

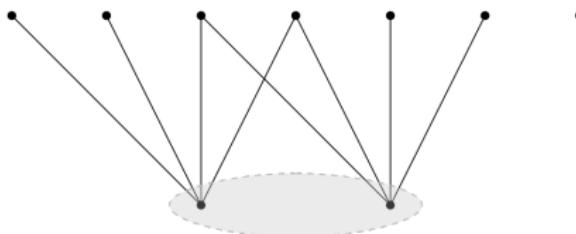
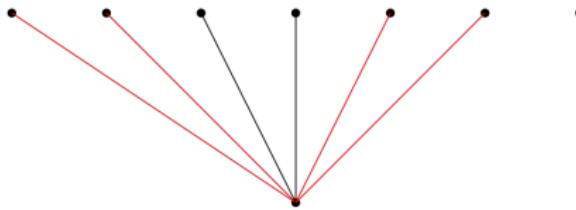
Computing (Oriented) Twin-width

Mathis Rocton

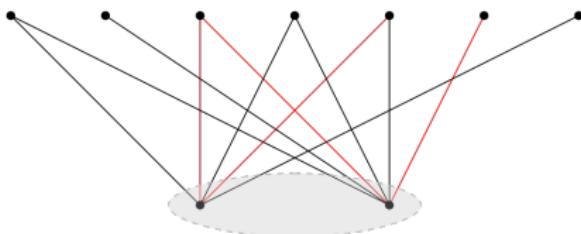
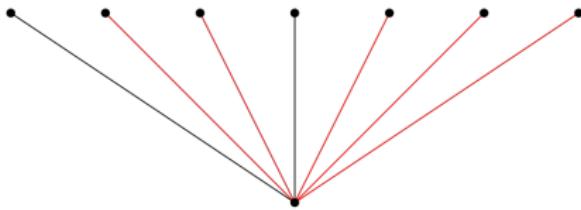
TU Wien

November 20, 2025

Contracting Vertices



Contracting Vertices



Contraction Sequences

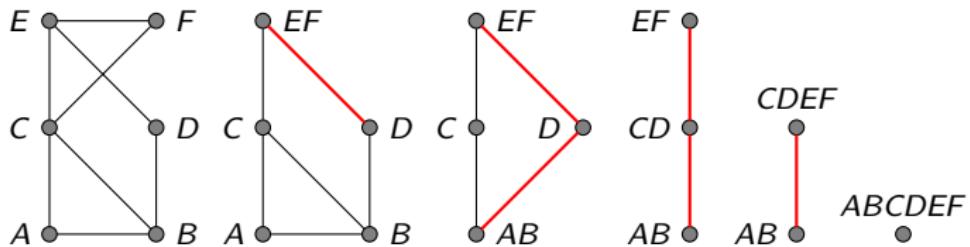


Figure from Jakub Balabán.

The Twin-Width of a Graph

The *twin-width* of a graph G is the minimum width of a contraction sequence, over all valid contraction sequences from G to K_1 .

Using Twin-Width to Solve FO

Theorem (Bonnet, Kim, Thomassé, Watrigant; 2020)

*Provided a **contraction sequence** of G of width d , evaluating a formula φ expressible in **First Order Logic (FO)** on G can be done in time $f(d, |\varphi|) \cdot |V(G)|$ for a computable function f .*

Using Twin-Width to Solve FO

Theorem (Bonnet, Kim, Thomassé, Watrigant; 2020)

*Provided a **contraction sequence** of G of width d , evaluating a formula φ expressible in **First Order Logic (FO)** on G can be done in time $f(d, |\varphi|) \cdot |V(G)|$ for a computable function f .*

To this date, we do **not** have any efficient way of computing contraction sequences of (quasi) optimal width!

Using Twin-Width to Solve FO

Theorem (Bonnet, Kim, Thomassé, Watrigant; 2020)

*Provided a **contraction sequence** of G of width d , evaluating a formula φ expressible in **First Order Logic (FO)** on G can be done in time $f(d, |\varphi|) \cdot |V(G)|$ for a computable function f .*

To this date, we do **not** have any efficient way of computing contraction sequences of (quasi) optimal width!

Theorem (Bergé, Bonnet, Déprés; 2022)

Deciding whether the twin-width of a graph is at most 4 is NP-complete.

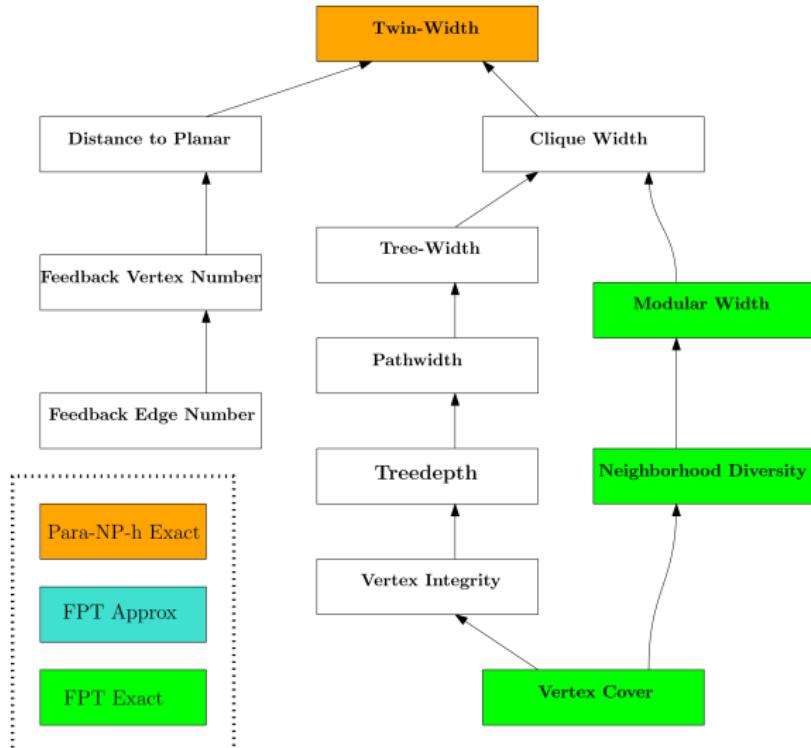
Is there an algorithm that given an n -vertex graph G and $k \in \mathbb{N}$, runs in time $f(k) \cdot n^{\mathcal{O}(1)}$ and either correctly reports that $\text{tww}(G) \geq k$ or outputs a contr. sequence of width at most $g(k)$?

- At this moment wide open!

Is there an algorithm that given an n -vertex graph G and $k \in \mathbb{N}$, runs in time $f(k) \cdot n^{\mathcal{O}(1)}$ and either correctly reports that $\text{tww}(G) \geq k$ or outputs a contr. sequence of width at most $g(k)$?

- At this moment wide open!
- What about using more restrictive parameters?
- Then maybe even exact FPT algorithms would be possible!

