Between FO and MSO

Michał Pilipczuk

University of Warsaw

3rd Workshop on Logic, Graphs, and Algorithms, LoGAlg 2025

Vienna, Austria

November 19th, 2025

Supported by ERC project BOBR, ref. no. 948057.

First-order logic FO: quantify over single vertices, verify adjacency.

triangle
$$(x, y, z) = \operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(z, x)$$
.
triangleFree = $\forall x. \forall y. \forall z. \neg \operatorname{triangle}(x, y, z)$.

First-order logic FO: quantify over single vertices, verify adjacency.

triangle
$$(x, y, z) = \operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(z, x)$$
.
triangleFree = $\forall x. \forall y. \forall z. \neg \operatorname{triangle}(x, y, z)$.

Monadic second-order logic MSO:

- MSO_1 : quantification over subsets of V(G) (3-colorability)
- MSO_2 : quantification over subsets of V(G) and E(G) (hamiltonicity)

First-order logic FO: quantify over single vertices, verify adjacency.

triangle
$$(x, y, z) = \operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(z, x)$$
.
triangleFree = $\forall x. \forall y. \forall z. \neg \operatorname{triangle}(x, y, z)$.

Monadic second-order logic MSO:

- MSO_1 : quantification over subsets of V(G) (3-colorability)
- MSO_2 : quantification over subsets of V(G) and E(G) (hamiltonicity)

Relational structures: MSO allows quant. over subsets of the universe.

First-order logic FO: quantify over single vertices, verify adjacency.

triangle
$$(x, y, z) = \operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(z, x)$$
.
triangleFree = $\forall x. \forall y. \forall z. \neg \operatorname{triangle}(x, y, z)$.

Monadic second-order logic MSO:

- MSO_1 : quantification over subsets of V(G) (3-colorability)
- MSO_2 : quantification over subsets of V(G) and E(G) (hamiltonicity)

Relational structures: MSO allows quant. over subsets of the universe.

Two different **encodings** of graphs:

 MSO_1 : universe = V(G), relation adj(u, v).

MSO₂: universe = $V(G) \uplus E(G)$ marked with V, E, relation inc(u, e).

First-order logic FO: quantify over single vertices, verify adjacency.

triangle
$$(x, y, z) = \operatorname{adj}(x, y) \wedge \operatorname{adj}(y, z) \wedge \operatorname{adj}(z, x)$$
.
triangleFree = $\forall x. \forall y. \forall z. \neg \operatorname{triangle}(x, y, z)$.

Monadic second-order logic MSO:

- MSO₁: quantification over subsets of V(G) (3-colorability)
- MSO_2 : quantification over subsets of V(G) and E(G) (hamiltonicity)

Relational structures: MSO allows quant. over subsets of the universe.

Two different **encodings** of graphs:

 MSO_1 : universe = V(G), relation adj(u, v).

 MSO_2 : universe = $V(G) \uplus E(G)$ marked with V, E, relation inc(u, e).

 MSO_2 boils down to MSO_1 on the 1-subdivision of G.

Want: Understand the correspondence

 $\mathbf{Logic}\,\mathcal{L}\qquad\longleftrightarrow\qquad\mathsf{Graph}\;\mathsf{classes}\,\mathscr{C}\;\mathbf{tamed}\;\mathsf{wrt}\;\mathcal{L}$

Want: Understand the correspondence

Logic $\mathcal{L} \longleftrightarrow \mathsf{Graph} \ \mathsf{classes} \ \mathscr{C} \ \mathsf{tamed} \ \mathsf{wrt} \ \mathcal{L}$

Proposition: \mathcal{L} is **tamed** on $\mathscr{C} \Leftrightarrow$

Problems expressible in $\mathcal L$ can be solved **efficiently** on $\mathscr C$.

Want: Understand the correspondence

Logic $\mathcal{L} \longleftrightarrow \mathsf{Graph} \ \mathsf{classes} \ \mathscr{C} \ \mathsf{tamed} \ \mathsf{wrt} \ \mathcal{L}$

Proposition: \mathcal{L} is **tamed** on $\mathscr{C} \Leftrightarrow$

Problems expressible in \mathcal{L} can be solved **efficiently** on \mathscr{C} .

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Want: Understand the correspondence

Logic $\mathcal{L} \longleftrightarrow \mathsf{Graph} \ \mathsf{classes} \ \mathscr{C} \ \mathsf{tamed} \ \mathsf{wrt} \ \mathcal{L}$

Proposition: \mathcal{L} is **tamed** on $\mathscr{C} \Leftrightarrow$

Problems expressible in \mathcal{L} can be solved **efficiently** on \mathscr{C} .

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Note: This is a meta-problem.

Want: Understand the correspondence

Logic $\mathcal{L} \longleftrightarrow \mathsf{Graph} \ \mathsf{classes} \ \mathscr{C} \ \mathsf{tamed} \ \mathsf{wrt} \ \mathcal{L}$

Proposition: \mathcal{L} is **tamed** on $\mathscr{C} \Leftrightarrow$

Problems expressible in \mathcal{L} can be solved **efficiently** on \mathscr{C} .

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Note: This is a **meta-problem**.

Note: This is a **parameterized** problem, with φ being the parameter.

Model-checking problem for $\mathcal L$

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Notions of tractability:

- XP: running time $|G|^{f(\varphi)} = |G|^{\mathcal{O}_{\varphi}(1)}$. (slice-wise polynomial)
- FPT: running time $f(\varphi) \cdot |G|^c = \mathcal{O}_{\varphi}(|G|^c)$, for a constant c.

(fixed-parameter tractable)

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Notions of tractability:

- XP: running time $|G|^{f(\varphi)} = |G|^{\mathcal{O}_{\varphi}(1)}$. (slice-wise polynomial)
- FPT: running time $f(\varphi) \cdot |G|^c = \mathcal{O}_{\varphi}(|G|^c)$, for a constant c.

 (fixed-parameter tractable)

General graphs:

- FO: brute-force runtime $|G|^{\mathcal{O}(\|\varphi\|)}$, but $f(\varphi) \cdot |G|^c$ unlikely. (AW[\star]-hard)
- MSO₁: 3-coloring planar graphs already NP-hard. → No XP algorithm.

Model-checking problem for \mathcal{L}

Given a graph G and a sentence $\varphi \in \mathcal{L}$, is φ true in G?

Notions of tractability:

- XP: running time $|G|^{f(\varphi)} = |G|^{\mathcal{O}_{\varphi}(1)}$. (slice-wise polynomial)
- FPT: running time $f(\varphi) \cdot |G|^c = \mathcal{O}_{\varphi}(|G|^c)$, for a constant c.

 (fixed-parameter tractable)

General graphs:

- FO: brute-force runtime $|G|^{\mathcal{O}(\|\varphi\|)}$, but $f(\varphi) \cdot |G|^c$ unlikely. (AW[\star]-hard)
- MSO₁: 3-coloring planar graphs already NP-hard. \rightsquigarrow No XP algorithm.

Q: On what graph classes is model-checking FO / MSO₁ / MSO₂ FPT?

Theorem [Courcelle '90]

If \mathscr{C} has bounded treewidth,

then model-checking MSO₂ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem [Courcelle '90]

If \mathscr{C} has bounded treewidth,

then model-checking MSO₂ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

[Courcelle, Makowsky, Rotics '00]

If \mathscr{C} has bounded cliquewidth,

then model-checking MSO₁ on \mathscr{C} in time $\mathcal{O}_{\varphi}(|G|^2)$.

Theorem [Courcelle '90]

If \mathscr{C} has bounded treewidth,

then model-checking MSO₂ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

[Courcelle, Makowsky, Rotics '00]

If \mathscr{C} has bounded cliquewidth,

then model-checking MSO₁ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|^2)$.

Idea: Treewidth and **cliquewidth** are notions of **tree-likeness** \rightsquigarrow

Run a bottom-up dynamic programming / tree automaton.

Theorem [Courcelle '90]

If \mathscr{C} has bounded treewidth,

then model-checking MSO₂ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

[Courcelle, Makowsky, Rotics '00]

If \mathscr{C} has bounded cliquewidth,

then model-checking MSO₁ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|^2)$.

Idea: Treewidth and **cliquewidth** are notions of **tree-likeness** \leadsto

Run a bottom-up dynamic programming / tree automaton.

Theorem

[Grohe, Kreutzer, Siebertz '14]

If \mathscr{C} is nowhere dense,

then model-checking FO on $\mathscr C$ in time $\mathcal O_\varphi(|G|^{1+\varepsilon})$, for any $\varepsilon>0$.

Theorem

[Courcelle '90]

If \mathscr{C} has **bounded treewidth**,

then model-checking MSO₂ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

[Courcelle, Makowsky, Rotics '00]

If \mathscr{C} has bounded cliquewidth,

then model-checking MSO₁ on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|^2)$.

Idea: Treewidth and **cliquewidth** are notions of **tree-likeness** \leadsto

Run a bottom-up dynamic programming / tree automaton.

Theorem

[Grohe, Kreutzer, Siebertz '14]

If \mathscr{C} is nowhere dense,

then model-checking FO on $\mathscr C$ in time $\mathcal O_{\scriptscriptstyle\mathcal O}(|G|^{1+\varepsilon})$, for any $\varepsilon>0$.

Idea: Nowhere denseness defined by exclusion of **local** obstructions ↔

Exploit local decompositions and locality of FO.

Folklore: Bounded treewidth/cliquewidth are

the **limit of tractability** of MSO_1/MSO_2 .

Folklore: Bounded treewidth/cliquewidth are

the **limit of tractability** of MSO₁/MSO₂.

Do we really understand this?

Folklore: Bounded treewidth/cliquewidth are

the limit of tractability of MSO_1/MSO_2 .

Do we really understand this?

Ex: $\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices: } G \text{ a graph}\}$

Folklore: Bounded treewidth/cliquewidth are

the limit of tractability of MSO₁/MSO₂.

Do we really understand this?

Ex:
$$\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices} : G \text{ a graph}\} \Rightarrow \text{need some closure}$$

Folklore: Bounded treewidth/cliquewidth are

the **limit of tractability** of MSO₁/MSO₂.

Do we really understand this?

Ex:
$$\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices} : G \text{ a graph}\} \Rightarrow \text{need some closure}$$

Obs:
$$\mathscr{C}$$
 is minor-closed and of unbounded treewidth \Rightarrow

$$\mathscr C$$
 contains all planar graphs \Rightarrow

model-checking MSO₁ is para-NP-hard on \mathscr{C} .

