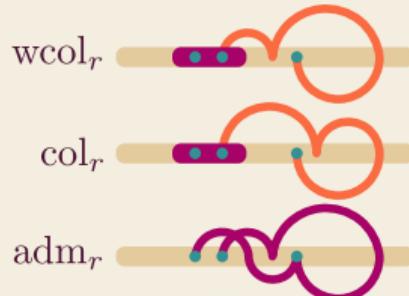
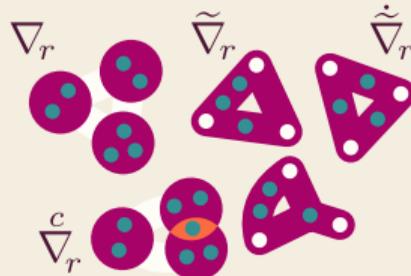
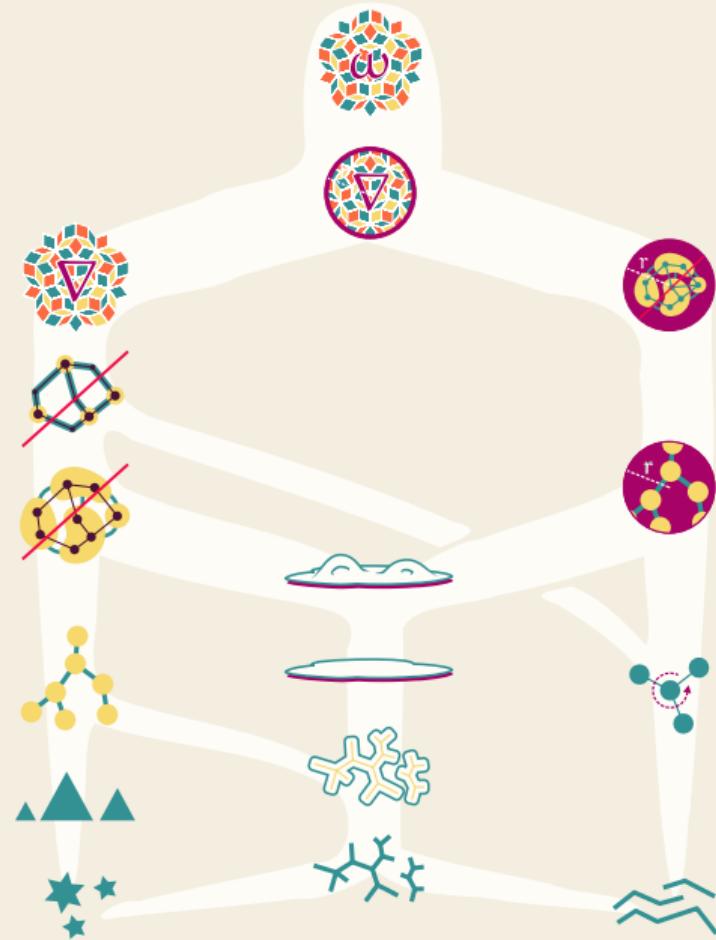


Graph r -admissibility in theory and practice

LOGALG 2025
Nov 21

Felix Reidl
Birkbeck College,
University of London
f.reidl@bbk.ac.uk

Bounded expansion



[Zhu09]
[Dvirk13]

Size of r -reachable sets/
path packings in ordering

Density of shallow
(topological) minors

$\Delta^-(\vec{G}_r)$

In-degree of
 r -step (d)tf-augmentation

[NODM12]

[NODM12]

ν_r

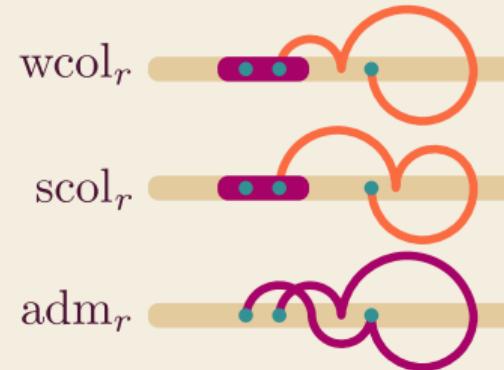
Number of colours
in r -treedepth
colouring

