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Contracting Vertices
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Contraction Sequences
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Figure from Jakub Balabán.
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The Twin-Width of a Graph

The twin-width of a graph G is the minimum width of a
contraction sequence, over all valid contraction sequences from G
to K1.
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Using Twin-Width to Solve FO

Theorem (Bonnet, Kim, Thomassé, Watrigant; 2020)
Provided a contraction sequence of G of width d, evaluating a
formula φ expressible in First Order Logic (FO) on G can be
done in time f (d , |φ|) · |V (G)| for a computable function f .

To this date, we do not have any efficient way of computing
contraction sequences of (quasi) optimal width!

Theorem (Bergé, Bonnet, Déprés; 2022)
Deciding whether the twin-width of a graph is at most 4 is
NP-complete.
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Computing Twin-Width

Is there an algorithm that given an n-vertex graph G and k ∈ N,
runs in time f (k) · nO(1) and either correctly reports that
tww(G) ≥ k or outputs a contr. sequence of width at most g(k)?

At this moment wide open!

What about using more restrictive parameters?

Then maybe even exact FPT algorithms would be possible!
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State of the Art
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State of the Art
Theorem (+1-approximation for FEN)
It is FPT to compute a contraction sequence for G of width at
most tww(G) + 1, parameterized by the Feedback Edge Number.

Theorem (2-approximation for VI)
It is FPT to compute a contraction sequence for G of width at
most 2 · tww(G), parameterized by the Vertex Integrity.

Balabán, Ganian, R., SIDMA (2025)
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Oriented Twin-Width

Related to Twin-Width

Refines the error edges with
orientation

Always smaller than Twin-Width
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Oriented Twin-Width
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A Twin to Twin-width?

Theorem (Bonnet, Kim, Reinald, Thomassé, 2022)

For every graph G, otww(G) ≤ tww(G) ≤ 22O(otww(G)) .

Theorem (Combining results from Twin-Width I, IV and VI)
There is an FPT algorithm that takes as input a graph G together
with a contraction sequence of oriented width f (otww(G)) and
outputs a contraction sequence of width at most 222O(f (tww(G)))

.
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Treedepth

The treedepth of G is the
minimum height of a
forest F on V(G), such
that each edge of G
connects two vertices with
a ancestor/descendant
relation in F .
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Pruning Principle
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Inserting Back a Pruned Subgraph
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Inserting Back a Pruned Subgraph

We call indifferent all the trigraphs in the sequence such that no
red arc goes to H.
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Inserting Back a Pruned Subgraph

We call safe any trigraph in the sequence such that two
twin-blocks of H are merged together.
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Inserting Back a Pruned Subgraph

Lemma
There is always a trigraph which is both Indifferent and Safe.
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Dealing with Treedepth
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Conclusion

Is oriented twin-width the "right parameter"
for cracking the approximability of twin-width?

Thank you for your attention!
Questions?
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