Folklore: Bounded treewidth/cliquewidth are

the limit of tractability of MSO_1/MSO_2 .

Do we really understand this?

Ex:
$$\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices} : G \text{ a graph}\} \Rightarrow \text{need some closure}$$

Obs:
$$\mathscr{C}$$
 is **minor-closed** and of unbounded treewidth \Rightarrow

$$\mathscr C$$
 contains all planar graphs \Rightarrow

model-checking MSO₁ is para-NP-hard on \mathscr{C} .

Theorem

[Kreutzer, Tazari '10]

If \mathscr{C} is **coloring-closed** and **treewidth** in \mathscr{C} is **not poly-log bounded**, then model-checking MSO_2 on \mathscr{C} is not in XP (under assumptions).

Folklore: Bounded treewidth/cliquewidth are

the limit of tractability of MSO₁/MSO₂.

Do we really understand this?

Ex:
$$\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices} : G \text{ a graph}\} \Rightarrow \text{need some closure}$$

Obs:
$$\mathscr{C}$$
 is **minor-closed** and of unbounded treewidth \Rightarrow

$$\mathscr C$$
 contains all planar graphs \Rightarrow

model-checking MSO₁ is para-NP-hard on \mathscr{C} .

Theorem

[Kreutzer, Tazari '10]

If \mathscr{C} is **coloring-closed** and **treewidth** in \mathscr{C} is **not poly-log bounded**, then model-checking MSO_2 on \mathscr{C} is not in XP (under assumptions).

Q: Do we know such a theorem for cliquewidth?

Folklore: Bounded treewidth/cliquewidth are

the limit of tractability of MSO₁/MSO₂.

Do we really understand this?

Ex:
$$\mathscr{C} = \{G + 2^{2^{|G|}} \text{ isolated vertices} : G \text{ a graph}\} \Rightarrow \text{need some closure}$$

Obs:
$$\mathscr{C}$$
 is **minor-closed** and of unbounded treewidth \Rightarrow

$$\operatorname{\mathscr{C}}$$
 contains all planar graphs

model-checking MSO_1 is para-NP-hard on \mathscr{C} .

Theorem

[Kreutzer, Tazari '10]

 \Rightarrow

If $\mathscr C$ is coloring-closed and treewidth in $\mathscr C$ is not poly-log bounded, then model-checking MSO_2 on $\mathscr C$ is not in XP (under assumptions).

Q: Do we know such a theorem for cliquewidth?

Theorem

If $\mathscr C$ is subgraph-closed and not nowhere dense,

then model-checking FO on $\mathscr C$ is as hard as on general graphs.

Proposition: Understand tameness through expressive power,

instead of algorithmic tractability.

Proposition: Understand tameness through expressive power,

instead of algorithmic tractability.

Need: Notion of encoding graphs in graphs in logic.

Proposition: Understand tameness through expressive power,

instead of algorithmic tractability.

Need: Notion of encoding graphs in graphs in logic.

→ transductions and transducibility.

Proposition: Understand tameness through expressive power, instead of algorithmic tractability.

Need: Notion of encoding graphs in graphs in logic.

→ transductions and transducibility.

 \mathscr{D} is \mathcal{L} -transducible from \mathscr{C} \Leftrightarrow every $H \in \mathscr{D}$ can be **encoded** in some vertex-colored $G \in \mathscr{C}$ using a fixed formula $\varphi(x,y) \in \mathcal{L}$.

Encoding graphs in graphs

Proposition: Understand **tameness** through **expressive power**, instead of **algorithmic tractability**.

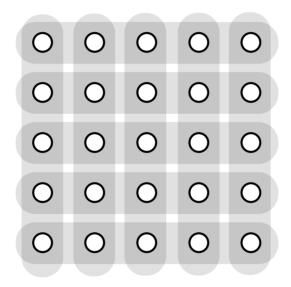
Need: Notion of encoding graphs in graphs in logic.

→ transductions and transducibility.

 \mathscr{D} is \mathcal{L} -transducible from \mathscr{C} \Leftrightarrow every $H \in \mathscr{D}$ can be **encoded** in some vertex-colored $G \in \mathscr{C}$ using a fixed formula $\varphi(x,y) \in \mathcal{L}$.

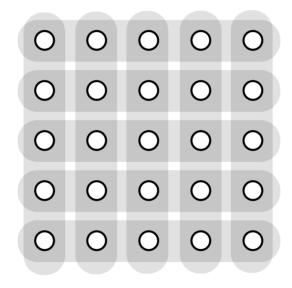
Formally: There is a 1-dimensional \mathcal{L} -interpretation from (colorings of \mathscr{C}) onto \mathscr{D} .

 $\mathscr{C} := \{ rook \ graphs \} = grids \ with rows \ and \ columns \ made \ into \ cliques.$



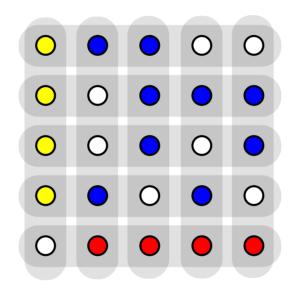
 $\mathscr{C} := \{ rook \ graphs \} = grids \ with rows \ and \ columns \ made \ into \ cliques.$

Claim: {all bipartite graphs} is FO-transducible from \mathscr{C} .



 $\mathscr{C} := \{ rook \ graphs \} = grids \ with rows \ and \ columns \ made \ into \ cliques.$

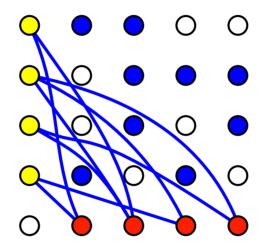
Claim: {all bipartite graphs} is FO-transducible from \mathscr{C} .



First row & column using **red** & **yellow**, the adjacency matrix using **blue**.

 $\mathscr{C} := \{ rook \ graphs \} = grids \ with rows \ and \ columns \ made \ into \ cliques.$

Claim: {all bipartite graphs} is FO-transducible from \mathscr{C} .

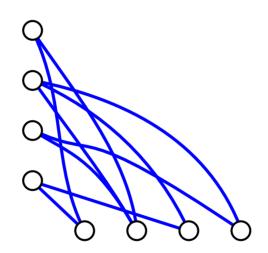


First row & column using **red** & **yellow**, the adjacency matrix using **blue**.

 $\varphi(x, y) = \text{red}(x)$ and yellow(y) and x, y have a common blue neighbor.

 $\mathscr{C} := \{ rook \ graphs \} = grids \ with rows \ and \ columns \ made \ into \ cliques.$

Claim: {all bipartite graphs} is FO-transducible from \mathscr{C} .



First row & column using red & yellow, the adjacency matrix using blue.

 $\varphi(x, y) = \text{red}(x)$ and yellow(y) and x, y have a common blue neighbor.

Drop all **blue** and **white** vertices.

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying
$$T = (C, \varphi)$$
 to G :

- Color vertices of G using C.

$$G \leadsto \widehat{G}$$

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

- Color vertices of G using C.

- $G \leadsto \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

─ Color vertices of G using C.

- $G \rightsquigarrow \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{i} \varphi(\widehat{G})$

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

─ Color vertices of G using C.

- $G \rightsquigarrow \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{i} \varphi(\widehat{G})$

Note: A transduction is a **nondeterministic** mechanism.

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

Color vertices of G using C.

- $G \rightsquigarrow \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{i} \varphi(\widehat{G})$

Note: A transduction is a **nondeterministic** mechanism.

$$T(G) :=$$
all possible outputs of T on G .

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

- Color vertices of G using C.

- $G \leadsto \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{\mathsf{i}} \varphi(\widehat{G})$

Note: A transduction is a **nondeterministic** mechanism.

$$T(G) :=$$
all possible outputs of T on G .

For a class $\mathscr C$ and a transduction T, define

$$\mathsf{T}(\mathscr{C}) := \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

─ Color vertices of G using C.

- $G \rightsquigarrow \widehat{G}$
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u,v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{i} \varphi(\widehat{G})$

Note: A transduction is a **nondeterministic** mechanism.

$$T(G) :=$$
all possible outputs of T on G .

For a class $\mathscr C$ and a transduction T, define

$$\mathsf{T}(\mathscr{C}) := \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Call \mathscr{D} \mathcal{L} -transducible from \mathscr{C} if there is a \mathcal{L} -transduction T such that

$$\mathscr{D}\subseteq\mathsf{T}(\mathscr{C}).$$

 \mathcal{L} -transduction: a set unary predicates C, a formula $\varphi(x,y) \in \mathcal{L}$.

Applying $T = (C, \varphi)$ to G:

- Color vertices of G using C.
- **Replace** the adjacency relation with $\{uv \mid G \models \varphi(u, v)\}$. $\widehat{G} \leadsto \varphi(\widehat{G})$
- Output any **induced subgraph** of $\varphi(\widehat{G})$ and drop colors. $H \subseteq_{i} \varphi(\widehat{G})$

Note: A transduction is a nondeterministic mechanism.

$$T(G) :=$$
all possible outputs of T on G .

For a class $\mathscr C$ and a transduction T, define

$$\mathsf{T}(\mathscr{C}) := \bigcup_{G \in \mathscr{C}} \mathsf{T}(G)$$

Call \mathscr{D} \mathcal{L} -transducible from \mathscr{C} if there is a \mathcal{L} -transduction T such that

$$\mathscr{D}\subseteq\mathsf{T}(\mathscr{C}).$$

Obs: \mathcal{L} -transductions closed under composition (for reasonable \mathcal{L}) \Rightarrow

 \mathcal{L} -transducibility is a quasi-order on graph classes.

 $G \rightsquigarrow \widehat{G}$

Def: $\mathscr C$ is monadically dependent wrt $\mathcal L$ if

 $\{all\ graphs\}\ is\ {\bf not}\ {\cal L}$ -transducible from ${\mathscr C}$.

Def: \mathscr{C} is monadically dependent wrt \mathcal{L} if

 $\{all\ graphs\}\ is\ {\bf not}\ {\cal L}$ -transducible from ${\cal C}$.

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Def: \mathscr{C} is monadically dependent wrt \mathscr{L} if

 $\{all\ graphs\}\ is\ {\bf not}\ {\cal L}$ -transducible from ${\cal C}$.