[NODM12]

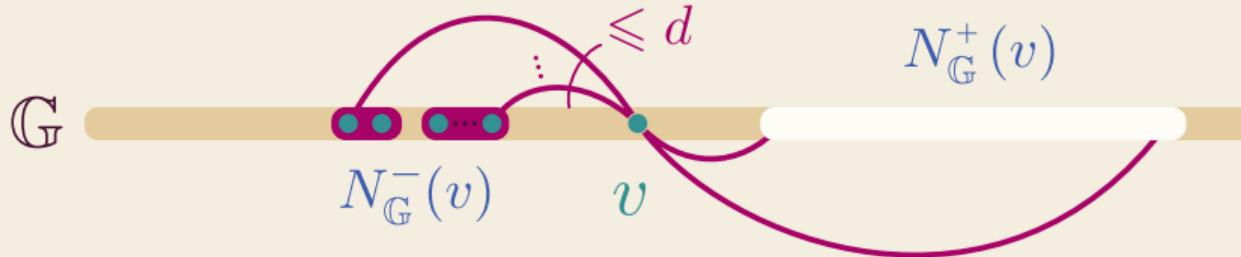
Number of traces
 r -neighbourhoods
leave in any subset

[RSVS19]

Lifting degeneracy



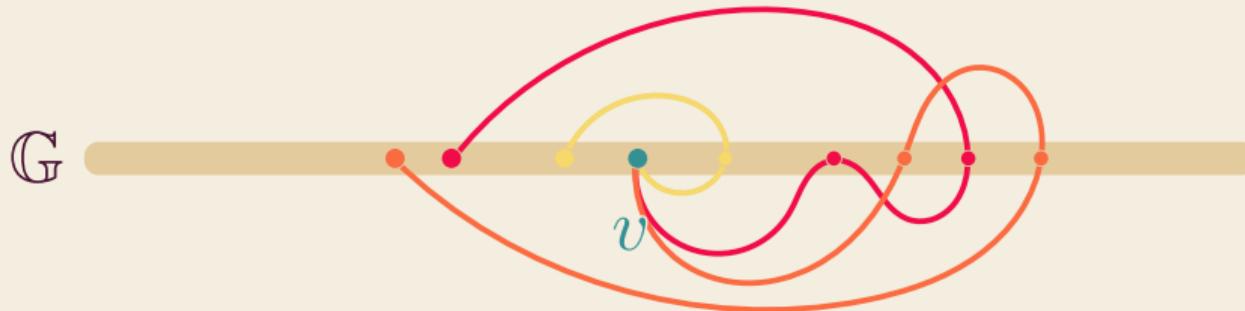
Degeneracy



A graph G is d -degenerate if there exists a linear ordering \mathbb{G} of G such that every vertex has at most d neighbours to its left.