State of the Art



Theorem (+1-approximation for FEN)

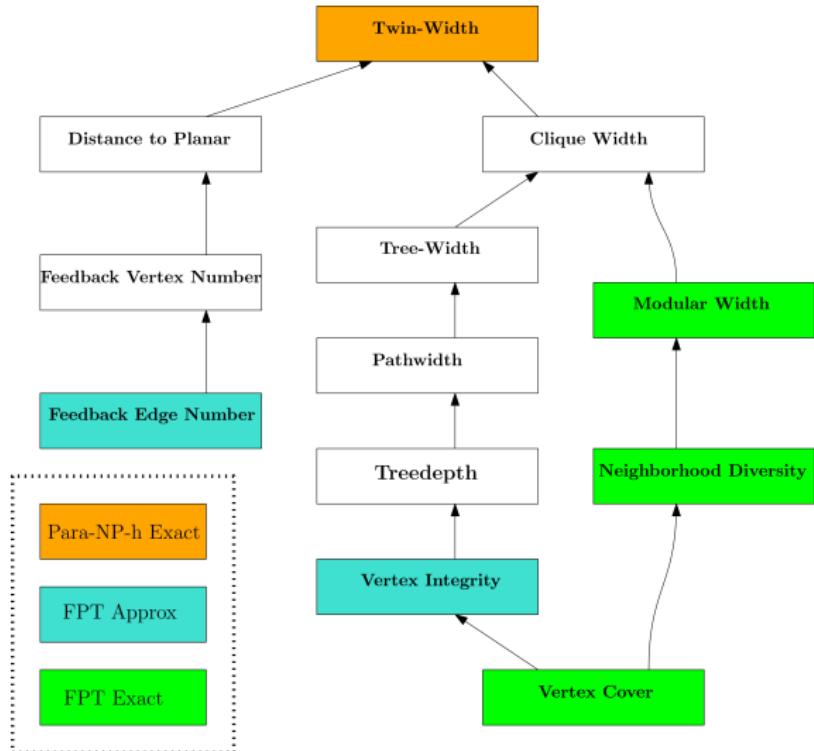
It is FPT to compute a contraction sequence for G of width at most $\text{tww}(G) + 1$, parameterized by the Feedback Edge Number.

Theorem (2-approximation for VI)

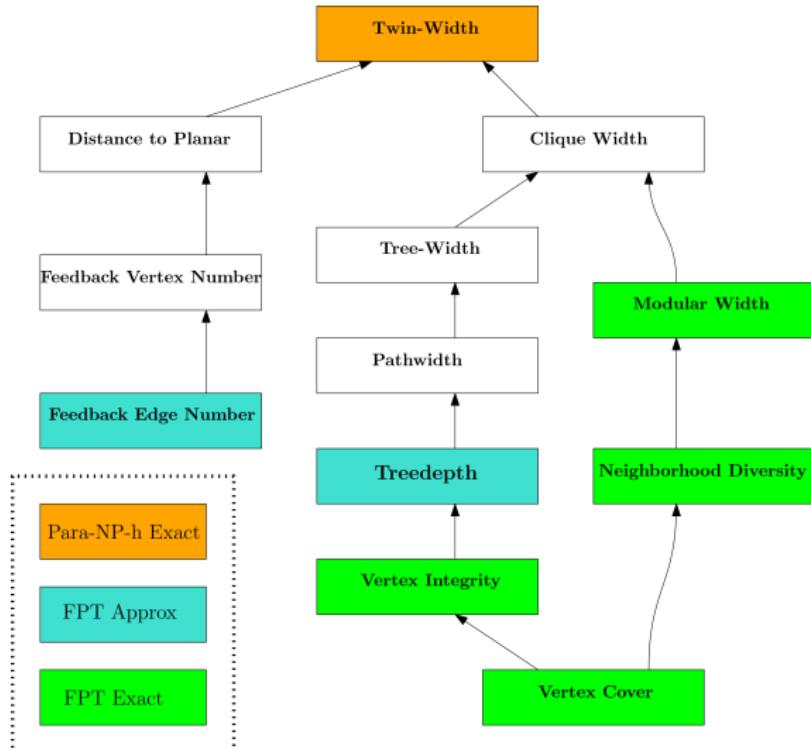
It is FPT to compute a contraction sequence for G of width at most $2 \cdot \text{tww}(G)$, parameterized by the Vertex Integrity.

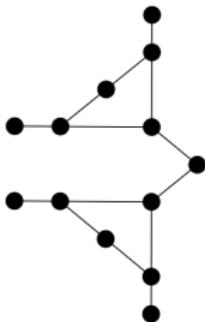
Balabán, Ganian, R., SIDMA (2025)

State of the Art



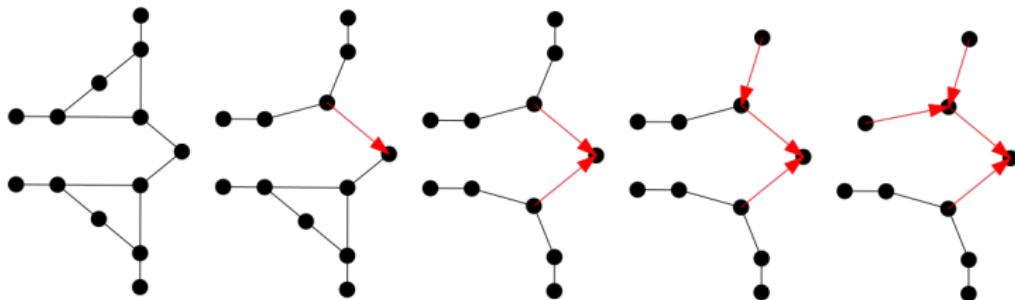
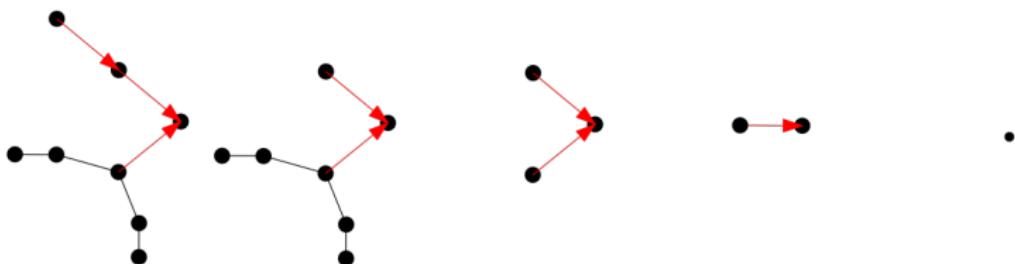
State of the Art





- Related to Twin-Width
- Refines the error edges with orientation
- Always smaller than Twin-Width

Oriented Twin-Width



A Twin to Twin-width?

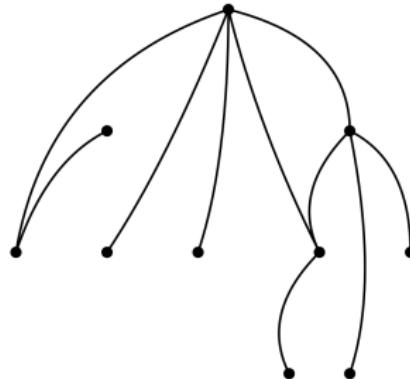
Theorem (Bonnet, Kim, Reinhard, Thomassé, 2022)

For every graph G , $\text{otww}(G) \leq \text{tww}(G) \leq 2^{2^{\mathcal{O}(\text{otww}(G))}}$.