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Def: \mathscr{C} is monadically dependent wrt \mathscr{L} if

{all graphs} is **not** \mathcal{L} -transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Theorem

 \mathscr{C} is mon dependent wrt $MSO_2 \Leftrightarrow \mathscr{C}$ has bounded treewidth

 \mathscr{C} is mon dependent wrt $MSO_1 \Leftrightarrow^1 \mathscr{C}$ has bounded cliquewidth

^{1:} Counting mod 2 needed.

Def: \mathscr{C} is **monadically dependent** wrt \mathscr{L} if

 $\{all\ graphs\}\ is\ {\color{blue} not}\ \mathcal{L}\text{-transducible from}\ \mathscr{C}.$

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Theorem

 \mathscr{C} is mon dependent wrt $MSO_2 \Leftrightarrow \mathscr{C}$ has bounded treewidth

 \mathscr{C} is mon dependent wrt $MSO_1 \Leftrightarrow^1 \mathscr{C}$ has bounded cliquewidth

Note: MSO_2 transduction = Starting with the incidence encoding.

^{1:} Counting mod 2 needed.

Def: \mathscr{C} is monadically dependent wrt \mathscr{L} if

{all graphs} is **not** \mathcal{L} -transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Theorem

 \mathscr{C} is mon dependent wrt $MSO_2 \Leftrightarrow \mathscr{C}$ has bounded treewidth

 \mathscr{C} is mon dependent wrt $MSO_1 \Leftrightarrow^1 \mathscr{C}$ has bounded cliquewidth

Note: MSO_2 transduction = Starting with the incidence encoding.

Proof sketch:

^{1:} Counting mod 2 needed.

Def: \mathscr{C} is **monadically dependent** wrt \mathscr{L} if

{all graphs} is **not** \mathcal{L} -transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Theorem

 \mathscr{C} is mon dependent wrt $MSO_2 \Leftrightarrow \mathscr{C}$ has bounded treewidth

 \mathscr{C} is mon dependent wrt $MSO_1 \Leftrightarrow^1 \mathscr{C}$ has bounded cliquewidth

Note: MSO_2 transduction = Starting with the incidence encoding.

Proof sketch:

⇒: **Grids** MSO-transduce all graphs, use **Grid Theorems** for **tw/cw**.

^{1:} Counting mod 2 needed.

Def: \mathscr{C} is monadically dependent wrt \mathscr{L} if

{all graphs} is **not** \mathcal{L} -transducible from \mathscr{C} .

Intuition: Weakest possible restriction, cannot \mathcal{L} -encode all graphs in \mathscr{C} .

Ex: {rook graphs} is **not** mon dependent wrt FO.

Theorem

 \mathscr{C} is mon dependent wrt $MSO_2 \Leftrightarrow \mathscr{C}$ has bounded treewidth

 \mathscr{C} is mon dependent wrt $MSO_1 \Leftrightarrow^1 \mathscr{C}$ has bounded cliquewidth

Note: MSO_2 transduction = Starting with the incidence encoding.

Proof sketch:

⇒: Grids MSO-transduce all graphs, use Grid Theorems for tw/cw.

 \Leftarrow : MSO transductions preserve bounded cliquewidth. \square

^{1:} Counting mod 2 needed.

Theorem [Adler and Adler '14]

Suppose \mathscr{C} is **subgraph-closed**. Then

 \mathscr{C} is nowhere dense \Leftrightarrow \mathscr{C} is mon dependent wrt FO.

Theorem [Adler and Adler '14]

Suppose \mathscr{C} is **subgraph-closed**. Then

 \mathscr{C} is nowhere dense \Leftrightarrow \mathscr{C} is mon dependent wrt FO.

Conjecture

If $\mathscr C$ is **mon dependent** wrt FO, then FO model-checking on $\mathscr C$ is FPT.

Theorem [Adler and Adler '14]

Suppose \mathscr{C} is **subgraph-closed**. Then

 \mathscr{C} is nowhere dense \Leftrightarrow \mathscr{C} is mon dependent wrt FO.

Conjecture

If $\mathscr C$ is **mon dependent** wrt FO, then FO model-checking on $\mathscr C$ is FPT.

Note: Proved for **mon stable** classes.

[Gajarský, Mählmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokołowski, Toruńczyk '23]
[Dreier, Mählmann, Siebertz '23]
[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk '24]

Theorem [Adler and Adler '14]

Suppose \mathscr{C} is **subgraph-closed**. Then

 \mathscr{C} is nowhere dense \Leftrightarrow \mathscr{C} is mon dependent wrt FO.

Conjecture

If $\mathscr C$ is **mon dependent** wrt FO, then FO model-checking on $\mathscr C$ is FPT.

Note: Proved for **mon stable** classes.

[Gajarský, Mählmann, McCarty, Ohlmann, P, Przybyszewski, Siebertz, Sokołowski, Toruńczyk '23]
[Dreier, Mählmann, Siebertz '23]
[Dreier, Eleftheriadis, Mählmann, McCarty, P, Toruńczyk '24]

Meta-conjecture

Let \mathcal{L} be a reasonable logic. Then **model-checking** \mathcal{L} is FPT on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Meta-conjecture

Let $\mathcal L$ be a reasonable logic. Then **model-checking** $\mathcal L$ is FPT on every graph class $\mathscr C$ that is **mon dependent** wrt $\mathcal L$.

Meta-conjecture

Let \mathcal{L} be a reasonable logic. Then **model-checking** \mathcal{L} is FPT on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

Meta-conjecture

Let $\mathcal L$ be a reasonable logic. Then $\mathbf{model\text{-}checking}\ \mathcal L$ is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

 $-MSO_2$

(bnd treewidth)

Meta-conjecture

Let \mathcal{L} be a reasonable logic. Then **model-checking** \mathcal{L} is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

- MSO₂ (bnd treewidth)

– MSO₁ (bnd cliquewidth)

Meta-conjecture

Let $\mathcal L$ be a reasonable logic. Then $\operatorname{\mathbf{model-checking}} \mathcal L$ is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

- MSO₂ (bnd treewidth)

- MSO₁ (bnd cliquewidth)

FO on ordered graphs (bnd twin-width) [Bonnet et al. '22]

Meta-conjecture

Let \mathcal{L} be a reasonable logic. Then **model-checking** \mathcal{L} is FPT on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

- MSO₂ (bnd treewidth)

- MSO₁ (bnd cliquewidth)

FO on ordered graphs (bnd twin-width) [Bonnet et al. '22]

— FO on tournaments (bnd twin-width) [Geniet, Thomassé '23]

Meta-conjecture

Let $\mathcal L$ be a reasonable logic. Then **model-checking** $\mathcal L$ is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt \mathscr{L} .

Conjectured for FO, works for:

- MSO₂ (bnd treewidth)

– MSO₁ (bnd cliquewidth)

FO on ordered graphs (bnd twin-width) [Bonnet et al. '22]

FO on tournaments (bnd twin-width) [Geniet, Thomassé '23]

Reverse implication fuzzy: closure assumptions allowing coding.

Meta-conjecture

Let $\mathcal L$ be a reasonable logic. Then $\operatorname{\mathbf{model-checking}} \mathcal L$ is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt \mathcal{L} .

Conjectured for FO, works for:

$-MSO_2$ (bnd	treewidth)
---------------	------------

Reverse implication fuzzy: closure assumptions allowing coding.

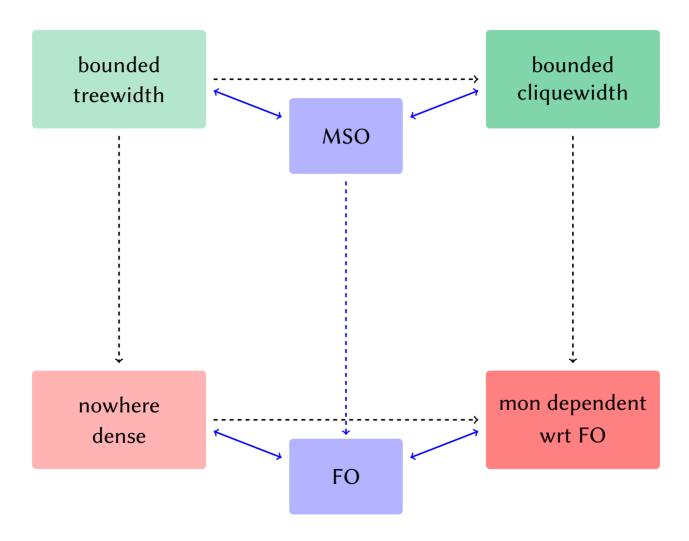
Theorem

[Dreier, Mählmann, Toruńczyk '24]

If \mathscr{C} is **hereditary** and **not mon dependent**, then

model-checking FO on \mathscr{C} is AW[\star]-hard.

Big picture



Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\,\,\mathcal{L}\qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}}\coloneqq \{\mathscr{C}\colon\mathscr{C} \text{ is mon dependent wrt }\mathcal{L}\}$$

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\,\,\mathcal{L}\qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}}\coloneqq \{\mathscr{C}\colon\mathscr{C} \text{ is mon dependent wrt }\mathcal{L}\}$$

$$MSO \supseteq \mathcal{L} \supseteq FO$$

bnd cliquewidth $\subseteq \mathcal{P}_{\mathcal{L}} \subseteq$ mon dependent wrt FO bnd treewidth $\subseteq (\mathcal{P}_{\mathcal{L}})_{\downarrow} \subseteq$ nowhere dense

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\,\,\mathcal{L}\qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}}\coloneqq \{\mathscr{C}\colon\mathscr{C} \text{ is mon dependent wrt }\mathcal{L}\}$$

$$\mathsf{MSO} \supseteq \mathcal{L} \supseteq \mathsf{FO}$$
 bnd cliquewidth $\subseteq \mathcal{P}_{\mathcal{L}} \subseteq \mathsf{mon}$ dependent wrt FO bnd treewidth $\subseteq (\mathcal{P}_{\mathcal{L}})_{\downarrow} \subseteq \mathsf{nowhere}$ dense

Motivation:

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\,\,\mathcal{L}\qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}}\coloneqq \{\mathscr{C}\colon\mathscr{C} \text{ is mon dependent wrt }\mathcal{L}\}$$

$$MSO\supseteq\mathcal{L}\supseteq FO$$
 bnd cliquewidth $\subseteq\mathcal{P}_{\mathcal{L}}\subseteq$ mon dependent wrt FO bnd treewidth $\subseteq(\mathcal{P}_{\mathcal{L}})_{\downarrow}\subseteq$ nowhere dense

Motivation:

This is just a natural idea.