Ordered graph: $\mathbb{G} = (G, <)$

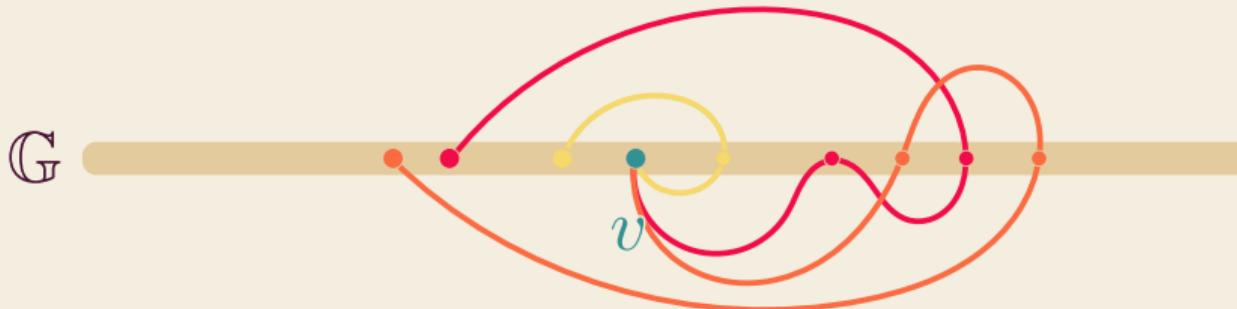
Admissibility



The r -path-packing number $\text{pp}_r(v)$ is the maximum number of paths that

- 1) All start at v but are otherwise disjoint,
- 2) have each length at most r ; and
- 3) have only their endpoint left of v .

Admissibility



The r -admissibility $\text{adm}_r(\mathbb{G})$ of an ordered graph \mathbb{G} is

$$\text{adm}_r(\mathbb{G}) = \max_{v \in \mathbb{G}} \text{pp}^r(v)$$

The r -admissibility of a graph G is the minimum value over all its orderings:

$$\text{adm}_r(G) = \min_{\mathbb{G} \in \pi(G)} \text{adm}_r(\mathbb{G})$$

Bounded expansion

For every ordered graph \mathbb{G} and $r \geq 1$ it holds that

$$\text{adm}_r(\mathbb{G}) \leq \text{scol}_r(\mathbb{G}) \leq \text{wcol}_r(\mathbb{G}) \leq (r^2 \text{adm}_r(\mathbb{G}))^r$$

[Dvrk13]

[Dvrk22]

A graph class has *bounded expansion* iff it is adm_r / scol_r / wcol_r -bounded.

[Zhu09]

Algorithmic uses

Application

Quite natural for
algorithm design
once you get used to it

Direct use?

Computation

NP-hard for
 $r = 2$

[BKLS25]

Poly-time for $r \leq 3$

Greedy algorithm
for ordering
with an NP-complete
subproblem for $r \geq 4$

[IPS82] [Dvrk13]

Algorithmic uses

Application

Quite natural for
algorithm design
once you get used to it

Direct use?

Computation

NP-hard for
 $r = 2$

[BKLS25]

Poly-time for $r \leq 3$

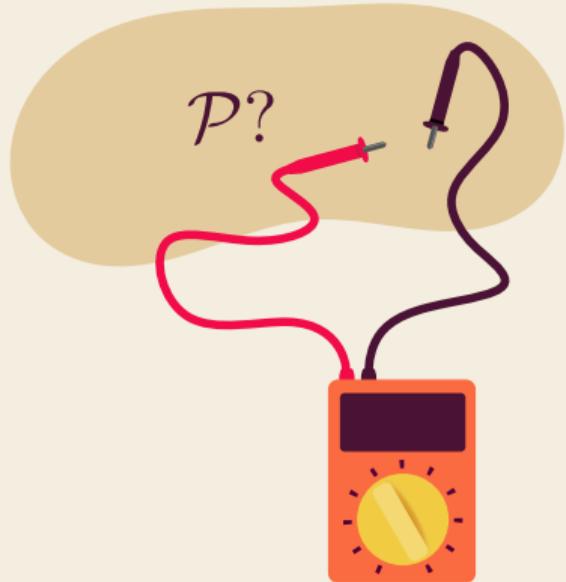
Greedy algorithm
for ordering
with an NP-complete
subproblem for $r \geq 4$

[IPS82] [Dvrk13]