Theorem (Combining results from Twin-Width I, IV and VI)

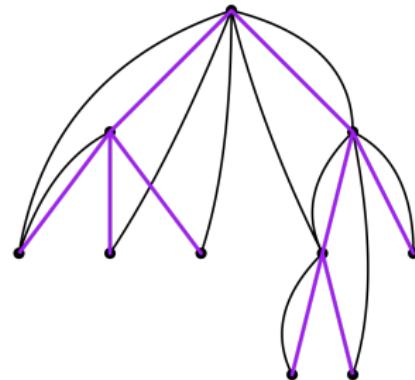
There is an FPT algorithm that takes as input a graph G together with a contraction sequence of oriented width $f(\text{otww}(G))$ and outputs a contraction sequence of width at most $2^{2^{\mathcal{O}(f(\text{tww}(G)))}}$.

The treedepth of G is the minimum height of a forest \mathcal{F} on $V(G)$, such that each edge of G connects two vertices with a ancestor/descendant relation in \mathcal{F} .

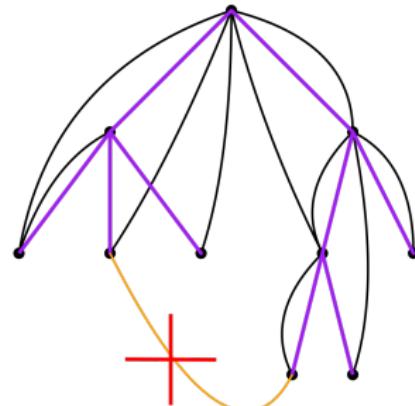


Treedepth

The treedepth of G is the minimum height of a forest \mathcal{F} on $V(G)$, such that each edge of G connects two vertices with a ancestor/descendant relation in \mathcal{F} .

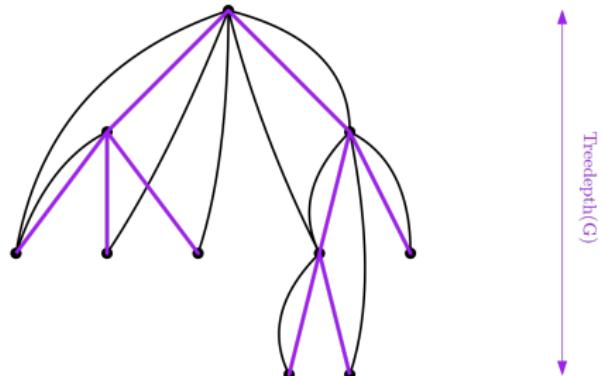


The treedepth of G is the minimum height of a forest \mathcal{F} on $V(G)$, such that each edge of G connects two vertices with a ancestor/descendant relation in \mathcal{F} .

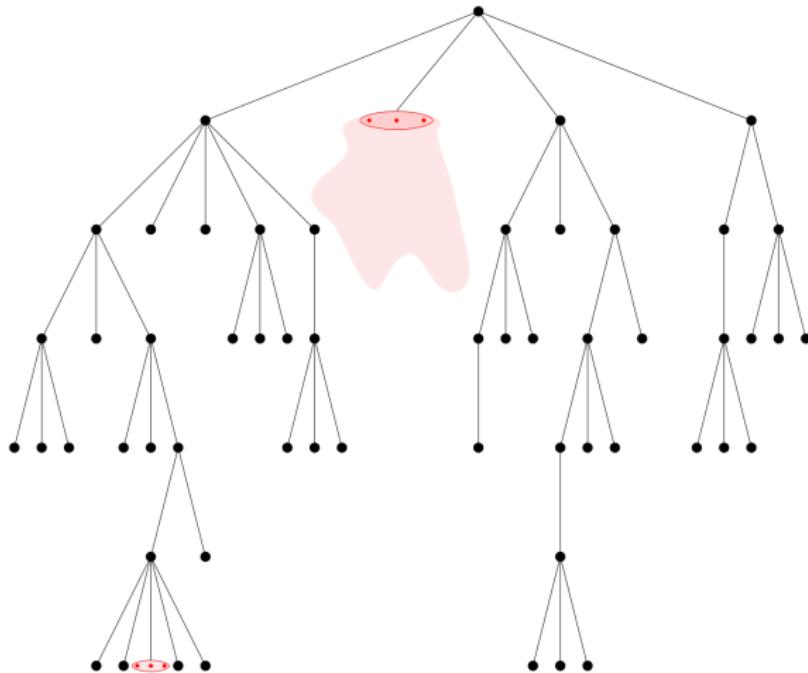


Treedepth

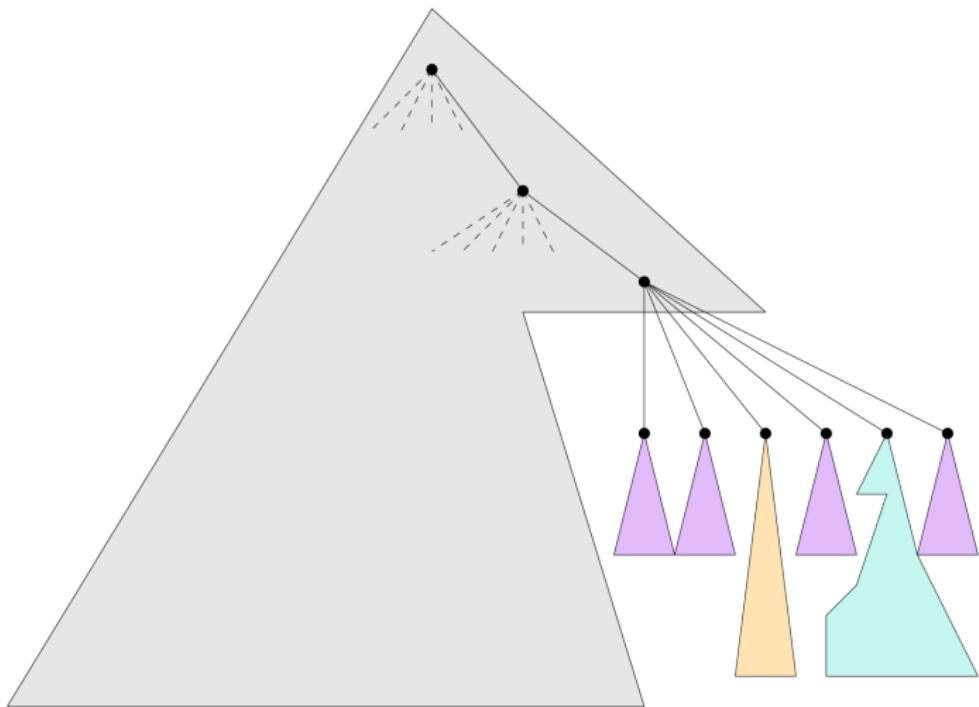
The treedepth of G is the minimum height of a forest \mathcal{F} on $V(G)$, such that each edge of G connects two vertices with a ancestor/descendant relation in \mathcal{F} .



