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Introduction



Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G .

Probe a vertex v ∈ V (G ): returned d(v , t).
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Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G .

Probe a vertex v ∈ V (G ): returned d(v , t).

Question. How many probes do we need?
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Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G .

Probe a vertex v ∈ V (G ): returned d(v , t).
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Vertices 3 and 4 are resolved by 8th vertex.
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Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G .

Probe a vertex v ∈ V (G ): returned d(v , t).
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Metric Dimension

Def. A resolving set is an ordered set S = {s1, s2, . . . , sk} ⊆ V (G ) s.t.
∀ v , u ∈ V (G ), v ̸= u

⟨dist(v , s1), . . . , dist(v , sk)⟩ ≠ ⟨dist(u, s1), . . . , dist(u, sk)⟩.
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Metric Dimension [Slater, 1975; Harary and Melter, 1976]

Def. Metric dimension
(
md(G )

)
is the size of a smallest resolving set of G .

Metric Dimension

Input: an undirected graph G = (V ,E ), integer k
Question: Is md(G ) ≤ k?
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Overview of what is known



Known results

MetricDimension

NP-complete Linearly solvable
split graphs cographs
bipartite trees
co-bipartite cactus block graphs
line graphs of bipartite graphs
planar with bounded degree Polynomially solvable
interval outerplanar graphs
permutation graphs of diam 2
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Hasse diagram

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

W[2]-hard when parameterized by the natural parameter.
An edge from a lower parameter to a higher parameter indicates that the lower one is upper bounded by a function of the higher one.
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Known results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
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Feedback
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Independent
Set

Distance to
Cograph

Distance to
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Feedback
Vertex Set
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Maximum
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Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

From NP-hard cases that were listed above.
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Known results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Hartung and Nichterlein, 2013: W[2]-hard for natural parameterization even for bipartite and maxdeg ≤ 3;
FPT when parameterized by the VC;
Stated as an open: on planar graphs; for tree-width parameterization; complexity for FVS.
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Known results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Eppstein, 2015: FPT when parameterized by the max leaf number;
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Known results

Vertex Cover
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Number
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Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Epstein, et al, 2015: XP when parameterized by the feedback edge set;
White circle means that MetricDimension admits a polynomial size kernel under the parameter marked.
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Known results

Vertex Cover
Max Leaf
Number

Distance
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Minimum
Clique Cover

Distance to
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Distance
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Set

Distance to
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Distance to
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Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Gima et al, 2021: FPT when parameterized by the treedepth;
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Known results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
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Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set
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Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Bonnet and Purohit, 2019: W[1]-hard when parameterized by the tw;
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Known results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Li and Pilipczuk, 2021: NP-hard in graphs of pw ≤ 24;
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Our results

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Feedback
Edge Set

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance to
Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance to
Perfect

Treewidth

— FPT; — XP; — W[1]; — para-NP.

Black circle means that MetricDimension does not admit a polynomial size kernel under the parameter marked.
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Observation

Def. Any two vertices u, v ∈ V (G ) are true twins if N[u] = N[v ], and are false
twins if N(u) = N(v).

Observation.

For any (true or false) twins u, v ∈ V (G ), for any resolving set S of a graph G ,
S ∩ {u, v} ≠ ∅.
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[No] Polynomial Kernels



No Poly Kernel, VC

Theorem
Metric Dimension parameterized by the minimum size of a vertex cover of
the graph does not admit a polynomial kernel unless NP ⊆ coNP/poly .

Reduction from SAT parameterized by the number of variables.
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No Poly Kernel, VC
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No Poly Kernel, VC

∃ a satisfying assignment iff md(G ) = 2n + 1.
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No Poly Kernel, Dist. to clique

By making the vertices of
{
Cj | j ∈ [m]

}
into a clique, the distance to clique of

the resulting graph is at most 9n + 3.

Then, for this modified G :

Theorem
Metric Dimension parameterized by the distance to clique does not admit a
polynomial kernel unless NP ⊆ coNP/poly .
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W[1]-hardness, FVS



W [1]-hardness

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables

Input: a set X of variables, a set C of clauses, and an integer d .

- Each variable x ∈ X takes a value in {1, . . . , d};

- Each clause is of the form (x ≤ ax , y ≤ ay , z ≤ az), ax , ay , az ∈ [d ];

- A clause is satisfied if not all three inequalities are true and not all are false.

Question: Does a satisfying assignment of the variables exist?