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\; \mathcal{L} \qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}} \coloneqq \{\mathscr{C} \colon \mathscr{C} \; \mathsf{is} \; \mathsf{mon} \; \mathsf{dependent} \; \mathsf{wrt} \; \mathcal{L}\}$$

$$\label{eq:MSO} \begin{split} \mathsf{MSO} \supseteq \mathcal{L} \supseteq \mathsf{FO} \\ \mathsf{bnd} \ \mathsf{cliquewidth} \subseteq \mathcal{P}_{\mathcal{L}} \subseteq \mathsf{mon} \ \mathsf{dependent} \ \mathsf{wrt} \ \mathsf{FO} \\ \mathsf{bnd} \ \mathsf{treewidth} \subseteq (\mathcal{P}_{\mathcal{L}})_{\downarrow} \subseteq \mathsf{nowhere} \ \mathsf{dense} \end{split}$$

Motivation:

- This is just a natural idea.
- Utility: If \mathcal{P} is a natural property of graph classes (e.g. minor-free), then \mathcal{L} with $\mathcal{P} = \mathcal{P}_{\mathcal{L}}$ may capture the toolbox of \mathcal{P} .

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\; \mathcal{L} \qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}} \coloneqq \{\mathscr{C} \colon \mathscr{C} \; \mathsf{is} \; \mathsf{mon} \; \mathsf{dependent} \; \mathsf{wrt} \; \mathcal{L}\}$$

$$\mathsf{MSO} \supseteq \mathcal{L} \supseteq \mathsf{FO}$$
 bnd cliquewidth $\subseteq \mathcal{P}_{\mathcal{L}} \subseteq \mathsf{mon}$ dependent wrt FO bnd treewidth $\subseteq (\mathcal{P}_{\mathcal{L}})_{\downarrow} \subseteq \mathsf{nowhere}$ dense

Motivation:

- This is just a natural idea.
- Utility: If \mathcal{P} is a natural property of graph classes (e.g. minor-free), then \mathcal{L} with $\mathcal{P} = \mathcal{P}_{\mathcal{L}}$ may capture the toolbox of \mathcal{P} .
- **Exploration**: If \mathcal{L} is a natural logic, then $\mathcal{P}_{\mathcal{L}}$ is a natural property.

Goal: Explore logics \mathcal{L} with FO $\subseteq \mathcal{L} \subseteq MSO$.

$$\mathsf{Logic}\,\,\mathcal{L}\qquad \longleftrightarrow \qquad \mathcal{P}_{\mathcal{L}}\coloneqq \{\mathscr{C}\colon\mathscr{C} \text{ is mon dependent wrt }\mathcal{L}\}$$

$$\mathsf{MSO} \supseteq \mathcal{L} \supseteq \mathsf{FO}$$
 bnd cliquewidth $\subseteq \mathcal{P}_{\mathcal{L}} \subseteq \mathsf{mon}$ dependent wrt FO bnd treewidth $\subseteq (\mathcal{P}_{\mathcal{L}})_{\downarrow} \subseteq \mathsf{nowhere}$ dense

Motivation:

- This is just a natural idea.
- Utility: If \mathcal{P} is a natural property of graph classes (e.g. minor-free), then \mathcal{L} with $\mathcal{P} = \mathcal{P}_{\mathcal{L}}$ may capture the toolbox of \mathcal{P} .
- **Exploration:** If \mathcal{L} is a natural logic, then $\mathcal{P}_{\mathcal{L}}$ is a natural property.

Now: A thread of results exemplifying this.

$\textbf{Logic} \; \mathsf{FO} + \mathsf{conn}$

Idea: There is no FO formula $\varphi(x, y)$ such that

$$G \models \varphi(u, v) \Leftrightarrow u, v \text{ are in the same connected component.}$$

Let us add this to the logic FO!

Idea: There is no FO formula $\varphi(x, y)$ such that

$$G \models \varphi(u, v) \Leftrightarrow u, v \text{ are in the same connected component.}$$

Let us add this to the logic FO!

Adding just the conn(x, y) predicate is not very revealing.

Idea: There is no FO formula $\varphi(x, y)$ such that

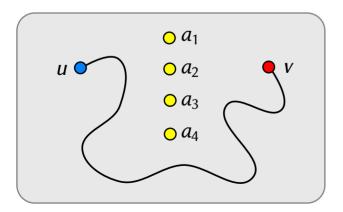
$$G \models \varphi(u, v) \Leftrightarrow u, v \text{ are in the same connected component.}$$

Let us add this to the logic FO!

Adding just the conn(x, y) predicate is not very revealing.

Def: For every $k \in \mathbb{N}$, we add the predicate conn_k (x, y, z_1, \dots, z_k) with

$$G \models conn(u, v, a_1, \dots, a_k) \Leftrightarrow u, v \text{ are connected in } G - \{a_1, \dots, a_k\}.$$



Idea: There is no FO formula $\varphi(x, y)$ such that

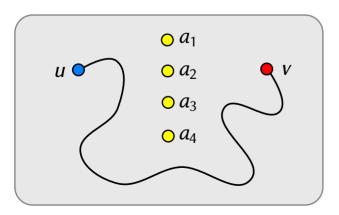
 $G \models \varphi(u, v) \Leftrightarrow u, v \text{ are in the same connected component.}$

Let us add this to the logic FO!

Adding just the conn(x, y) predicate is not very revealing.

Def: For every $k \in \mathbb{N}$, we add the predicate conn_k (x, y, z_1, \dots, z_k) with

$$G \models conn(u, v, a_1, \dots, a_k) \Leftrightarrow u, v \text{ are connected in } G - \{a_1, \dots, a_k\}.$$



FO + conn: FO plus $conn_k$ for each $k \in \mathbb{N}$.

Idea: There is no FO formula $\varphi(x, y)$ such that

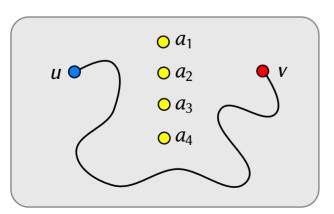
 $G \models \varphi(u, v) \Leftrightarrow u, v \text{ are in the same connected component.}$

Let us add this to the logic FO!

Adding just the conn(x, y) predicate is not very revealing.

Def: For every $k \in \mathbb{N}$, we add the predicate conn_k (x, y, z_1, \dots, z_k) with

$$G \models conn(u, v, a_1, \dots, a_k) \Leftrightarrow u, v \text{ are connected in } G - \{a_1, \dots, a_k\}.$$



FO + conn: FO plus $conn_k$ for each $k \in \mathbb{N}$.

Idea: Speak about small-size separators.

Introduced independently in 2021 by

Bojańczyk and by Schirrmacher, Siebertz, and Vigny.

Introduced independently in 2021 by

Bojańczyk and by Schirrmacher, Siebertz, and Vigny.

Motivation of Bojańczyk:

- Graph languages definable in FO + conn =

Star-free expressions in the treewidth algebra.

Schützenberger's Theorem for graphs of bounded pathwidth.

Introduced independently in 2021 by

Bojańczyk and by Schirrmacher, Siebertz, and Vigny.

Motivation of Bojańczyk:

- Graph languages definable in FO + conn =

Star-free expressions in the treewidth algebra.

- Schützenberger's Theorem for graphs of bounded pathwidth.
- -FO + conn is a natural graph analogue of FO on words with order.

Introduced independently in 2021 by

Bojańczyk and by Schirrmacher, Siebertz, and Vigny.

Motivation of **Bojańczyk**:

- Graph languages definable in FO + conn =

Star-free expressions in the treewidth algebra.

- Schützenberger's Theorem for graphs of bounded pathwidth.
- FO + conn is a natural graph analogue of FO on words with order.

Motivation of Schirrmacher et al.:

Expressive power.

Introduced independently in 2021 by

Bojańczyk and by Schirrmacher, Siebertz, and Vigny.

Motivation of Bojańczyk:

- Graph languages definable in FO + conn =

Star-free expressions in the treewidth algebra.

- Schützenberger's Theorem for graphs of bounded pathwidth.
- FO + conn is a natural graph analogue of FO on words with order.

Motivation of Schirrmacher et al.:

- Expressive power.

Subgraph-closed classes **tamed** wrt FO + conn =

Classes excluding a topological minor

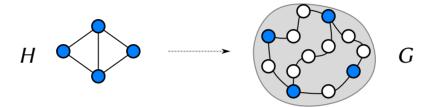
Def: *G* contains *H* as a **top minor** if

G contains a **subdivision** of H as a subgraph.



Def: *G* contains *H* as a **top minor** if

G contains a **subdivision** of *H* as a subgraph.



Theorem

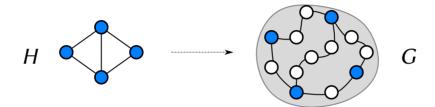
[P, Schirrmacher, Siebertz, Toruńczyk, Vigny '22]

Suppose \mathscr{C} can excludes some fixed graph H as a topological minor.

Then model-checking FO + conn on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Def: *G* contains *H* as a **top minor** if

G contains a **subdivision** of *H* as a subgraph.



Theorem

[P, Schirrmacher, Siebertz, Toruńczyk, Vigny '22]

Suppose \mathscr{C} can excludes some fixed graph H as a topological minor.

Then model-checking FO + conn on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

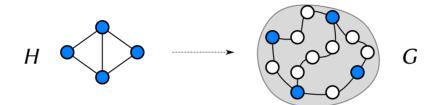
[follows from the same work]

Suppose $\mathscr C$ is a **subgraph-closed** graph class. Then:

 \mathscr{C} is **mon dependent** wrt FO + conn \Leftrightarrow \mathscr{C} excludes some **top minor** H.

Def: *G* contains *H* as a **top minor** if

G contains a **subdivision** of H as a subgraph.



Theorem

[P, Schirrmacher, Siebertz, Toruńczyk, Vigny '22]

Suppose \mathscr{C} can excludes some fixed graph H as a topological minor.

Then model-checking FO + conn on $\mathscr C$ in time $\mathcal O_{\varphi}(|G|)$.

Theorem

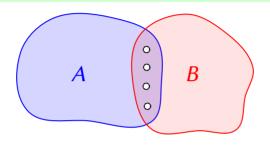
[follows from the same work]

Suppose \mathscr{C} is a **subgraph-closed** graph class. Then:

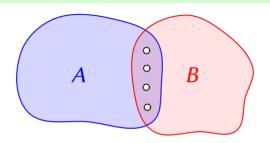
 \mathscr{C} is **mon dependent** wrt FO + conn \Leftrightarrow \mathscr{C} excludes some **top minor** H.

