

• <u>Condition 3</u>. Those letters which contribute to cover at least one not-yet-covered letter of any p_i preferred: $\sum_{s}^{\text{nd,str}}$

acilii

Example

Initialize: $ec{ heta}=(1,...,1)$, $ec{\lambda}=(1,\ldots,1),$ s=arepsilon , greedy heuristic:

$$g(s,ec{ heta},c) = \sum_{i=1}^m rac{\operatorname{Succ}[i, heta_i,c]- heta_i+1}{|s_i|- heta_i+1} \quad orall \ c\in \Sigma^{\operatorname{nd,str}}_s$$
(1)

where *s* is the current greedy sol. $\vec{\theta}$: current position vector.

Example

Initialize: $\vec{ heta}=(1,...,1)$, $\vec{\lambda}=(1,\ldots,1),$ s=arepsilon, greedy heuristic:

$$g(s, ec{ heta}, c) = \sum_{i=1}^{m} rac{\operatorname{Succ}[i, heta_i, c] - heta_i + 1}{|s_i| - heta_i + 1} \quad \forall \ c \in \Sigma_s^{\operatorname{nd,str}}$$
(1)

where *s* is the current greedy sol. $\vec{\theta}$: current position vector.

Note that the proposed greedy heuristic can not guarantee the construction of a feasible solution.

Example. Instance $S = \{abbba, babb\}$, $P = \{bb, a\}$, and $\Sigma = \{a, b\}$.

- Step I of the greedy heuristic: $\Sigma_s^{\mathrm{nd},str} = \{a, b\}$ are the candidates to extend the empty solution. Their greedy heuristic values are equal.
- Choosing b automatically leads to an unfeasible solution, that is, solution bbb is <u>not feasible</u>.

Search space of the (m, k)-CLCS problem

Nodes are $v = (\vec{\theta^{v}}, \lambda^{v}, I^{v})$ where

- $\vec{\theta^{v}}$ is a position vector,
- λ^{ν} is a cover position vector, and
- I^{v} is the length of a partial solution represented by node v

We say that partial solution s^{ν} induces node $\nu = (\vec{\theta}^{\nu}, \lambda^{\nu}, l^{\nu})$ iff

- $\vec{\theta}^{\nu}$ is defined such that $s_i[1, \theta_i^{\nu} 1]$ is the shortest possible prefix string of s_i of which s^{ν} is a subsequence.
- $\vec{\lambda}^{\nu}$ is defined such that $p_j[1, \lambda_j^{\nu} 1]$ is the longest prefix string of p_j which is a subsequence of s^{ν} .
- $I^{v} := |s^{v}|$

acilii

Node Extension

A child node w of v is generated as follows (suppose we extend v by letter $a \in \sum_{s^{v}}^{nd} = \sum_{v}^{nd}$):

The root node: r = ((1, ..., 1), (1, ..., 1), 0): induced by the empty partial solution ε .

A node v is called non-extensible if $\Sigma_v^{\rm nd} = \emptyset$.

A node is called *feasible* iff $\lambda_j^v = |p_i| + 1$, for all $j = 1, \dots, k$.

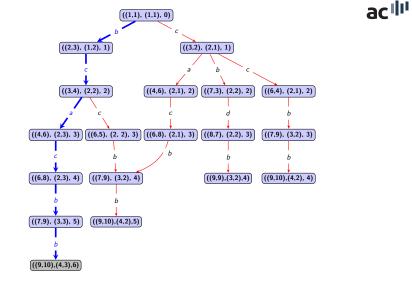


Figure:

 $(S = \{s_1 = bcaacbdba, s_2 = cbccadcbbd\}, P = \{cbb, ba\}, \Sigma = \{a, b, c, d\}).$ Only one node in the space (light-gray color) corresponds to a feasible solution s = bcacbb

The Concept of Restricted Search Space

- The full state space adapted towards maximizing the chances of finding at least one feasible solution
- Set of child nodes of node v gets restricted: prefer those child nodes over others which improve patterns coverage $(\Sigma_v^{nd} \Rightarrow \Sigma_v^{nd,str} \neq \emptyset)$

The Concept of Restricted Search Space

- The full state space adapted towards maximizing the chances of finding at least one feasible solution
- Set of child nodes of node v gets restricted: prefer those child nodes over others which improve patterns coverage $(\Sigma_v^{\mathrm{nd}} \Rightarrow \Sigma_v^{\mathrm{nd,str}} \neq \emptyset)$

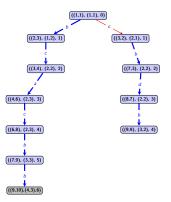


Figure: The restricted search space (same instance from the last slide).