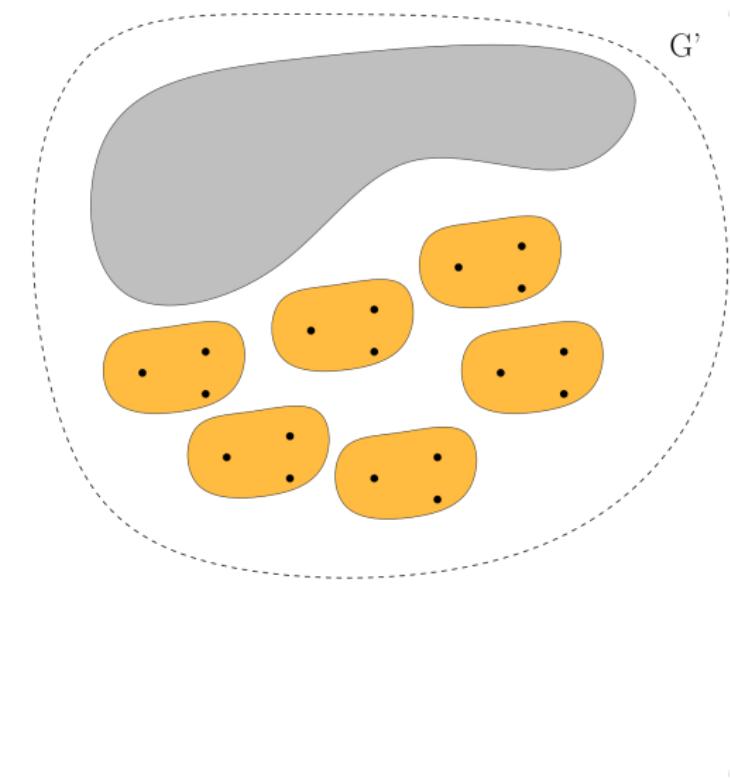
Pruning Principle



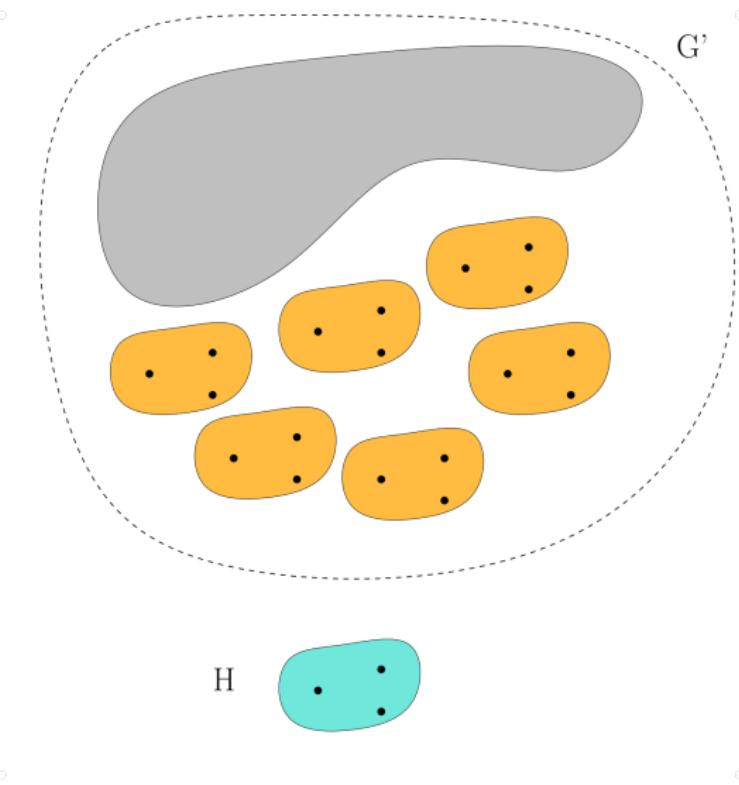
Pruning Principle



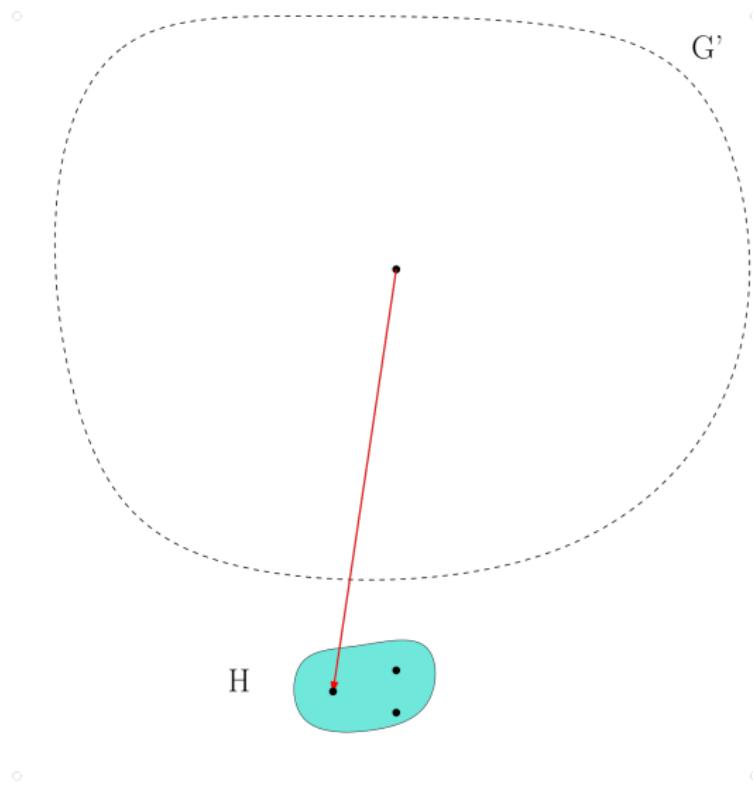
Inserting Back a Pruned Subgraph



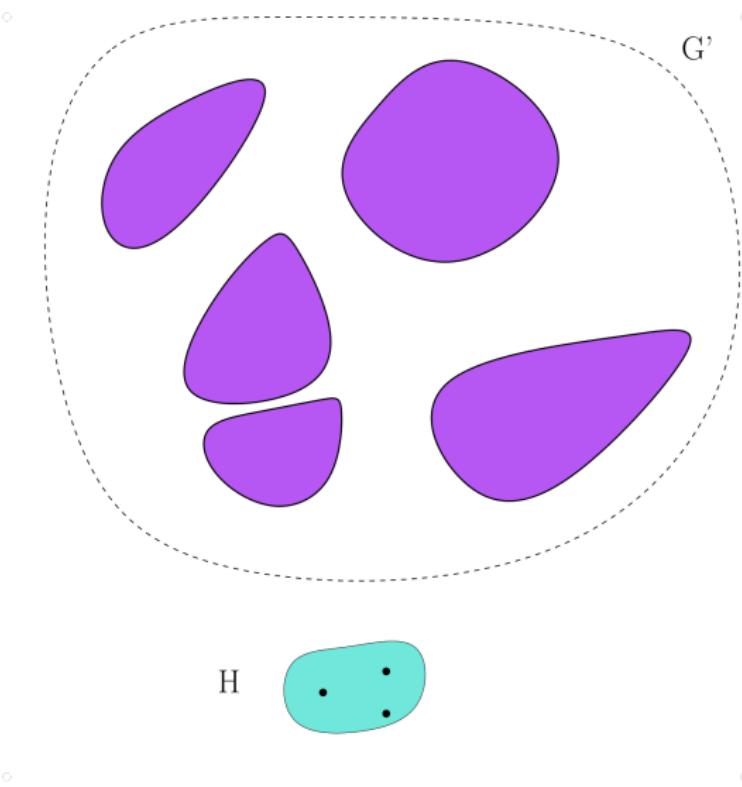
Inserting Back a Pruned Subgraph



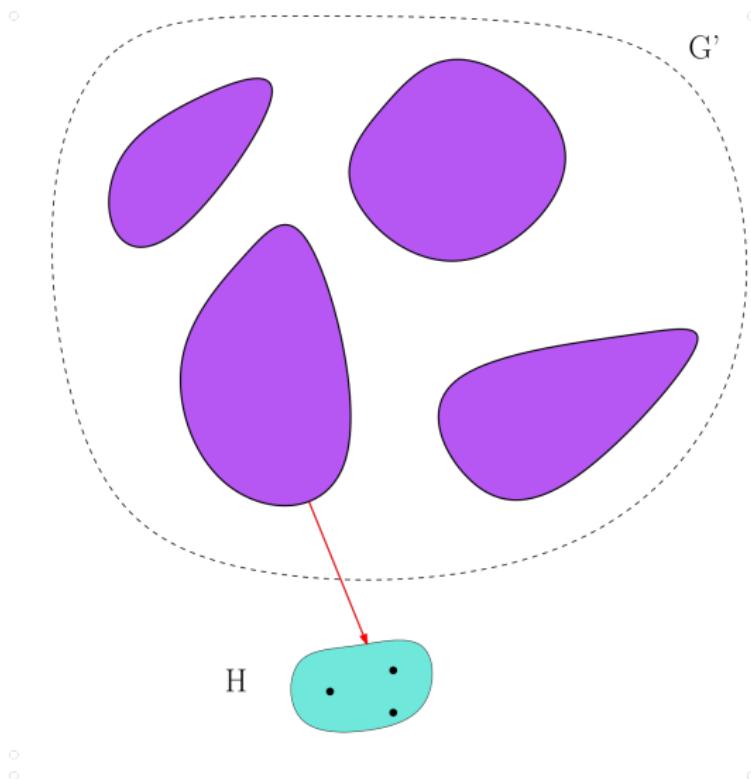