Note: \Rightarrow is easy, because FO + conn can shorten long paths.

Separation of *G* is (A, B) with $A \cup B = V(G)$ and $E(A - B, B - A) = \emptyset$. Order of (A, B) is $|A \cap B|$.

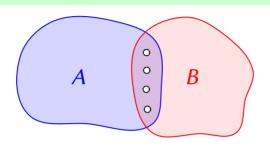


Separation of *G* is (A, B) with $A \cup B = V(G)$ and $E(A - B, B - A) = \emptyset$. **Order** of (A, B) is $|A \cap B|$.



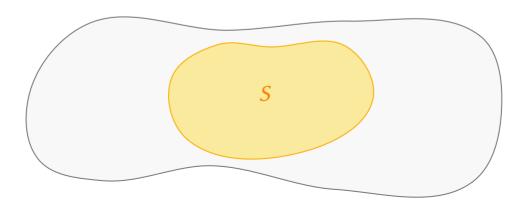
$$S \subseteq V(G)$$
 is (q, k) -unbreakable if for every separation (A, B) of order $\leqslant k$, $|A \cap S| \leqslant q$ or $|B \cap S| \leqslant q$.

Separation of *G* is (A, B) with $A \cup B = V(G)$ and $E(A - B, B - A) = \emptyset$. **Order** of (A, B) is $|A \cap B|$.



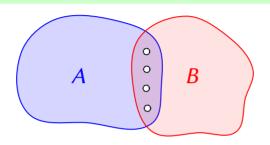
 $S \subseteq V(G)$ is (q, k)-unbreakable if for every separation (A, B) of order $\leq k$,

$$|A \cap S| \leqslant q$$
 or $|B \cap S| \leqslant q$.



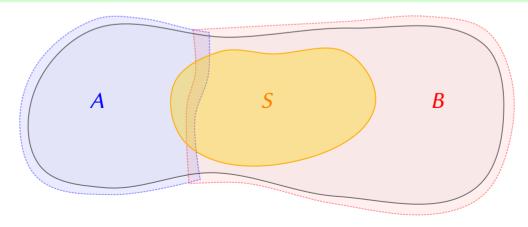
Unbreakability

Separation of *G* is (A, B) with $A \cup B = V(G)$ and $E(A - B, B - A) = \emptyset$. **Order** of (A, B) is $|A \cap B|$.



 $S \subseteq V(G)$ is (q, k)-unbreakable if for every separation (A, B) of order $\leq k$,

$$|A \cap S| \leqslant q$$
 or $|B \cap S| \leqslant q$.



$\textbf{Unbreakability and} \ \mathsf{FO} + \mathsf{conn}$

Unbreakability and FO + conn

Obs: If G is (q, k)-unbreakable for some $q, k \in \mathbb{N}$, (i.e. S = V(G))

then FO + conn $\leq k$ can be reduced to plain FO on G.

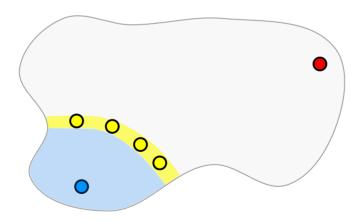
Unbreakability and FO + conn

Obs: If G is (q, k)-unbreakable for some $q, k \in \mathbb{N}$, (i.e. S = V(G)) then $FO + \operatorname{conn}_{\leq k}$ can be reduced to plain FO on G.

Proof:

If u, v disconnected in $G - \{a_1, \ldots, a_k\}$,

then $\leq q$ vrtcs reachable from u, or $\leq q$ vrtcs reachable from v.



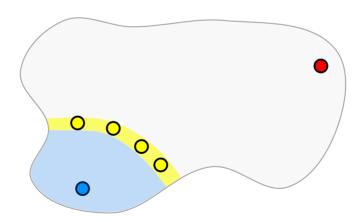
Unbreakability and FO + conn

Obs: If G is (q, k)-unbreakable for some $q, k \in \mathbb{N}$, (i.e. S = V(G)) then $FO + \operatorname{conn}_{\leq k}$ can be reduced to plain FO on G.

Proof:

If u, v disconnected in $G - \{a_1, \ldots, a_k\}$,

then $\leq q$ vrtcs reachable from u, or $\leq q$ vrtcs reachable from v.



Hence, $\neg conn_k(u, v, a_1, \dots, a_k)$ is equivalent to:

There is X with $|X| \leq q$, $|X \cap \{u, v\}| = 1$, and $N(X) \subseteq \{a_1, \ldots, a_k\}$.

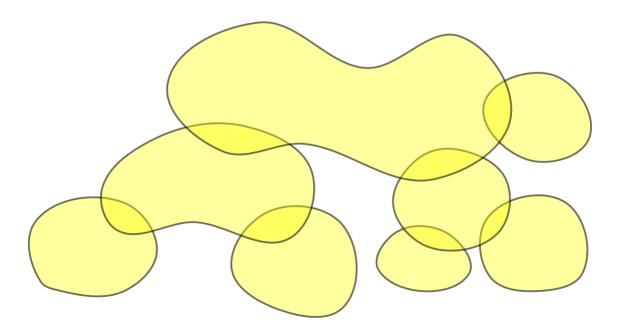
Unbreakable decomposition

Theorem

[Cygan, Lokshtanov, Pilipczuk, P, Saurabh '14] [Cygan, Komosa, Lokshtanov, Pilipczuk, P, Saurabh, Wahlström '18]

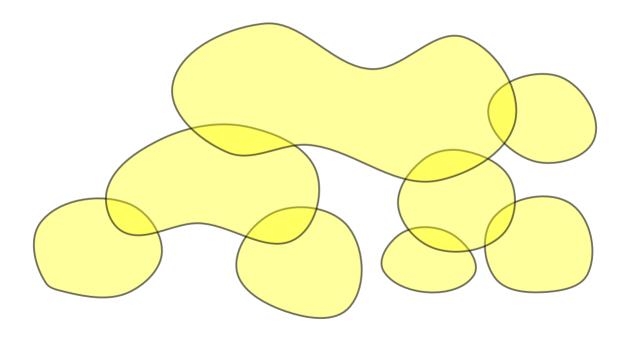
For every $k \in \mathbb{N}$, every graph G has a tree decomposition with adhesion $\leq k$ and (k, k)-unbreakable bags.

Moreover, such a tree decomposition can be found in time $\mathcal{O}_k(\|G\|)$.

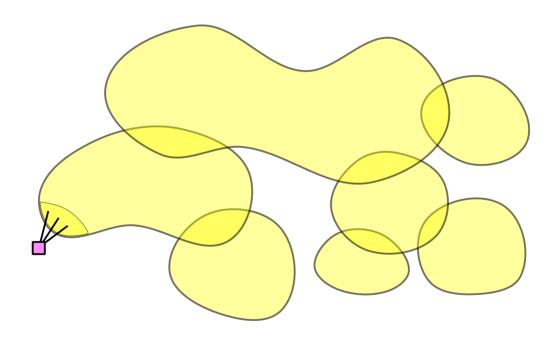


G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.

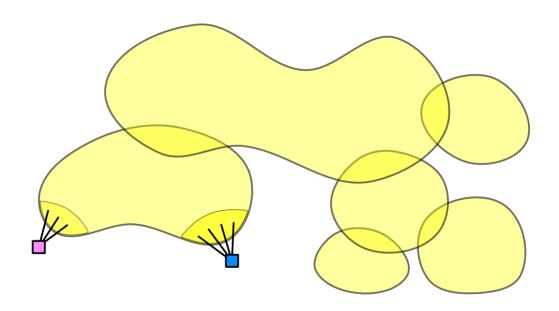
G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.



Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:

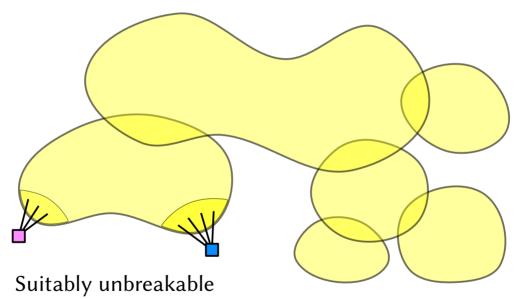


Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:



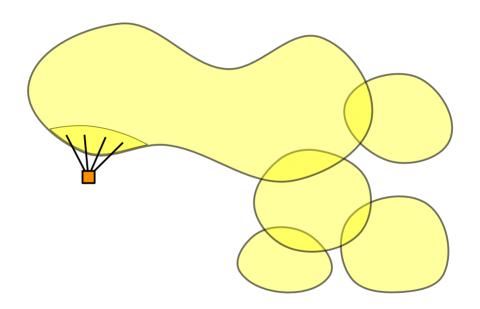
Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:

G is K_t -top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.

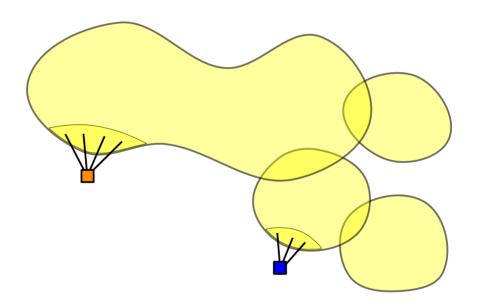


 K_h -top-minor-free for h = h(t, k).

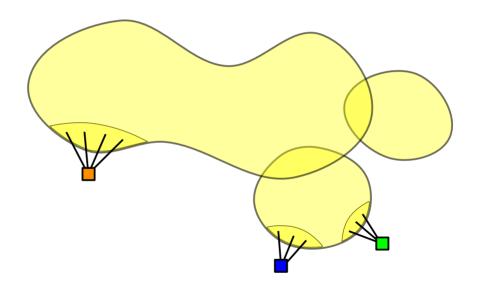
Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:



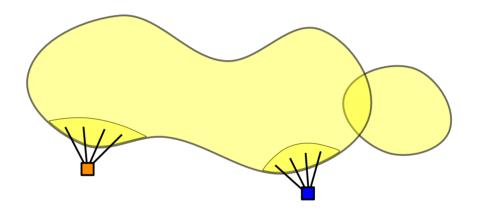
Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:



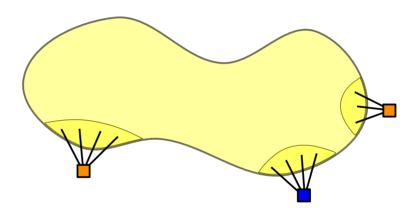
Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:



G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.