Beam Search

Beam search (BS):

- Works in a restricted Breadth-First-Search manner
- $\beta>0$ best nodes of each level selected for further expansions acc. to a heuristic guidance h

Beam Search

Beam search (BS):

- Works in a restricted Breadth-First-Search manner
- $\beta > 0$ best nodes of each level selected for further expansions acc. to a heuristic guidance h

Heuristic guidances:

- \bullet Reasonably tight $\rm UB$ for $\rm LCS$ problem as the combination of an occurrences-based and a dynamic-programming based upper bound
- A new probability-based heuristic guidance developed (next slide)

Probability-based Heuristic Guidances

From Mousavi and Tabataba (2012), assuming

- independence among the input strings,
- randomness of input strings

the probability that a random string s of length r is a common subsequence of all input strings from S is

$$\operatorname{Prob}(s \prec S) = \prod_{i=1}^{m} \Pr(r, |s_i|), \qquad (2)$$

 \Pr : pre-processed (by DP).

In order to make use of Eq. (2) in the case of the (m, k)-CLCS problem, we assume

each such string s is extensible towards a feasible (m, k)-CLCS solution (s has at least one feasible completion)

[Cont'd]

Choosing the value of r (length of extension):

• to make fair comparison to all nodes of the same level of BS, *r* shall be common to all nodes

$$p_j^{\min} = \min_{\mathbf{v} \in \mathbf{V}_{\text{ext}}} \left(|p_j| - \lambda_j^{\mathbf{v}} + 1 \right), j = 1, \dots, k.$$
(3)

and then summing up all the values (heuristic choice for the number of safe extension w.r.t. our assumption), we get $p^{\min} = \sum_{j=1}^{k} p_j^{\min}$, and finally

$$r = p^{\min} + \min_{v \in V_{ext}} \left\lfloor \frac{\min_{i=1,\dots,m} \left\{ |s_i| - \theta_i^v + 1 \right\} - p^{\min}}{|\Sigma|} \right\rfloor.$$
(4)

The heuristic guidance is stated for each node v (at same level) by

$$H(\mathbf{v}) = \prod_{i=1}^{m} \Pr(\mathbf{r}, |\mathbf{s}_i| - \theta_i^{\mathbf{v}} + 1).$$

An A^* search

- Introduced by Hart et al. (1968)
- Works in best-first-search manner (always most promising nodes expanded first)
- Nodes prioritized acc. to f(v) = g(v) + h(v) where
 - g(v): the length of a longest path from root node r to node v
 - h(v): estimated cost from v to a goal node (dual bound)
- Data structures to set up an A^{*} for (m, k)-CLCS:
 - ▶ Hash map *N* of nodes whose keys are pairs $(\vec{\theta}, \vec{\lambda})$ with values *I*^v which stores the length of longest path to all node assoc. to $\vec{\theta}, \vec{\lambda}$ (nodes: clusters of partial solutions)
 - **Priority queue** $Q \subseteq N$: list of not-yet-expanded nodes
 - \blacktriangleright UB: the upper bound for LCS known from literature, monotonic
 - Goal nodes: non-extendable, feasible nodes
- A problem-specific nodes' filtering: $UB(v) < l^v + \max\{|p_i| - \lambda_i^v + 1 \mid i = 1, ..., k\}$

Variable Neighborhood Search (VNS)

- Proposed by Mladenovic and Hansen (1997)
- Systematically change of neighborhood structures in order to escape from local minima: diversification
- Intensification: Local search, i.e. small-change-neighbor

Idea of VNS applied on (m.k)-CLCS problem based on

- DP for two strings only when necessary
- insert/update/delete operations on current solution
- penalty function counting the number of feasibility violations on a per character basis