Part I

Uses in theory,
uses in Theory

Property testing



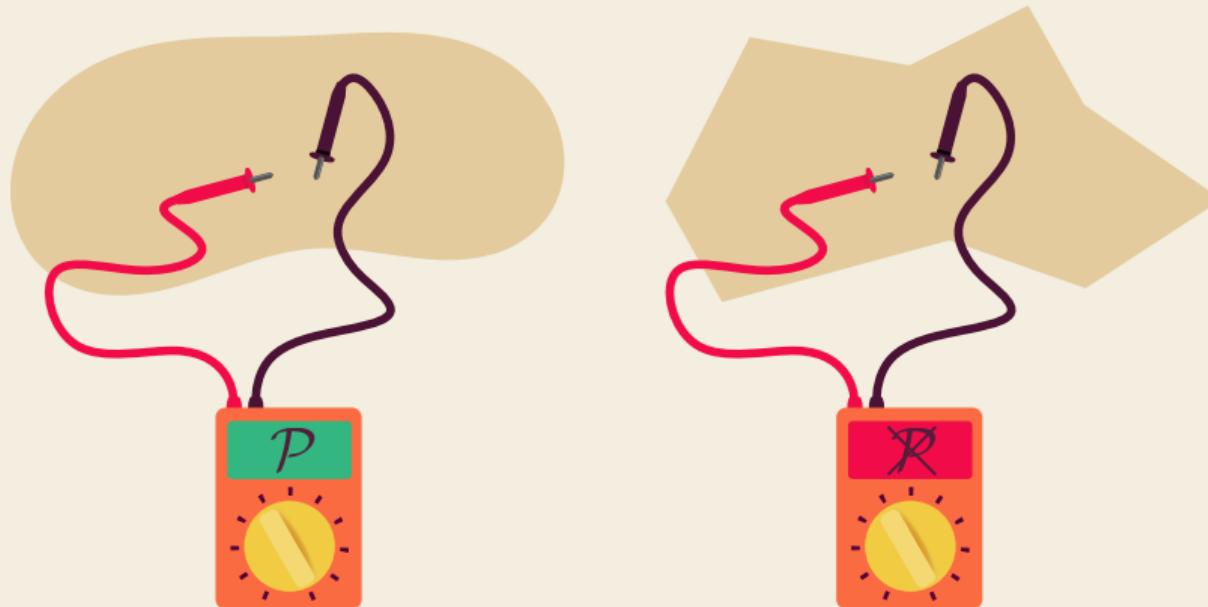
We want to check whether the input has some property \mathcal{P} in sublinear time

A property tester is an algorithm that does that (with some complications)

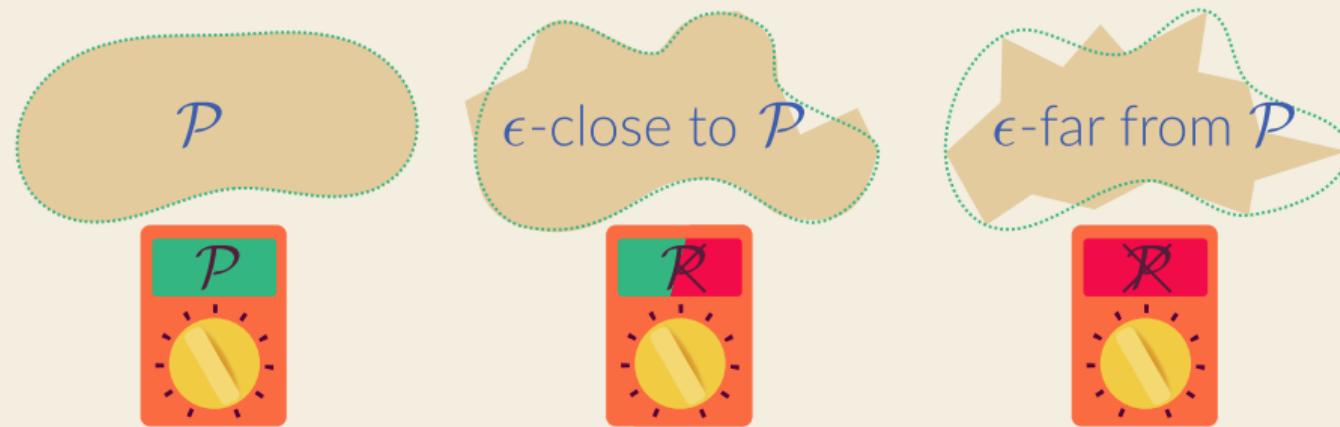
Since we cannot read the input in full, the tester consults an *oracle* to read certain parts of the input

Property testing: some complications

We are happy if the tester works in cases where an instance has a property \mathcal{P} , or when it 'clearly' does not.