G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.



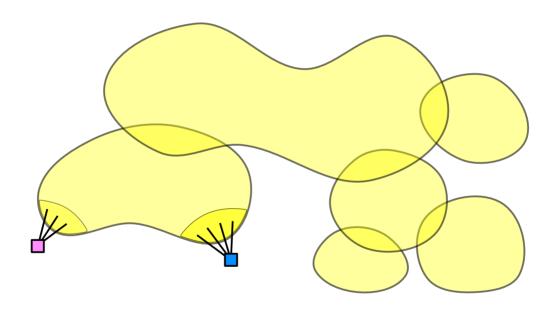
G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leq k}$, $p := qr(\varphi)$.

$$\varphi \in \mathsf{FO} + \mathsf{conn}_{\leqslant k}$$

$$p\coloneqq\operatorname{qr}(\varphi).$$

Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:

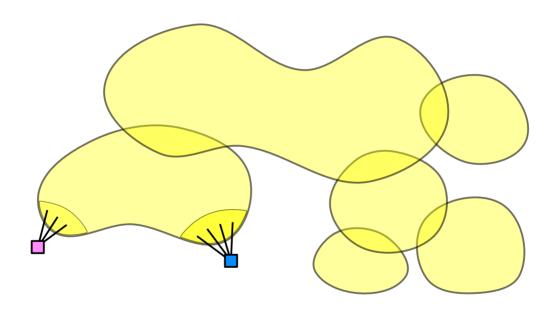
G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leqslant k}$, $p := qr(\varphi)$.



Top-minor-free: Stable under stellations and efficient FO model-checking.

Given: $G \in \mathscr{C}$ and $\varphi \in FO + conn.$ Let $t, k, p \in \mathbb{N}$ be such that:

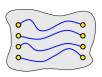
G is
$$K_t$$
-top-minor-free, $\varphi \in FO + conn_{\leqslant k}$, $p := qr(\varphi)$.



Top-minor-free: Stable under stellations and efficient FO model-checking.

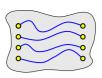
General scheme for local-to-global lifts in linear time.

FO + dp: FO with **disjoint paths** predicates.



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

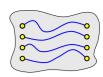


FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

FO + dp tractable on top-minor-free classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

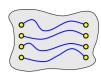


FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

- -FO + dp tractable on **top-minor-free** classes
 - [Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]
- MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

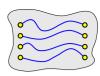
-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

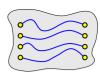
[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.

Proposition: FO + conn is meaningful only on sparse graphs.



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

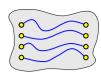
-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.

Proposition: FO + conn is meaningful only on sparse graphs.

What is the dense analogue of FO + conn?



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

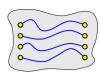
[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.

Proposition: FO + conn is meaningful only on sparse graphs.

What is the dense analogue of FO + conn?

What is the dense analogue of top-minor-free?



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

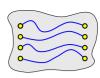
Very useful encapsulation of techniques of Graph Minors.

Proposition: FO + conn is meaningful only on sparse graphs.

What is the dense analogue of FO + conn?

What is the dense analogue of top-minor-free?

Idea: FO + conn allows quantification over **vertex cuts** of small order.



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.

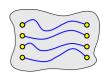
Proposition: FO + conn is meaningful only on sparse graphs.

What is the dense analogue of FO + conn?

What is the dense analogue of top-minor-free?

Idea: FO + conn allows quantification over **vertex cuts** of small order.

Maybe allow quantification over dense cuts of small order?



FO + dp: FO with **disjoint paths** predicates.

MSO/tw: FO with quantification over sets of small bidimensionality.

-FO + dp tractable on **top-minor-free** classes

[Schirrmacher, Siebertz, Stamoulis, Thilikos, Vigny '23]

-MSO/tw + dp tractable on minor-free classes

[Sau, Stamoulis, Thilikos '24]

Very useful encapsulation of techniques of Graph Minors.

Proposition: FO + conn is meaningful only on sparse graphs.

What is the dense analogue of FO + conn?

What is the dense analogue of **top-minor-free**?

Idea: FO + conn allows quantification over **vertex cuts** of small order.

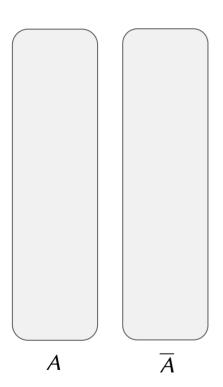
Maybe allow quantification over dense cuts of small order?

Quantification over sets of small cutrank.

Cutrank

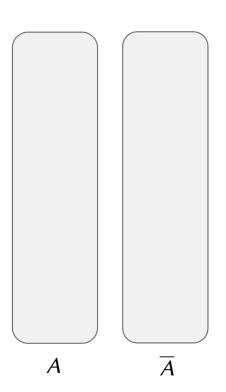
Cutrank

Suppose (A, \overline{A}) is a partition of the vertex set of G.



Cutrank

Suppose (A, \overline{A}) is a partition of the vertex set of G.



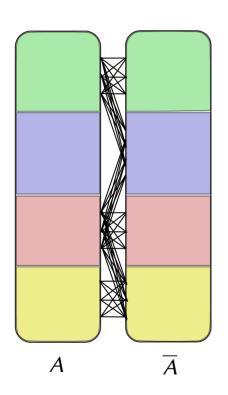
 $\operatorname{cutrank}(A) := \operatorname{rank} \operatorname{over} \mathbb{F}_2 \operatorname{of} \operatorname{Adj}[A, \overline{A}].$

$$A \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\overline{A}$$

Cutrank

Suppose (A, \overline{A}) is a partition of the vertex set of G.



 $\operatorname{cutrank}(A) := \operatorname{rank} \operatorname{over} \mathbb{F}_2 \operatorname{of} \operatorname{Adj}[A, \overline{A}].$

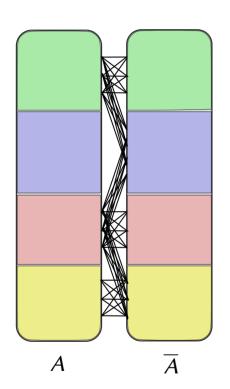
$$A \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\overline{A}$$

diversity(A) := #(types in A over
$$\overline{A}$$
)
+ #(types in \overline{A} over A)

Cutrank

Suppose (A, \overline{A}) is a partition of the vertex set of G.



 $\operatorname{cutrank}(A) := \operatorname{rank} \operatorname{over} \mathbb{F}_2 \operatorname{of} \operatorname{Adj}[A, \overline{A}].$

$$A \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\overline{A}$$

diversity(A) := #(types in A over
$$\overline{A}$$
)
+ #(types in \overline{A} over A)

 $\operatorname{cutrank}(A) \leqslant \operatorname{diversity}(A) \leqslant 2 \cdot 2^{\operatorname{cutrank}(A)}$

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Cliquewidth: hierarchical decomposition by cuts of **diversity** $\leq k$.

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Cliquewidth: hierarchical decomposition by cuts of **diversity** $\leq k$.

Note: Cutrank and diversity are **symmetric**, cutrank is **submodular**.

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Cliquewidth: hierarchical decomposition by cuts of **diversity** $\leq k$.

Note: Cutrank and diversity are **symmetric**, cutrank is **submodular**.

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on **cutrank**.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Cliquewidth: hierarchical decomposition by cuts of **diversity** $\leq k$.

Note: Cutrank and diversity are **symmetric**, cutrank is **submodular**.

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on **cutrank**.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Obs: Bounding **diversity** yields the same logic. $\exists_{X: \text{diversity}(X) \leq r} \psi$

Treewidth: hierarchical decomposition by **separations** of order $\leq k$.

Rankwidth: hierarchical decomposition by cuts of **cutrank** $\leq k$.

Cliquewidth: hierarchical decomposition by cuts of **diversity** $\leq k$.

Note: Cutrank and diversity are symmetric, cutrank is submodular.

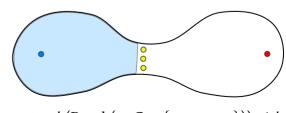
Low rank MSO

MSO₁ where every set quantification is guarded by a bound on **cutrank**.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Obs: Bounding **diversity** yields the same logic.

Obs: $FO + conn \subseteq low rank MSO$.



 $\exists_{X: \text{ diversity}(X) \leqslant r} \psi$

 $\operatorname{cutrank}(\operatorname{Reach}(u, G - \{a_1, \ldots, a_k\})) \leqslant k$

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on **cutrank**.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on cutrank.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Q: Relation to FO + conn? Do the two logics coincide on sparse graphs?

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on cutrank.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Q: Relation to FO + conn? Do the two logics coincide on sparse graphs?

Q: Model-checking FO + conn trivially in XP. What about low rank MSO?

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on **cutrank**.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Q: Relation to FO + conn? Do the two logics coincide on sparse graphs?

Q: Model-checking FO + conn trivially in XP. What about low rank MSO?

Q: FO-like logics equivalent to low rank MSO?

Low rank MSO

MSO₁ where every set quantification is guarded by a bound on cutrank.

$$\varphi = \exists_{X: \, \mathrm{cutrank}(X) \leqslant r} \, \psi$$

Q: Relation to FO + conn? Do the two logics coincide on sparse graphs?

Q: Model-checking FO + conn trivially in XP. What about low rank MSO?

Q: FO-like logics equivalent to low rank MSO?

joint work with

M. Bojańczyk, W. Przybyszewski, M. Sokołowski, and G. Stamoulis

Theorem

Suppose \mathscr{C} is weakly sparse (excludes $K_{t,t}$ as a subgraph for some $t \in \mathbb{N}$).

Then FO + conn and low rank MSO coincide on \mathscr{C} .

Theorem

Suppose \mathscr{C} is weakly sparse (excludes $K_{t,t}$ as a subgraph for some $t \in \mathbb{N}$).

Then FO + conn and low rank MSO coincide on \mathscr{C} .

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with logic FO + flipconn.

This equivalence does **not** hold on all graphs.

Theorem

Suppose \mathscr{C} is weakly sparse (excludes $K_{t,t}$ as a subgraph for some $t \in \mathbb{N}$).

Then FO + conn and low rank MSO coincide on \mathscr{C} .

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with logic FO + flipconn.

