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Bounded expansion
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Degeneracy

A graph (G is d-degenerate if there exists a linear
ordering G of (G such that every vertex has at
most d neighbours to its left.

Ordered graph: G = (G, <)



Admissibility

G [ [ ]

w

The r-path-packing number pp,.(v) is the
maximum number of paths that

1) All start at v but are otherwise disjoint,
2) have each length at most 7; and
3) have only their endpoint left of v.



Admissibility

G w

The r-admissibility adm,.(G) of an ordered graph G is

adm, (G) = max pp (v)

The r-admissibility of a graph G is the minimum value
over all its orderings:

adm, (G) = Ggri(%) adm, (G)



Bounded expansion

weol, ‘O
degeneracy
adm, ﬂ@

[Dvrk13]

For every ordered graph G and r > 1 it holds that  syes
adm,.(G) < scol,(G) < weol,(G) < (r*adm,(G))"

[Zhu09]

3 A graph class has bounded expansion iff
A it is adm,. / scol,. / wcol,-bounded.
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:Algorithmic uses

Application
weols ‘O Quite natural for
algorithm design
scol JD once you get used to it
A ﬂ@ Direct use?

Computation

NP-hard for
P =

[BKLS25]

Poly-time for r < 3

Greedy algorithm

for ordering
with an NP-complete
subproblem for r > 4

[IPS82] [Dvrk13]
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Uses in theory,
uses in Theory



Property testing

P? We want to check whether the input
’ has some property P in sublinear time

A property tester is an algorithm that
does that (with some complications)

the tester consults an oracle to read

Since we cannot read the input in full, =
certain parts of the input



Property testing: some complications

We are happy if the tester works in cases
where an instance has a property P, or
when it ‘clearly’ does not.




Property testing: some complications

The tester® must accept instance that
arein P d‘
It must reject instances that are &far ‘
from P with probability at least 2/3.

*This is a one-sided tester. Two-sided testers
are allowed to err in both cases.



H-freeness in r-admissible graphs
?
C G adm, (G) < p

1. Return random vertex of (G
2. Given a vertex, return a random neighbour

4 A graph is e-far from being H-free if we must
. delete more than epn edges to remove all

¢ subgraphs isomorphic to H.



H-freeness: results

» H-freeness with diam(H) < 2 is testable in
graphs with bounded 2-admissibility (Cy4,C')

* Cs and Cr-freeness is testable in graphs with
bounded 3-admissibility

C,--freeness is not testable in graphs of bounded

(lr/2] — 1)-admissibility.

Results on H-freeness testing in graphs of bounded r-admissibility [AGLR25b]
C. Awofeso, P. Greaves, O. Lachish, FR (STACS '25)

* (5, and Cy,41-freeness is testable in graphs
with bounded 7r-admissibility

Testing C),-Freeness in Bounded Admissibility Graphs [AGLLR25]
C. Awofeso, P. Greaves, O. Lachish, A. Levi, FR (ICALP '25)



H-freeness: results

H -freeness is testable in minor-closed classes

Properties testable on minor-closed classes
with one-sided error are precisely those that can be
defined by a finite set of forbidden subgraphs.

A Characterization of Graph Properties Testable for General Planar [CS19]
Graphs with one-Sided Error (It's all About Forbidden Subgraphs)
Artur Czumaj, Christian Sohler (STOC'19)



H-freeness: results

H -freeness is testable in graphs with bounded
| H |-admissibility.

Properties testable on bounded expansion classes
with one-sided error are precisely those that can be
defined by a finite set of forbidden subgraphs.

A sufficient condition for characterizing the one-sided testable properties [AGLLR]
of families of graphs in the Random Neighbour Oracle Model

Christine Awofeso, Patrick Greaves, Oded Lachish, Amit Levi, FR (Under review)



Why admissibility?

Using adm,./ scol,. / wcol,. gives tighter
bounds than e.g. low treedepth colourings

The property testing community cares
a lot about lower bounds, so tightness

matters!
. @
When writing papers for a dif- IR %&P e ° o
ferent community, we cannot e Ve
bring in all of our tools! B 4 =
@ e E -

Admissibility is easier to motivate than weak/strong
colouring numbers and sits at the ‘bottom’.
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Computing admissibility

r-admissibility can be computed in linear fpt-time
in bounded expansion classes

In classes with bounded lsto Wnlart

f(r)-admissibility, for
some horrible f(r)

O Can we compute r-admissibility in linear

fpt-time in classes with ‘only’ bounded
r-admissibility?