Property testing: some complications



The tester* must accept instances that are in \mathcal{P} .

It must reject instances that are ϵ -far from \mathcal{P} with probability at least 2/3.

*This is a one-sided tester. Two-sided testers are allowed to err in both cases.

H -freeness in r -admissible graphs

1. Return random vertex of G
2. Given a vertex, return a random neighbour

A graph is ϵ -far from being H -free if we must delete more than ϵpn edges to remove all subgraphs isomorphic to H .

H -freeness: results

- H -freeness with $\text{diam}(H) \leq 2$ is testable in graphs with bounded 2-admissibility (C_4, C_5)
- C_6 and C_7 -freeness is testable in graphs with bounded 3-admissibility

C_r -freeness is not testable in graphs of bounded $(\lfloor r/2 \rfloor - 1)$ -admissibility.

Results on H -freeness testing in graphs of bounded r -admissibility
C. Awofeso, P. Greaves, O. Lachish, FR (STACS '25)

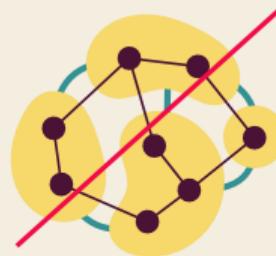
[AGLR25b]

- C_{2r} and C_{2r+1} -freeness is testable in graphs with bounded r -admissibility

Testing C_k -Freeness in Bounded Admissibility Graphs
C. Awofeso, P. Greaves, O. Lachish, A. Levi, FR (ICALP '25)

[AGLLR25]

H-freeness: results



H -freeness is testable in minor-closed classes

Properties testable on minor-closed classes with one-sided error are precisely those that can be defined by a finite set of forbidden subgraphs.

A Characterization of Graph Properties Testable for General Planar Graphs with one-Sided Error (It's all About Forbidden Subgraphs)
Artur Czumaj, Christian Sohler (STOC'19)

[CS19]

H -freeness: results

H -freeness is testable in graphs with bounded $|H|$ -admissibility.

Properties testable on bounded expansion classes with one-sided error are precisely those that can be defined by a finite set of forbidden subgraphs.

A sufficient condition for characterizing the one-sided testable properties of families of graphs in the Random Neighbour Oracle Model

Christine Awofeso, Patrick Greaves, Oded Lachish, Amit Levi, FR (Under review)

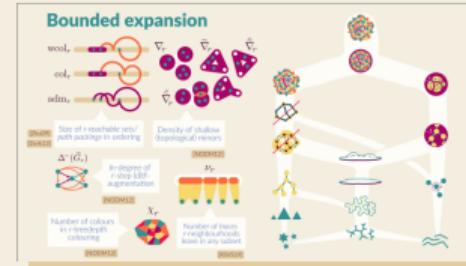
[AGLLR]

Why admissibility?

Using adm_r / scol_r / wcol_r gives tighter bounds than e.g. low treedepth colourings

The property testing community cares a lot about lower bounds, so tightness matters!

When writing papers for a different community, we cannot bring in *all* of our tools!



Admissibility is easier to motivate than weak/strong colouring numbers and sits at the 'bottom'.