This equivalence does **not** hold on all graphs.

Theorem

Low rank MSO coincides with FO + flipreach on all graphs.

Theorem

Suppose \mathscr{C} is weakly sparse (excludes $K_{t,t}$ as a subgraph for some $t \in \mathbb{N}$).

Then FO + conn and low rank MSO coincide on \mathscr{C} .

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with logic FO + flipconn.

This equivalence does **not** hold on all graphs.

Theorem

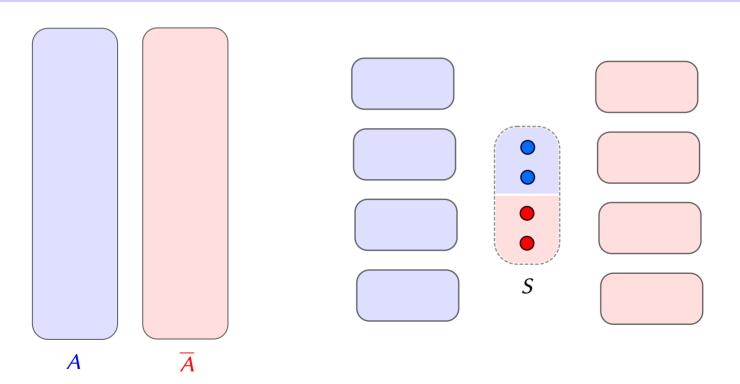
Low rank MSO coincides with FO + flipreach on all graphs.

Corollary

Model-checking low rank MSO is in XP.

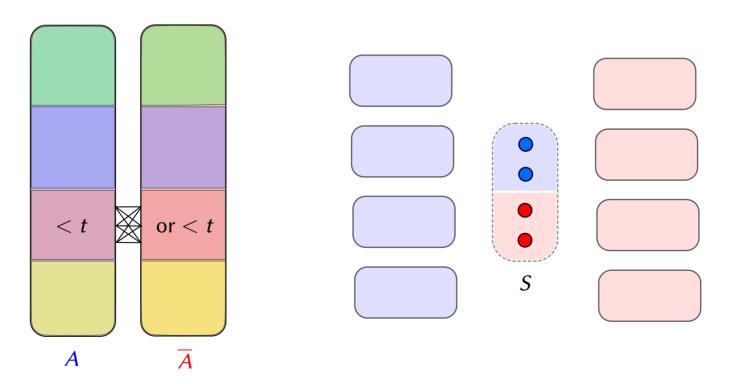
Lemma

Let G be $K_{t,t}$ -free and diversity $(A) \leq k$. Then there is S with $|S| \leq kt$ s.t. every component of G - S is entirely in A or entirely in A.



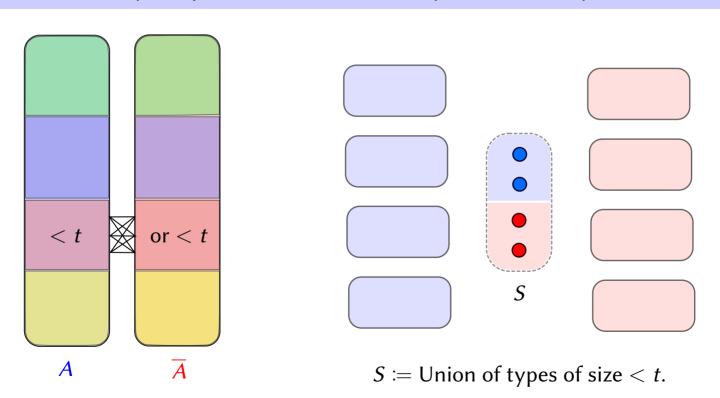
Lemma

Let G be $K_{t,t}$ -free and diversity(A) $\leq k$. Then there is S with $|S| \leq kt$ s.t. every component of G - S is entirely in A or entirely in \overline{A} .



Lemma

Let G be $K_{t,t}$ -free and diversity(A) $\leq k$. Then there is S with $|S| \leq kt$ s.t. every component of G - S is entirely in A or entirely in \overline{A} .



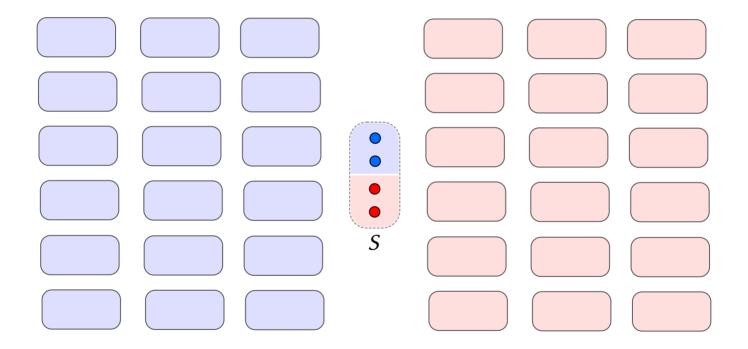
Idea: Inductively rewrite a low rank MSO formula to FO + conn.

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

$$\varphi = \exists_{A: \text{ diversity}(A) \leq k} \psi$$
 where $\psi \in FO + \text{conn by induction}$.

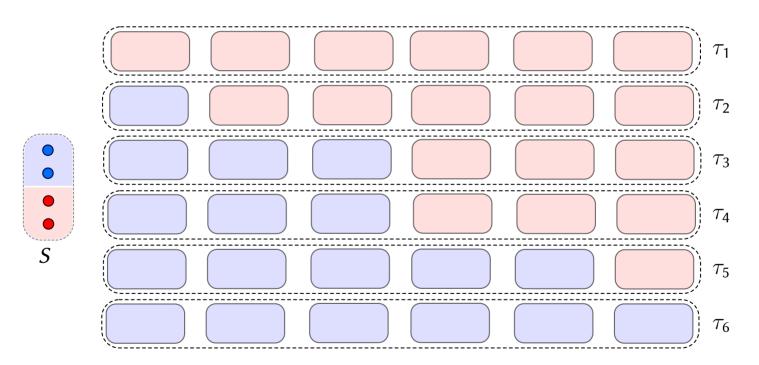
Idea: Inductively rewrite a low rank MSO formula to FO + conn.

 $\varphi = \exists_{A: \text{ diversity}(A) \leq k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Idea: Inductively rewrite a low rank MSO formula to FO + conn.

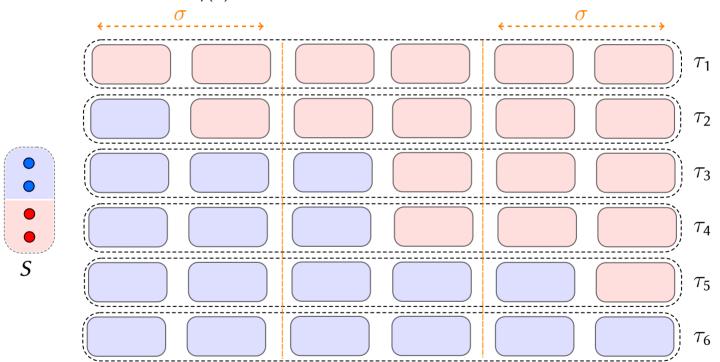
$$\varphi = \exists_{A: \text{ diversity}(A) \leqslant k} \psi$$
 where $\psi \in FO + \text{conn by induction}$.



Classify comps wrt high enough FO + conn type.

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

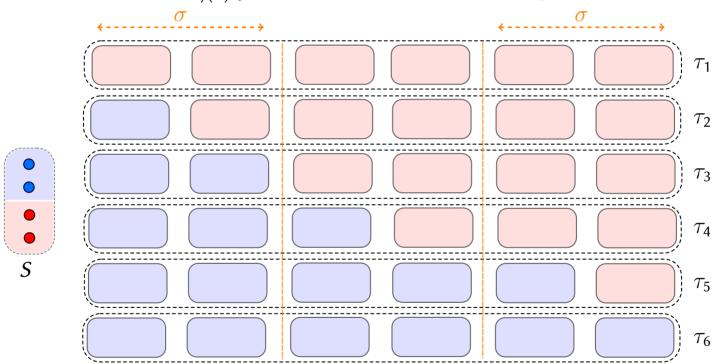
 $\varphi = \exists_{A: \text{ diversity}(A) \leq k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Obs: Can move comps between A and \overline{A} within a type, subject to a margin σ .

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

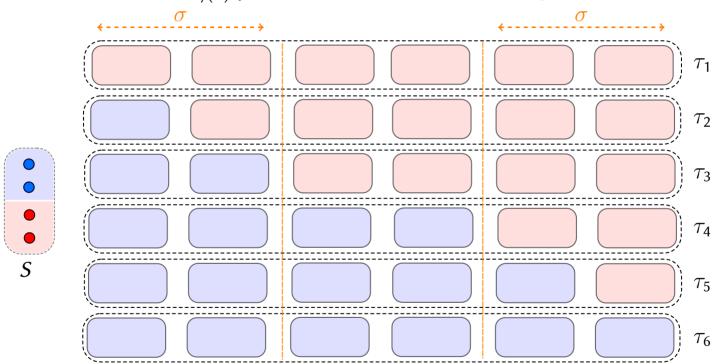
 $\varphi = \exists_{A: \text{ diversity}(A) \leq k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Obs: Can move comps between A and \overline{A} within a type, subject to a margin σ .

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

 $\varphi = \exists_{A: \text{ diversity}(A) \leqslant k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Obs: Can move comps between A and \overline{A} within a type, subject to a margin σ .

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

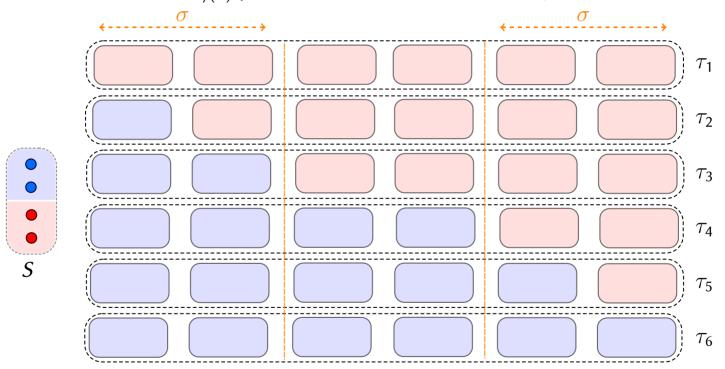
 $\varphi = \exists_{A: \text{ diversity}(A) \leqslant k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Ergo: May assume that for each τ , A takes or co-takes $\leqslant \sigma$ components.

