Metric Dimension Parameterized by FVS and Other Structural Parameters

by E. Galby, L. Khazaliya, F. Mc Inerney, R. Sharma, P. Tale

[^0]Introduction

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.
Question. How many probes do we need?

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.

Vertices 3 and 4 are resolved by $8^{\text {th }}$ vertex.

Metric Dimension

An invisible immobile target t is hidden at a vertex of a graph G.
Probe a vertex $v \in V(G)$: returned $d(v, t)$.

Vertices 4 and 6 are resolved by neither $5^{\text {th }}$ nor $8^{\text {th }}$ vertex.

Metric Dimension

Def. A resolving set is an ordered set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

$$
\left\langle\operatorname{dist}\left(v, s_{1}\right), \ldots, \operatorname{dist}\left(v, s_{k}\right)\right\rangle \neq\left\langle\operatorname{dist}\left(u, s_{1}\right), \ldots, \operatorname{dist}\left(u, s_{k}\right)\right\rangle .
$$

Metric Dimension

Def. A resolving set is an ordered set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

$$
\left\langle\operatorname{dist}\left(v, s_{1}\right), \ldots, \operatorname{dist}\left(v, s_{k}\right)\right\rangle \neq\left\langle\operatorname{dist}\left(u, s_{1}\right), \ldots, \operatorname{dist}\left(u, s_{k}\right)\right\rangle .
$$

Metric Dimension

Def. A resolving set is an ordered set $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq V(G)$ s.t. $\forall v, u \in V(G), v \neq u$

$$
\left\langle\operatorname{dist}\left(v, s_{1}\right), \ldots, \operatorname{dist}\left(v, s_{k}\right)\right\rangle \neq\left\langle\operatorname{dist}\left(u, s_{1}\right), \ldots, \operatorname{dist}\left(u, s_{k}\right)\right\rangle .
$$

Metric Dimension [Slater, 1975; Harary and Melter, 1976]

Def. Metric dimension $(\operatorname{md}(G))$ is the size of a smallest resolving set of G.

Metric Dimension

Input: an undirected graph $G=(V, E)$, integer k
Question: Is $\operatorname{md}(G) \leq k$?

Overview of what is known

Known results

MetricDimension

NP-complete	Linearly solvable
split graphs	cographs
bipartite	trees
co-bipartite line graphs of bipartite graphs	cactus block graphs
planar with bounded degree interval	Polynomially solvable
permutation graphs of diam 2	outerplanar graphs

Hasse diagram

$\square-$ FPT; $\square-X P ; \square-W[1] ; \square$ - para-NP.

W[2]-hard when parameterized by the natural parameter.
An edge from a lower parameter to a higher parameter indicates that the lower one is upper bounded by a function of the higher one.

Known results

$\square-$ FPT; $\square-X P ; \square-W[1] ; \square$ - para-NP.

From NP-hard cases that were listed above.

Known results

$\square-$ FPT; $\square-\mathrm{XP} ; \square-\mathrm{W}[1] ; \square$ - para-NP.

Hartung and Nichterlein, 2013: W[2]-hard for natural parameterization even for bipartite and maxdeg \leq 3; FPT when parameterized by the VC;
Stated as an open: on planar graphs; for tree-width parameterization; complexity for FVS.

Known results

$\square-$ FPT; $\square-X P ; \square-W[1] ; \square$ - para-NP.

Known results

$\square-$ FPT; $\square-X P ; \square-W[1] ; \square$ - para-NP.

Epstein, et al, 2015: XP when parameterized by the feedback edge set;
White circle means that Metric Dimension admits a polynomial size kernel under the parameter marked.

Known results

\square-FPT; $\square-\mathrm{XP} ; \square-\mathrm{W}[1]$; \square - para-NP.

Gima et al, 2021: FPT when parameterized by the treedepth;

Known results

$\square-\mathrm{FPT} ; \square-\mathrm{XP} ; \square-\mathrm{W}[1] ; \square$ - para-NP.

Bonnet and Purohit, 2019: W[1]-hard when parameterized by the tw ;

Known results

\square-FPT; \square-XP; \square-W[1]; \square - para-NP.

Li and Pilipczuk, 2021: NP-hard in graphs of pw ≤ 24;

Our results

$\square-$ FPT; $\square-\mathrm{XP} ; \square-\mathrm{W}[1] ; \square$ - para-NP.

Black circle means that MetricDimension does not admit a polynomial size kernel under the parameter marked.

Observation

Def. Any two vertices $u, v \in V(G)$ are true twins if $N[u]=N[v]$, and are false twins if $N(u)=N(v)$.

Observation.

For any (true or false) twins $u, v \in V(G)$, for any resolving set S of a graph G, $S \cap\{u, v\} \neq \varnothing$.
[No] Polynomial Kernels

No Poly Kernel, VC

Theorem

Metric Dimension parameterized by the minimum size of a vertex cover of the graph does not admit a polynomial kernel unless NP \subseteq coNP/poly.

Reduction from SAT parameterized by the number of variables.

No Poly Kernel, VC

No Poly Kernel, VC

\exists a satisfying assignment iff $\operatorname{md}(G)=2 n+1$.

No Poly Kernel, VC

\exists a satisfying assignment iff $\operatorname{md}(G)=2 n+1$.

No Poly Kernel, VC

\exists a satisfying assignment iff $\operatorname{md}(G)=2 n+1$.