Inserting Back a Pruned Subgraph



Inserting Back a Pruned Subgraph

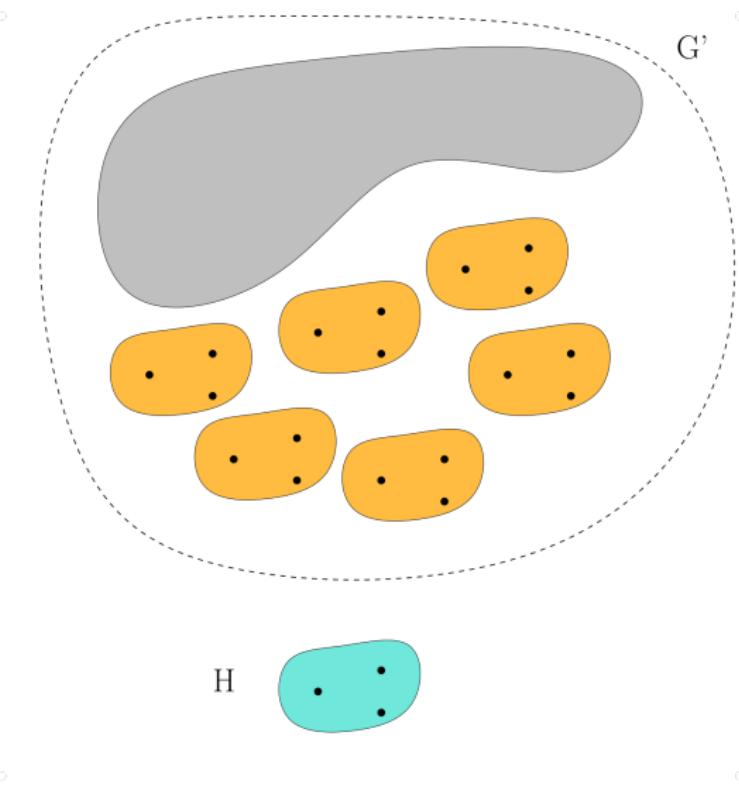


Inserting Back a Pruned Subgraph

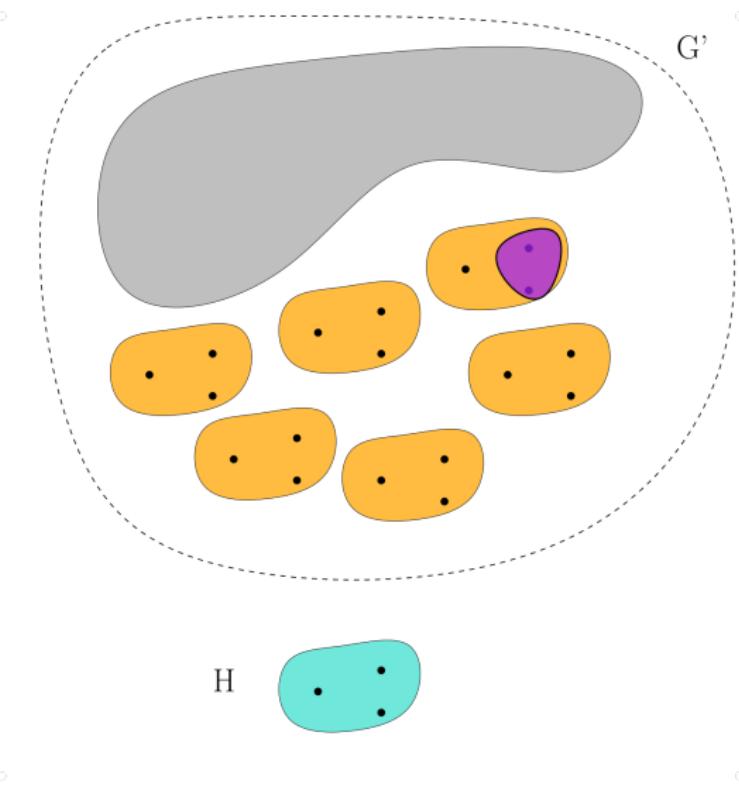


We call **indifferent** all the trigraphs in the sequence such that no red arc goes to H .