VNS: details

• Fitness function:

$$F(\text{sol}) := \begin{cases} \sum\limits_{s_i \in S} (|sol| - |\text{LCS}(sol, s_i)|) + \sum\limits_{p_j \in P} (|p_j| - |\text{LCS}(p_j, sol)|) & \text{if sol infeasible,} \\ \frac{n_{\min} - |sol|}{n_{\min} + 1} & \text{if sol feasible.} \end{cases}$$
(5)

- Motivation for using this function:
 - Until a feasible solution is found, focus is more on reaching feasibility as soon as possible, by updating / removing characters.
 - Once feasibility reached, the fitness function will thrive the algorithm to increase solution, by adding letters.

VNS details: shaking

Two kind of Shaking realized depending on the feasibility of the solution:

- Shaking_Delete(sol, κ) applied if sol is feasible: randomly removing κ letters from sol in order to move away from the current solution;
- Shaking_Change(*sol*, κ) applied if *sol* is unfeasible: it selects κ random positions in *sol* and changes the letters at the chosen positions to randomly chosen letters from Σ .

Purpose of the both shaking:

- Shaking_Delete(sol, κ): for the shake of diversification
- Shaking_Change(sol, κ): more aiming for solution feasibility

VNS details: local search

It combines two first improvement strategies with a time complexity of $O(|sol| \cdot |\Sigma|)$ per LS iteration.

- Change-Based-LS: find a pair $(i, \sigma), i \in \{1, ..., |sol|\}, \sigma \in \Sigma \cup \{\varepsilon\}$ so that by changing $sol[i] = \sigma$, fitness function F(sol) is improved;
- **2** Insert-Based-LS: find a pair $(i, \sigma), i \in \{1, ..., |sol| + 1\}, \sigma \in \Sigma$ so that F(sol) is improved by inserting letter σ before position i in sol.

VNS details: efficiency

The most time consuming part of VNS is fitness calculation in LS:

- Partial fitness function calculate $(LCS(sol, s_i) \text{ and } LCS(p_j, sol))$, $i \in [m], j \in [k]: m + k \text{ DP for two strings}$
- Fitness score F after operations like insert/update/delete of a single letter in sol calculated partially (in linear time) ⇒ The two LS-based procedure works without any application of DP

VNS: remarks

Partial fitness calculation is a bit too technical, but based on the concept of

- determining the right-most embedding of $s^* = LCS(sol, s_i)$ into s_i , $i \in [m]$; and corresponding left-most (linearly)
- detecting middle regions of s_i between left-most and right-most embedding of s* which give relevant regions of s_i for scanning candidate letters for insertions able to improve F values
- after performing an edit operation (update/delete), in general, a tight upper bound on current *F* value will be produced

Illustration

Table: Middle regions (shown with a light-gray background) for solution sol = abccada w.r.t. input strings and patterns.

<i>s</i> ₁	а	а	b	С	а	а	b	а	а	d
left mapping	а		b	С	а					d
right mapping		а	b	С					а	d
<i>s</i> ₂	а	а	а	b	С	а	b	а	d	а
left mapping	а			b	С	а			d	а
right mapping			а	b	С			а	d	а
<i>p</i> 1	b	с	а	b	а	а				
left mapping	b	с	а		а					
right mapping	b	С			а	а				
p2	а	а	b	b	а	а				
left mapping	а		b		а	а				
right mapping		а		b	а	а				

On Solving a Generalized $\rm CLCS$ problem with Many Pattern Strings 25/ 39

Experimental Studies

Machine settings:

- C++ using GCC 7.4
- Intel Xeon E5-2640 processor with 2.40 GHz

Time & memory limit:

- 1200 sec.
- Memory:
 - 4 Gb for VNS
 - 16 Gb for BS
 - 32 Gb for A*

Algorithms tested:

- Greedy algorithm (GREEDY);
- O BS on the full search space, labelled by $\emph{BS-BASIC};$
- **③** BS on the restricted search space, labelled by RESTRICTED-BS;
- Variable neighborhood search (VNS);
- The hybrid BS&VNS in which RESTRICTED-BS provides an initial solution for the VNS.