Theorem

Metric Dimension param. by the feedback vertex set number is W [1]-hard.

13



W [1]-hardness

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables

Input: a set X of variables, a set C of clauses, and an integer d .

- Each variable x ∈ X takes a value in {1, . . . , d};

- Each clause is of the form (x ≤ ax , y ≤ ay , z ≤ az), ax , ay , az ∈ [d ];

- A clause is satisfied if not all three inequalities are true and not all are false.

Question: Does a satisfying assignment of the variables exist?

Theorem

Metric Dimension param. by the feedback vertex set number is W [1]-hard.

13



W [1]-hardness

The variable gadget Gx :

ux1

v x1 v x2
· · ·

v xd

w x
1 w x

2

· · ·
w x
d

ux2

The clause gadget Gc : a disjoint union of Hc and Hc̄

c v c

pc1 pc2

ac1

ac2

acd−1

··
· b

c

c v c

pc1 pc2

ac1

ac2

acd−1

··
· b

c
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W [1]-hardness

Complete construction:

ux1

ux2

v x1 w x
1

v xd w x
d

··
·

··
·

c

v c

pc1
pc2

w x ,c

· · ·

bc Px,c
1

· · ·

tx ,c1
tx ,c2 Px,c

2· · ·

v c

c

pc2
pc1

· · ·

bc
· · ·
Px,c

2

w x ,c

Px,c
1

· · · tx ,c1tx ,c2

p

t1 t2

w c

tc1 tc2

w c

tc1tc2

· · ·
Pc

· · ·Pc

(X ,C , d) is satisfiable iff (G , k) is a yes-instance for k = |X |+ 10|C |+ 1.
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FPT, the dist to cluster



FPT, the dist to cluster

Def. The distance to F of graph G is the size of minimum set X ⊆ V (G ) such
that G − X ∈ F .
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FPT, the dist to cluster

Theorem
Metric Dimension is FPT parameterized by the distance to cluster.

Red. Rule 1. If there exist u, v ,w ∈ V (G ) s.t. u, v ,w are true (or false) twins,
then remove u from G and decrease k by one.

So, ∀ C ∈ G \ X , at most 2 of its vertices have the same neighborhood in X .
Thus, |C | ≤ 2|X |+1.
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FPT, the dist to cluster

Def. For every clique C of G − X , define the signature sign(C ) of C

sign(C ) = {N(u) ∩ X : u ∈ C}.

sign(C1) = {N1,N1,N2,N3}.
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FPT, the dist to cluster

Def. For any two cliques C1,C2 ∈ G − X , let C1 ∼ C2, if and only if

sign(C1) = sign(C2).

19



FPT, the dist to cluster

Thus, there are at most 22|X |+1 equivalence classes.
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FPT, the dist to cluster

C: an equivalence class of ∼.
C7,C8: cliques from the same C.

Def. Two vertices u ∈ C7 and v ∈ C8 are clones if N(u) ∩ X = N(v) ∩ X .
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FPT, the dist to cluster

C: an equivalence class of ∼.
C7,C8: cliques from the same C.

Claim. Let u ∈ C7 and v ∈ C8 be clones. Then, for any resolving set S of G ,

S ∩
(
V (C7) ∪ V (C8)

)
̸= ∅.
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FPT, the dist to cluster

Red. Rule 2. If there exists C such that

|C| ≥ 2|X |+2 + |X |+ 2,

remove a clique C ∈ C from G and reduce k by max{1, t(C)}.

Thus, |V (G )| ≤ 22|X |+1 · (2|X |+2 + |X |+ 1) · 2|X |+1 + |X |:

• 22|X |+1 equivalence classes;

• each C contains at most 2|X |+2 + |X |+ 1 cliques;

• for each clique C ∈ G − X , |V (C )| ≤ 2|X |+1.
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Further directions



Further
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? FPT with the feedback edge set.
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Further

Vertex Cover
Max Leaf
Number

Distance
to Clique

Minimum
Clique Cover

Distance to
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Perfect
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— FPT; — XP; — W[1]; — para-NP.

? Parameterization with the distance to сograph.
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Further

• Structural parameterization by:
• the feedback edge set;
• the distance to соgraph;
• dist to disjoint paths;
• bandwidth;
• the fvs + solution-size.
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Thanks for attention!

Further directions

• Structural parameterization by:
• the feedback edge set;
• the distance to соgraph;
• dist to disjoint paths;
• bandwidth;
• the fvs + solution-size.
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