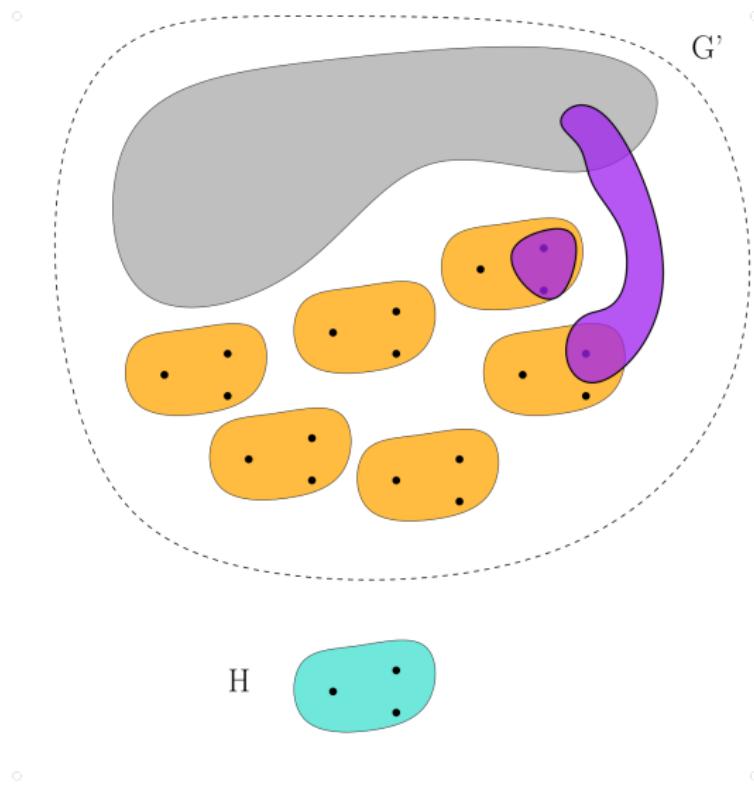
Inserting Back a Pruned Subgraph



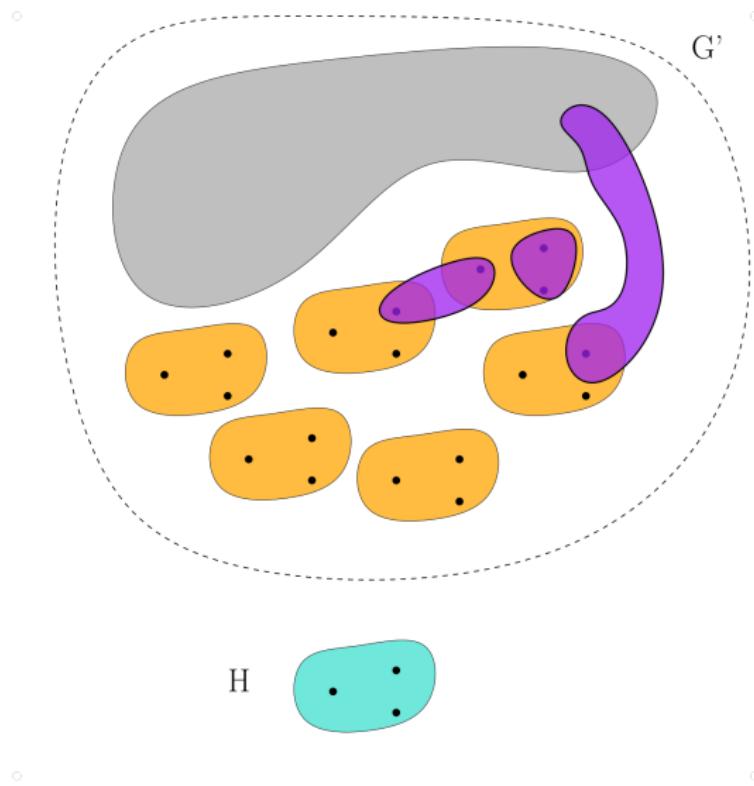
Inserting Back a Pruned Subgraph



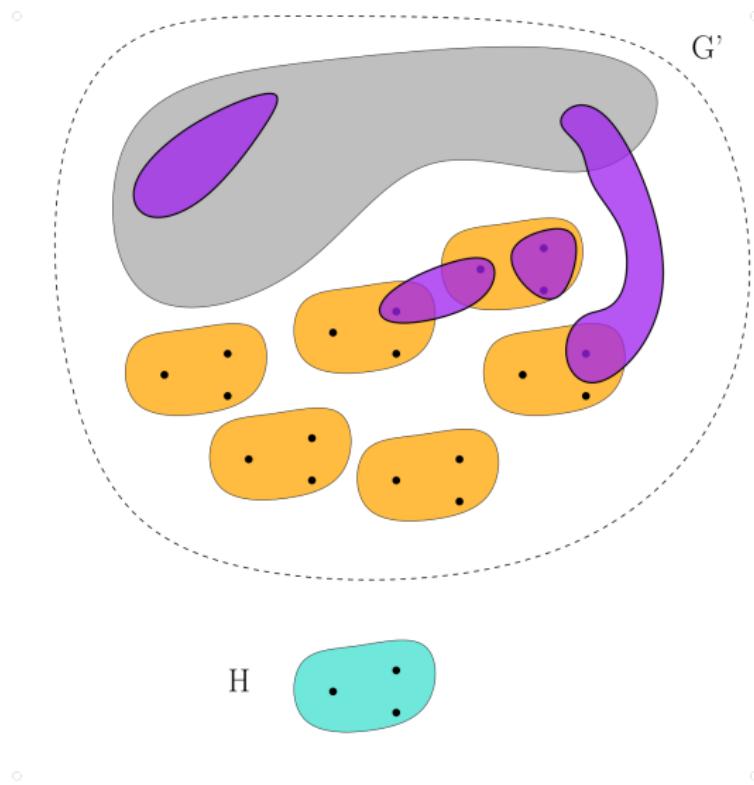
Inserting Back a Pruned Subgraph



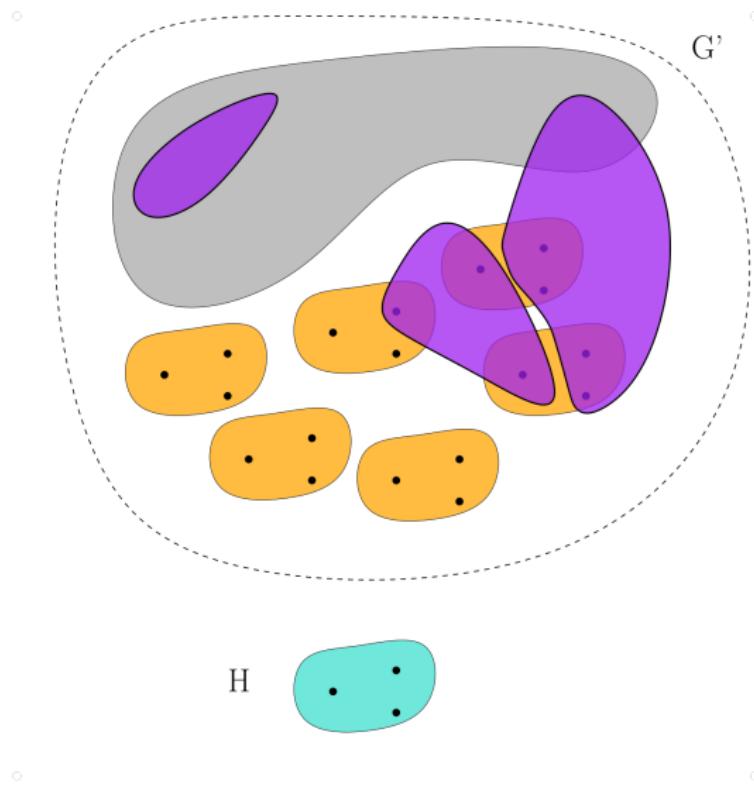
Inserting Back a Pruned Subgraph



Inserting Back a Pruned Subgraph



Inserting Back a Pruned Subgraph