Benchmark sets

Two different set of instances set up for experiments:

- **RANDOM** instances where for each
 - length of input strings $n \in \{100, 500, 1000\}$,
 - number of input strings $m \in \{2, 5, 10\}$,
 - alphabet size $|\Sigma| \in \{2, 4, 20\}$,
 - number of pattern strings $k \in \{2, 5, 10\}$, and
 - ▶ length of pattern strings descried by a ratio $p = \frac{|p_0|}{n} \in \left\{\frac{1}{50}, \frac{1}{20}\right\}$ 10 instances were generated (ensuring at least one feasible solution), which gives us **1 620 instances**.
- **REAL**—world benchmark set:
 - ▶ 40 different sets of Bacteria where *m* ranges from 2 to 12 681 which lengths range from around 600 to around 2 000.
 - Number of pattern strings is 15, some of them are:
 - \star gtgtagaggtgaaatgcgtagat
 - \star caaacaggattagaaacccaagtagtccacgc
 - ★ aaaatcaaaaaatagacggggacccgcacaag.

Parameters' tuning:

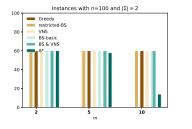
Our algorithms

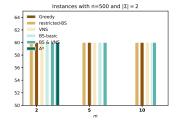
- BS-basic
- RESTRICTED-BS
- VNS

tuned w.r.t solution-quality via *irace*.

 \bullet results of ${\rm RESTRICTED}\mbox{-}BS$ passed to ${\rm VNS}$ – ${\rm BS}\&{\rm VNS}$

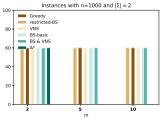
Results: feasibility check for $|\Sigma| = 2$





(a)
$$n = 100$$
.

(b) n = 500.

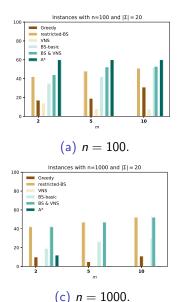


(c) n = 1000.

On Solving a Generalized $\rm CLCS$ problem with Many Pattern Strings 29/ 39

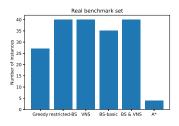
Djukanovic et al.

Results: feasibility check for $|\Sigma| = 20$



Instances with n=500 and $|\Sigma| = 20$ Greedy Greedy NNS BS basic BS basic BS by NNS Greedy DS basic DS

(b) n = 500.



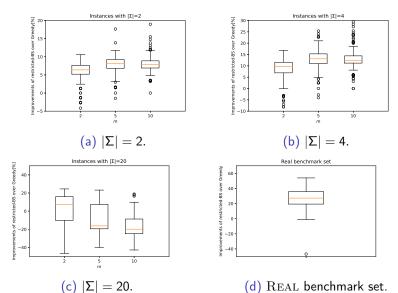
(d) REAL benchmark set.

On Solving a Generalized CLCS problem with Many Pattern Strings

Djukanovic et al.

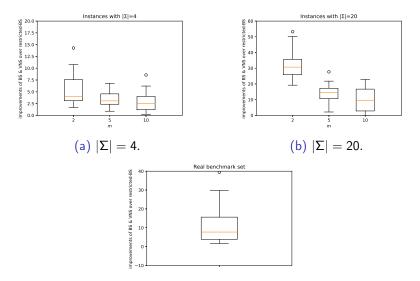
30/39

Solution quality: Greedy vs. restricted-BS (common feas.)



On Solving a Generalized $\rm CLCS$ problem with Many Pattern Strings 31/ 39

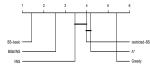
Solution quality: BS & VNS vs. restricted-BS

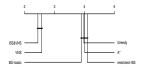


(c) REAL benchmark set.

acili

Significance between the algorithms: $|\boldsymbol{\Sigma}|=4$



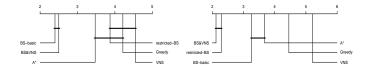


acili

(a) Solution quality (b) Feasibility comparison

Figure: Instances with $|\Sigma| = 4$.