Idea: Inductively rewrite a low rank MSO formula to FO + conn.

 $\varphi = \exists_{A: \text{ diversity}(A) \leq k} \psi$ where $\psi \in FO + \text{conn by induction.}$



Ergo: May assume that for each τ , A takes or co-takes $\leqslant \sigma$ components.

Such A can be quantified over in FO + conn.

Flip-connectivity logic

Flip-connectivity logic

Experience shows that lifting from **sparse** to **dense** is facilitated by:

vertex deletion → **flip** / **subset complementation** / **perturbation**.

Experience shows that lifting from **sparse** to **dense** is facilitated by:

vertex deletion → flip / subset complementation / perturbation.

Idea: Replace connectivity in $G - \{a_1, \ldots, a_k\}$

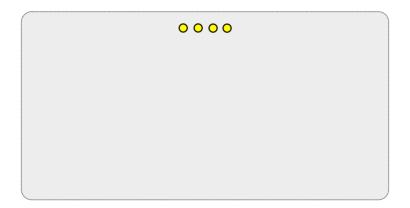
by connectivity in a (a_1, \ldots, a_k) -definable flip of G.

Experience shows that lifting from **sparse** to **dense** is facilitated by:

vertex deletion → flip / subset complementation / perturbation.

Idea: Replace connectivity in $G - \{a_1, \ldots, a_k\}$

by connectivity in a (a_1, \ldots, a_k) -definable flip of G.

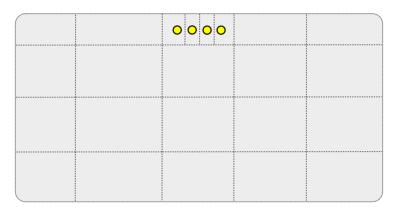


Experience shows that lifting from sparse to dense is facilitated by:

vertex deletion → flip / subset complementation / perturbation.

Idea: Replace connectivity in $G - \{a_1, \ldots, a_k\}$

by connectivity in a (a_1, \ldots, a_k) -definable flip of G.



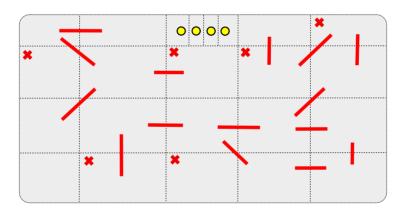
Types := neighborhood types over $\bar{a} = (a_1, \dots, a_k)$

Experience shows that lifting from **sparse** to **dense** is facilitated by:

vertex deletion → flip / subset complementation / perturbation.

Idea: Replace connectivity in $G - \{a_1, \ldots, a_k\}$

by connectivity in a (a_1, \ldots, a_k) -definable flip of G.



Types := neighborhood types over $\bar{a} = (a_1, \dots, a_k)$

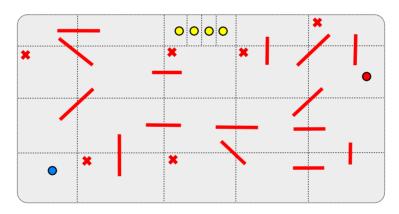
Symmetric $\Pi \subseteq \text{Types} \times \text{Types} \quad \rightsquigarrow \quad \text{flip } G \oplus \Pi$

Experience shows that lifting from sparse to dense is facilitated by:

vertex deletion → flip / subset complementation / perturbation.

Idea: Replace connectivity in $G - \{a_1, \ldots, a_k\}$

by connectivity in a (a_1, \ldots, a_k) -definable flip of G.



Types := neighborhood types over $\bar{a} = (a_1, \dots, a_k)$

Symmetric $\Pi \subseteq \text{Types} \times \text{Types} \quad \rightsquigarrow \quad \text{flip } G \oplus \Pi$

flipconn_{Π} $(u, v, a_1, \dots, a_k) := \text{Are } u, v \text{ connected in } G \oplus \Pi$?

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on $\mathscr C$ with FO + flipconn.

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with FO + flipconn.

Lemma [Bonnet et al. '22]

Suppose *G* has **VC** dimension *d* and cutrank(A) $\leq k$.

Then there is a flip $G\oplus\Pi$ definable from f(k,d) vertices such that

every component of $G \oplus \Pi$ is entirely in A or entirely in \overline{A} .

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with FO + flipconn.

Lemma

[Bonnet et al. '22]

Suppose *G* has **VC** dimension *d* and cutrank(A) $\leq k$.

Then there is a flip $G \oplus \Pi$ definable from f(k, d) vertices such that every component of $G \oplus \Pi$ is entirely in A or entirely in \overline{A} .

Having this, apply the same strategy as for weakly sparse classes.

Theorem

Suppose \mathscr{C} has **bounded VC dimension**.

Then low rank MSO coincides on \mathscr{C} with FO + flipconn.

Lemma

[Bonnet et al. '22]

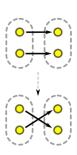
Suppose *G* has **VC** dimension *d* and cutrank(A) $\leq k$.

Then there is a flip $G \oplus \Pi$ definable from f(k, d) vertices such that every component of $G \oplus \Pi$ is entirely in A or entirely in \overline{A} .

Having this, apply the same strategy as for weakly sparse classes.

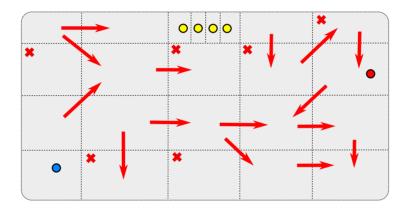
Note: Lemma fails without the bound on **VC dimension**, and so does the **equivalence**.

Idea: Work in directed graphs and apply directed flips.



Idea: Work in directed graphs and apply **directed flips**.

Definable directed flips defined analogously:



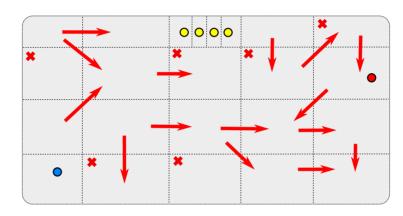
Types := neighborhood types over $\bar{a} = (a_1, \dots, a_k)$

 $\Pi \subseteq \mathsf{Types} \times \mathsf{Types} \quad \leadsto \quad \mathsf{flip} \ G \oplus \Pi$

flipconn_{Π} $(u, v, a_1, \dots, a_k) := \text{Is } v \text{ reachable from } u \text{ in } G \oplus \Pi$?

Idea: Work in directed graphs and apply directed flips.

Definable directed flips defined analogously:



Types := neighborhood types over
$$\bar{a} = (a_1, \dots, a_k)$$

$$\Pi \subseteq \mathsf{Types} \times \mathsf{Types} \quad \leadsto \quad \mathsf{flip} \ G \oplus \Pi$$

flipconn_{$$\Pi$$} $(u, v, a_1, \dots, a_k) := \text{Is } v \text{ reachable from } u \text{ in } G \oplus \Pi$?

Theorem

Low rank MSO coincides with FO + flipreach on all undirected graphs.

Compact representation of cuts

Compact representation of cuts

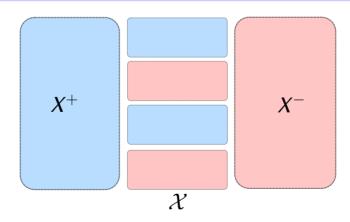
Lemma

Let G be graph, $k \in \mathbb{N}$, and $S_k = \{A \subseteq V(G) \mid \operatorname{cutrank}(A) \leqslant k\}$. Then there is a family \mathcal{F} of (X^+, X^-, \mathcal{X}) with $\{X^+, X^-\} \cup \mathcal{X}$ a partition of V(G) so that

$$S_k = \bigcup_{(X^+, X^-, \mathcal{X}) \in \mathcal{F}} \operatorname{Span}(X^+, X^-, \mathcal{X}).$$

Moreover, $|\mathcal{F}| \leqslant |G|^{f(k)}$ and

every $(X^+, X^-, \mathcal{X}) \in \mathcal{F}$ is (FO + flipreach)-definable from an f(k)-tuple.



Compact representation of cuts

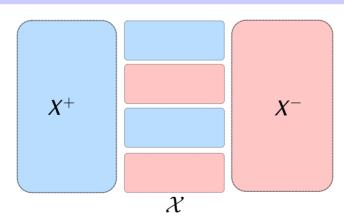
Lemma

Let G be graph, $k \in \mathbb{N}$, and $S_k = \{A \subseteq V(G) \mid \operatorname{cutrank}(A) \leqslant k\}$. Then there is a family \mathcal{F} of (X^+, X^-, \mathcal{X}) with $\{X^+, X^-\} \cup \mathcal{X}$ a partition of V(G) so that

$$S_k = \bigcup_{(X^+, X^-, \mathcal{X}) \in \mathcal{F}} \operatorname{Span}(X^+, X^-, \mathcal{X}).$$

Moreover, $|\mathcal{F}| \leqslant |G|^{f(k)}$ and

every $(X^+, X^-, \mathcal{X}) \in \mathcal{F}$ is (FO + flipreach)-definable from an f(k)-tuple.



Compact XP representation of sets of cutrank $\leq k$.

Conjecture

Model-checking low rank MSO is FPT

on every graph class $\mathscr C$ that is **mon dependent** wrt low rank MSO.

Conjecture

Model-checking low rank MSO is FPT

on every graph class $\mathscr C$ that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.
- What is low rank MSO on matroids?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.
- What is low rank MSO on matroids?
- Compact XP representation of sets with small λ ?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.
- What is low rank MSO on matroids?
- Compact XP representation of sets with small λ ?

Is model-checking low rank MSO in XP on directed graphs?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.
- What is low rank MSO on matroids?
- Compact XP representation of sets with small λ ?

Is model-checking low rank MSO in XP on directed graphs?

Is model-checking low rank MSO in XL?

Conjecture

Model-checking low rank MSO is FPT

on every graph class \mathscr{C} that is **mon dependent** wrt low rank MSO.

Excuse to study mon dependent wrt low rank MSO

as a dense analogue of top-minor-free.

Unbreakable decomposition for cutrank?

Low rank MSO on matroids?

- Quantification over sets A with bounded $\lambda(A)$.
- What is low rank MSO on matroids?
- Compact XP representation of sets with small λ ?

Is model-checking low rank MSO in XP on directed graphs?

Is model-checking low rank MSO in XL? Thanks for your attention!