We call **safe** any trigraph in the sequence such that two *twin-blocks of H* are **merged together**.

Inserting Back a Pruned Subgraph

○

Indifferent

Safe

Inserting Back a Pruned Subgraph

○

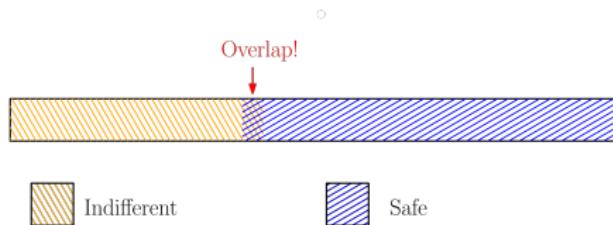
Indifferent

Safe

Inserting Back a Pruned Subgraph



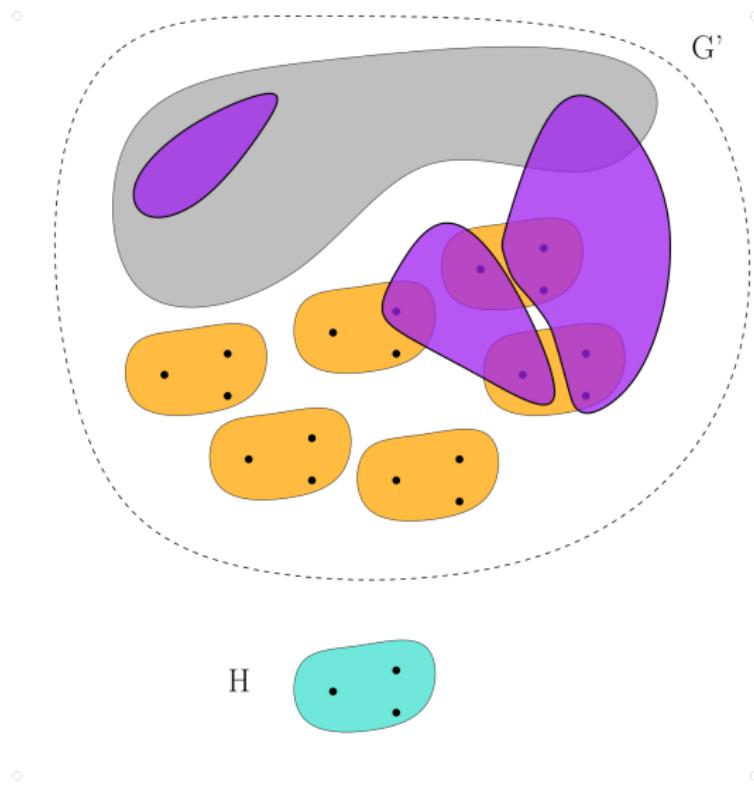
Inserting Back a Pruned Subgraph



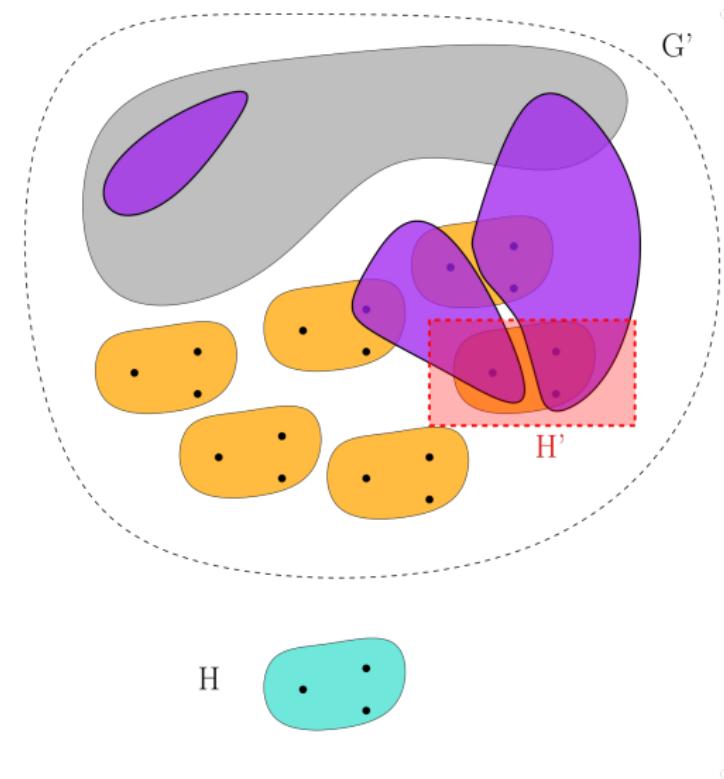
Lemma

There is always a trigraph which is both Indifferent and Safe.