Significance between the algorithms: $|\Sigma| = 20$

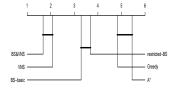


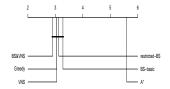
acili

(a) Solution quality (b) Feasibility comparison

Figure: Instances with $|\Sigma| = 20$.

Benchmark set REAL





(a) Solution quality comparison (b) Feasibility comparison Figure: Benchmark set ${\rm REAL}.$

Djukanovic et al.

A^* vs. Automaton approach

Instance group	#inst		A*		Automaton			
		$\overline{t}[s]$	ub	opt[%]	<u> </u>	$\overline{t}[s]$	opt[%]	
Rnase	3	0.12	68.33	100	68.33	4.78	100	
Protease	15	0.7	55.6	100	55.6	4.71	100	
Kinase	3	0.1	111	100	111	13.4	100	
Globin	10	0.11	84.1	100	84.1	7.8	100	
Input100	1	0.06	2	100	2	48.38	100	

Table: Results on real-world benchmark set used for Automaton approach.

Djukanovic et al.

A^* vs. Automaton approach

Instance group	#inst		A*		Automaton			
		$\overline{t}[s]$	ub	opt[%]	<u> </u> <i>s</i>	$\overline{t}[s]$	opt[%]	
Rnase	3	0.12	68.33	100	68.33	4.78	100	
Protease	15	0.7	55.6	100	55.6	4.71	100	
Kinase	3	0.1	111	100	111	13.4	100	
Globin	10	0.11	84.1	100	84.1	7.8	100	
Input100	1	0.06	2	100	2	48.38	100	

Table: Results on real-world benchmark set used for Automaton approach.

Instance						A*		Automaton		
т	n	$ p_i $	k	#inst	$\overline{t}[s]$	ub	opt[%]	<u> </u> <i>s</i>	$\overline{t}[s]$	opt[%]
2	100	40	1	10	0.02	44.5	100	44.5	1.70	100
2	250	45	2	10	14.2	107.6	70	106.9	4.71	100
2	250	8	3	10	120.1	88.4	30	87.4	27.2	100
2	250	6	4	10	154.9	87.1	80	87.0	82.6	100

Table: Results on random instances used for Automaton approach, $|\Sigma| = 20$.

Conclusions & Future Work

Conclusions:

- a few heuristic approaches proposed to deal with large-sized instances:
 - efficient in various aspects such as finding high-quality solutions (BS-BASIC and BS&VNS) as well as proving feasibility (RESTRICTED-BS)
 - the search guided by a probability-based heuristic guidance
 - \blacktriangleright BS & VNS works best on benchmark set $\rm REAL$
- proposed an A* search to deal with the instances of moderate size:
 - $\blacktriangleright~\approx 35\%$ random instances solved to proven optimality
 - 4 real-world instances solved to optimality

Conclusions & Future Work

Conclusions:

- a few heuristic approaches proposed to deal with large-sized instances:
 - efficient in various aspects such as finding high-quality solutions (BS-BASIC and BS&VNS) as well as proving feasibility (RESTRICTED-BS)
 - the search guided by a probability-based heuristic guidance
 - \blacktriangleright BS & VNS works best on benchmark set $\rm REAL$
- proposed an A* search to deal with the instances of moderate size:
 - $\blacktriangleright~\approx 35\%$ random instances solved to proven optimality
 - 4 real-world instances solved to optimality

Future work:

- develop anytime algorithms for the large-sized instances (gaps)
- develop more sophisticated search guidances
- prove feasibility of remaining instances where our algorithms fail ($\approx7-8\%)$ random instances, $|\Sigma|=20$ (why not MCTS?)

Djukanovic et al.

Thank you for your attention!

On Solving a Generalized $\rm CLCS$ problem with Many Pattern Strings 38/ 39

Djukanovic et al.

Edit operations and partial fitness calculation

Example. Consider the change operation:

$$sol = abccada to s^{new} = abccaaa.$$

- It is never considered in the partial LCS calculation w.r.t. s_1 and s_2 , since d is not part of a middle region.
- Note that changing d to character a would produce $LCS(s_1, s^{new}) = abcaaa$, which has length 6
- But, the result of partial calculation would be 5