9 Can we design a practical algorithm for small
values of r?



Computing admissibility

If for some partition I,, R we can determine the
maximum r-path-packing for vertices in L, then
we are done!

If we move a vertex U from L to R, only vertices
in S™(v) are affected!



Computing admissibility

2-admissibility 3-admissibility

Store and maintain 3-path

It suffices to store a matching
packings with nice properties

between N(v) N R and 52 (v)
and be prudent about updates.
O(p™n)  O(p’m)

O(p*n)  O(m+p?)
time space time space

[AGLR252]

[AGLR262]



Computing 3-admissibility: careful escalation

SRR

Simple rerouting Find disjoint paths

R

Find maximum packing [AGLR262]



Experiments: running time
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The big question




The big question




The big question

‘Do real-world network§ ha\ge
bounded expansion’?



What we know

‘Do real-wor I : network§ ha\4e
bounded expansion’?

[FGLrRvsts] « Many random graph models predict B.E.
[DRRSSS19] Chung-Lu & configuration model, random intersection model,
block model, bounded degree+noise

On many networks, with largerr,
G, - dtf-augmentations grow quickly
5% - low-treedepth colourings grow very quickly
NESE) » scol and wcol grow pretty quickly

e It just makes sense!



The true value of admissibility
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But four is hard?

Algorithmic uses
Application Computation
vl ‘@ Quite natural for NP-hard for
algorithm design r—9
el JD once you get used to it -
[BKLS25)
Poly-time for » < 3
adm,. ﬂ@ Direct use? Greedy algorithm
for ordering

r-admissibility can be computed in polynomial
time for r € {1,2,3,/c0}.



Real-world admissibility

Average degree Maximum degree
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Real-world admissibility
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Selection of networks with less than 1000 nodes



Real-world admissibility
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Real-world admissibility
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Real-world admissibility
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The true value of admissibility

« Help spread the ‘bounded expansion’ toolkit
to other communities

» Helps us gauge heuristics for more useful
measures like scol/wcol

» Helps me finally settle/catch my burning whale:




The true value of admissibility

« Help spread the ‘bounded expansion’ toolkit
to other communities

» Helps us gauge heuristics for more useful
measures like scol/wgq

YES! Even better: .

Most real-world networks have

small ©0-admissibility



THANKS!

Questions?

— i ‘,§ .
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Strong colouring number

5" (v)
G ~__"
w v

The set of strongly r-reachable vertices S™(v) from
a vertex v contains all vertices w which can be
reached via a path that

1) has length at most 7; and
2) whose interior vertices are to the right of V.



Strong colouring number

5" (v)
G ~__"

w (%

The strong r-colouring number scol,.(G) of an ordered
graph G is
scol,. (G) = max |S" (v)|
(S

The strong r-colouring number of a graph G is the minimum
value over all its orderings:

scol,(G) = Ggri(%) scol,.(G)



Weak colouring number

The set of weakly r-reachable vertices W' (v) from
a vertex v contains all vertices w which can be
reached via a path that

1) has length at most 7, and
2) whose vertices are to the right of w.



Weak colouring number

The weak r-colouring number weol,.(G) of an ordered
graph G is
weol,. (G) = max W' (v)|
veE

The weak r-colouring number of a graph G is the minimum
value over all its orderings:

weol,. (G) = Gglri(na) wcol,. (G)



Computing good wcol/scol orders

In past experiments we found that sorting the
vertices by descending degree or computing a
simple degeneracy ordering often gives us a good
wcol/scol ordering for small r.

Empirical evaluation of approximation algorithms for generalized [NPRRS18]

graph coloring and uniform quasi-wideness
W. Nadara, M. Pilipczuk, R. Rabinovich, FR, S. Siebertz (SEA'18)

But how good are these heuristics?



strong 2-colouring number

Computing good wcol/scol orders
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strong 3-colouring number

Computing good wcol/scol orders
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Lifting degeneracy

wcol,. ‘O
degeneracy
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If Gisa d-degenerate ordering, then for every
vertex v € G it holds that

N~ (v)|= pp' (v) =IS" ()| =W (v)].
Therefore
d = adm; (G) = scol; (G) = weoly (G).



Lifting degeneracy

weol, ‘O
degeneracy
adm, ﬂ@

For every ordered graph G, every integer r > 1
and vertex v € G it holds that

pp"(v) < [S"(v)[ < [W7(v)].
Therefore
adm,.(G) < scol,.(G) < wcol,-(G).



X -admissibility decomposition

» 99

[Dvrk12]




X -admissibility decomposition

©
Pre ©

» 99

[Dvrk12]

‘Degenerate’ decomposition:
only one large bag
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