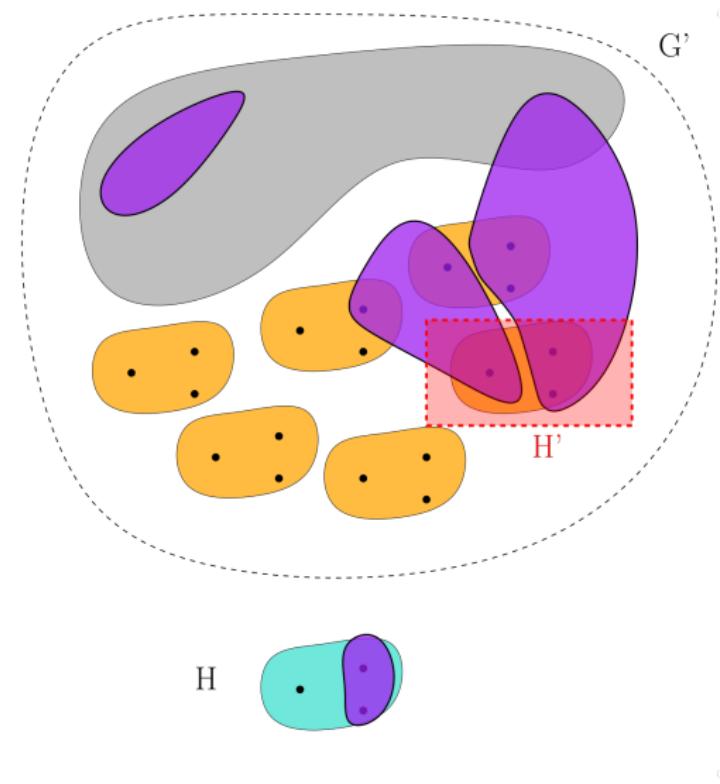
Inserting Back a Pruned Subgraph



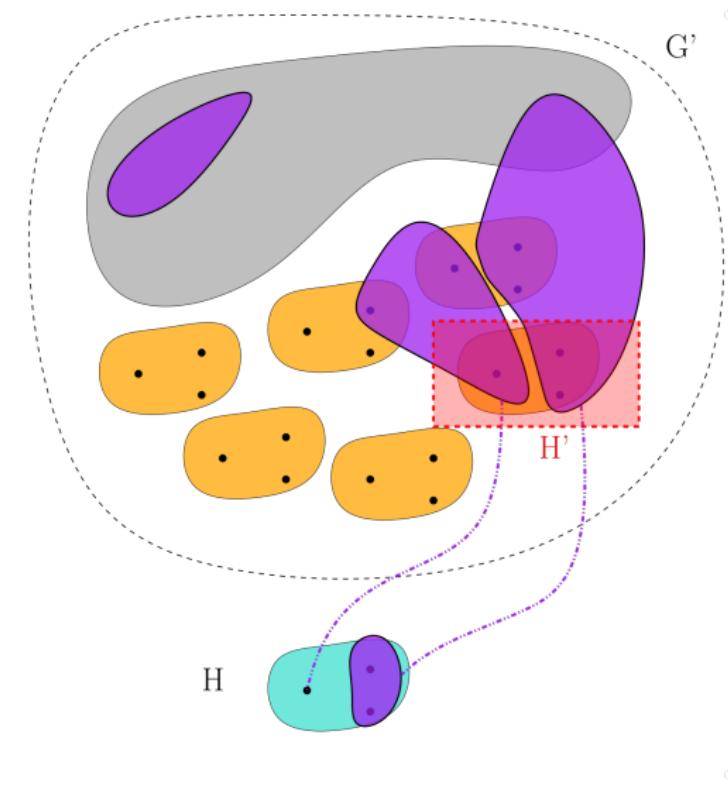
Inserting Back a Pruned Subgraph



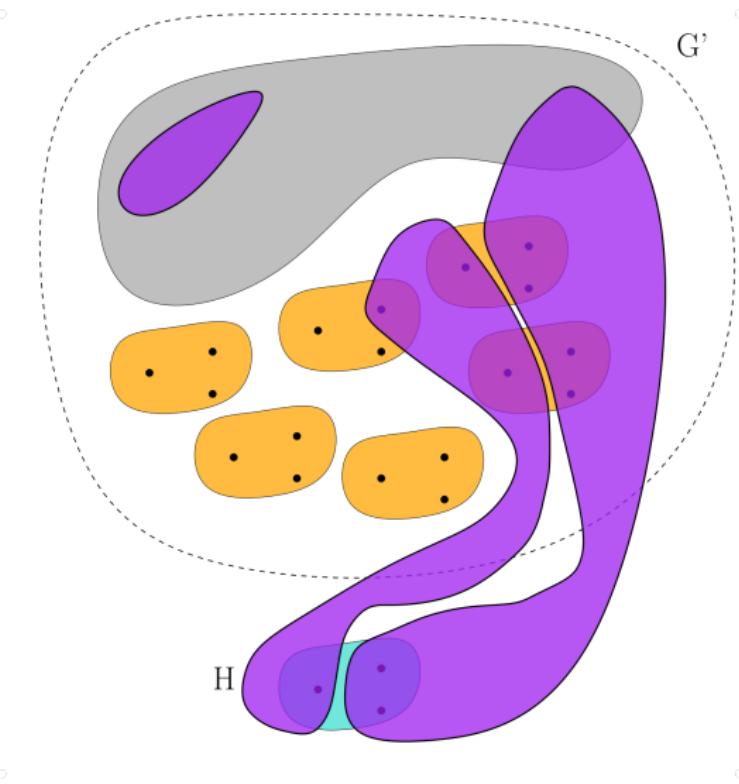
Inserting Back a Pruned Subgraph



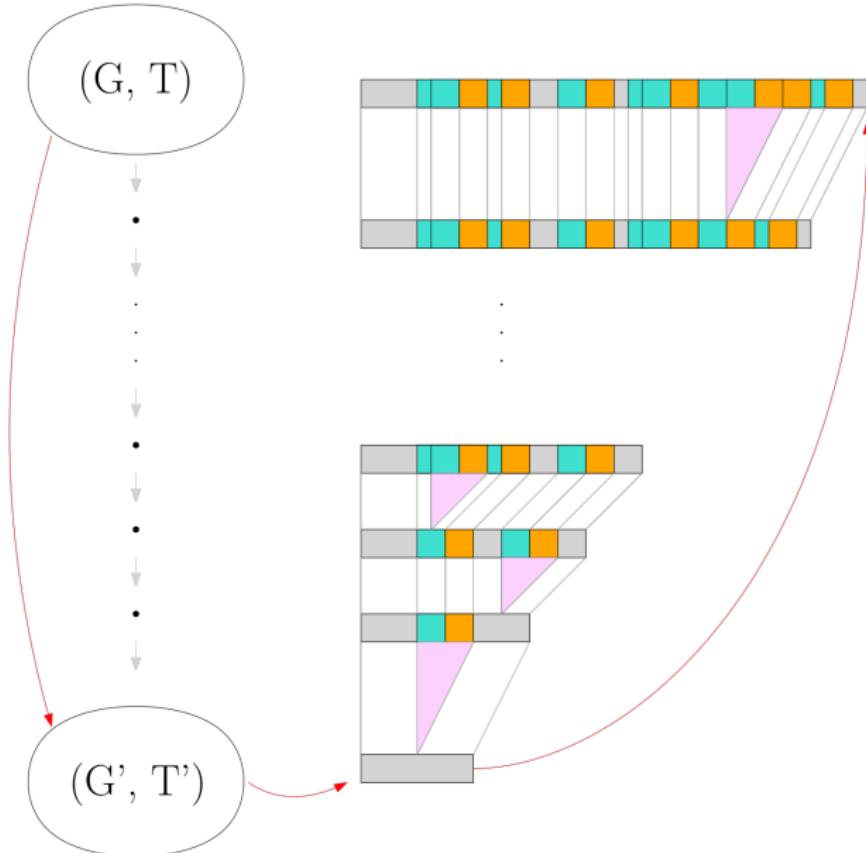
Inserting Back a Pruned Subgraph



Inserting Back a Pruned Subgraph



Dealing with Treedepth



Is oriented twin-width the "right parameter" for cracking the approximability of twin-width?

Thank you for your attention!
Questions?