No Poly Kernel, Dist. to clique

By making the vertices of $\left\{C_{j} \mid j \in[m]\right\}$ into a clique, the distance to clique of the resulting graph is at most $9 n+3$.

Then, for this modified G :

Theorem

Metric Dimension parameterized by the distance to clique does not admit a polynomial kernel unless NP \subseteq coNP/poly.

W[1]-hardness, FVS

W[1]-hardness

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables Input: a set X of variables, a set C of clauses, and an integer d.

- Each variable $x \in X$ takes a value in $\{1, \ldots, d\}$;
- Each clause is of the form $\left(x \leq a_{x}, y \leq a_{y}, z \leq a_{z}\right), a_{x}, a_{y}, a_{z} \in[d]$;
- A clause is satisfied if not all three inequalities are true and not all are false.

Question: Does a satisfying assignment of the variables exist?

W[1]-hardness

NAE-Integer-3-Sat, W[1]-hard param. by the number of variables
Input: a set X of variables, a set C of clauses, and an integer d.

- Each variable $x \in X$ takes a value in $\{1, \ldots, d\}$;
- Each clause is of the form $\left(x \leq a_{x}, y \leq a_{y}, z \leq a_{z}\right), a_{x}, a_{y}, a_{z} \in[d]$;
- A clause is satisfied if not all three inequalities are true and not all are false.

Question: Does a satisfying assignment of the variables exist?

Theorem

Metric Dimension param. by the feedback vertex set number is $W[1]$-hard.

W[1]-hardness

The variable gadget G_{x} :

The clause gadget G_{c} : a disjoint union of H_{c} and $H_{\bar{c}}$

W[1]-hardness

Complete construction:

(X, C, d) is satisfiable iff (G, k) is a yes-instance for $k=|X|+10|C|+1$.

FPT, the dist to cluster

FPT, the dist to cluster

Def. The distance to \mathcal{F} of graph G is the size of minimum set $X \subseteq V(G)$ such that $G-X \in \mathcal{F}$.

FPT, the dist to cluster

Theorem

Metric Dimension is FPT parameterized by the distance to cluster.

Red. Rule 1. If there exist $u, v, w \in V(G)$ s.t. u, v, w are true (or false) twins, then remove u from G and decrease k by one.

So, $\forall C \in G \backslash X$, at most 2 of its vertices have the same neighborhood in X. Thus, $|C| \leq 2^{|X|+1}$.

FPT, the dist to cluster

Def. For every clique C of $G-X$, define the signature $\operatorname{sign}(C)$ of C

$$
\operatorname{sign}(C)=\{N(u) \cap X: u \in C\} .
$$

FPT, the dist to cluster

Def. For any two cliques $C_{1}, C_{2} \in G-X$, let $C_{1} \sim C_{2}$, if and only if

$$
\operatorname{sign}\left(C_{1}\right)=\operatorname{sign}\left(C_{2}\right)
$$

FPT, the dist to cluster

Thus, there are at most $2^{2^{|X|+1}}$ equivalence classes.

FPT, the dist to cluster

\mathcal{C} : an equivalence class of \sim.
 C_{7}, C_{8} : cliques from the same \mathcal{C}.

Def. Two vertices $u \in C_{7}$ and $v \in C_{8}$ are clones if $N(u) \cap X=N(v) \cap X$.

FPT, the dist to cluster

\mathcal{C} : an equivalence class of \sim.
C_{7}, C_{8} : cliques from the same \mathcal{C}.

Claim. Let $u \in C_{7}$ and $v \in C_{8}$ be clones. Then, for any resolving set S of G,

$$
S \cap\left(V\left(C_{7}\right) \cup V\left(C_{8}\right)\right) \neq \varnothing .
$$

FPT, the dist to cluster

Red. Rule 2. If there exists \mathcal{C} such that

$$
|\mathcal{C}| \geq 2^{|X|+2}+|X|+2,
$$

remove a clique $C \in \mathcal{C}$ from G and reduce k by $\max \{1, t(\mathcal{C})\}$.
Thus, $|V(G)| \leq 2^{2^{|X|+1}} \cdot\left(2^{|X|+2}+|X|+1\right) \cdot 2^{|X|+1}+|X|$:

- $2^{2^{|X|+1}}$ equivalence classes;
- each \mathcal{C} contains at most $2^{|X|+2}+|X|+1$ cliques;
- for each clique $C \in G-X,|V(C)| \leq 2^{|X|+1}$.

Further directions

Further

$\square-$ FPT; $\square-X P ; \square-W[1] ; \square$ - para-NP.

Further

$\square-$ FPT; $\square-\mathrm{XP} ; \square-\mathrm{W}[1] ; \square$ - para-NP.

? FPT with the feedback edge set.

Further

$\square-$ FPT; $\square-\mathrm{XP} ; \square-\mathrm{W}[1] ; \square-$ para-NP.

? Parameterization with the distance to cograph.

Further

- Structural parameterization by:
- the feedback edge set;
- the distance to cograph;
- dist to disjoint paths;
- bandwidth;
- the fvs + solution-size.

Thanks for attention!

Further directions

- Structural parameterization by:
- the feedback edge set;
- the distance to cograph;
- dist to disjoint paths;
- bandwidth;
- the fvs + solution-size.

Contents
Introduction
Overview of what is known
[No] Polynomial Kernels
W[1]-hardness, FVS
FPT, the dist to cluster

[^0]: June 21, 2023