Part II

Computing
admissibility

Computing admissibility

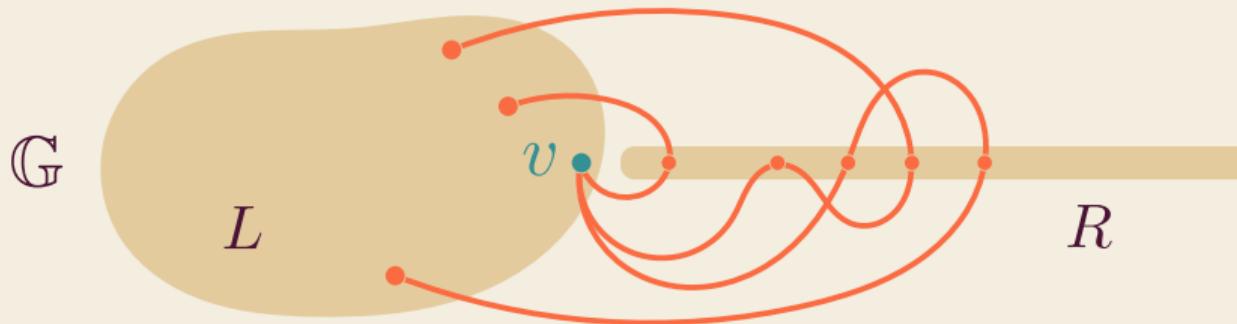
r -admissibility can be computed in linear fpt-time
in bounded expansion classes

In classes with bounded
 $f(r)$ -admissibility, for
some horrible $f(r)$

[Dvralk13] [DKT13]

- 1 Can we compute r -admissibility in linear fpt-time in classes with 'only' bounded r -admissibility?
- 2 Can we design a *practical* algorithm for small values of r ?

Computing admissibility

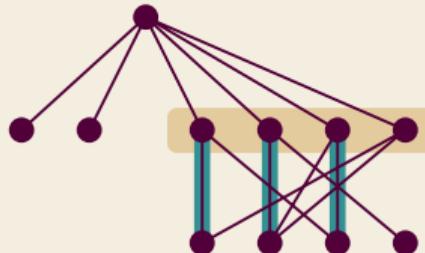


If for some partition L, R we can determine the maximum r -path-packing for vertices in L , then we are done!

If we move a vertex v from L to R , only vertices in $S^r(v)$ are affected!

Computing admissibility

2-admissibility



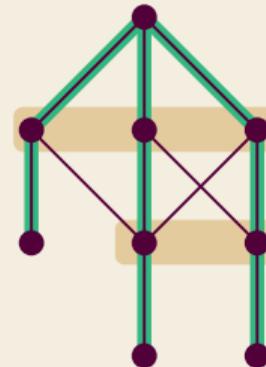
It suffices to store a matching between $N(v) \cap R$ and $S^2(v)$ and be prudent about updates.

$O(p^4n)$
time

$O(m + p^2)$
space

[AGLR25a]

3-admissibility



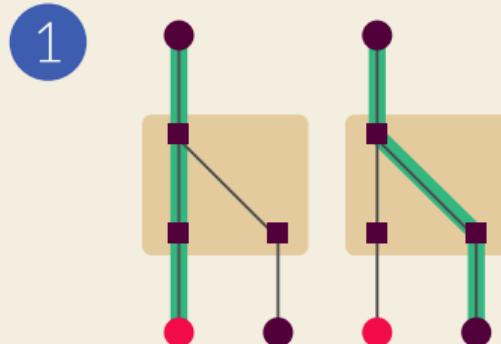
Store and maintain 3-path packings with nice properties

$O(p^7n)$
time

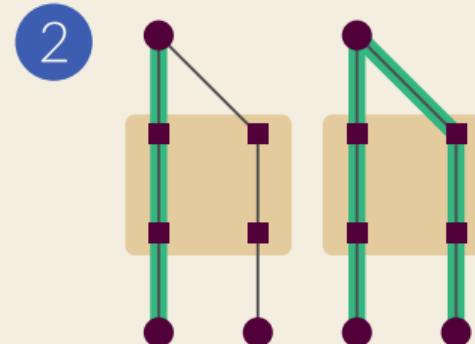
$O(p^3m)$
space

[AGLR26a]

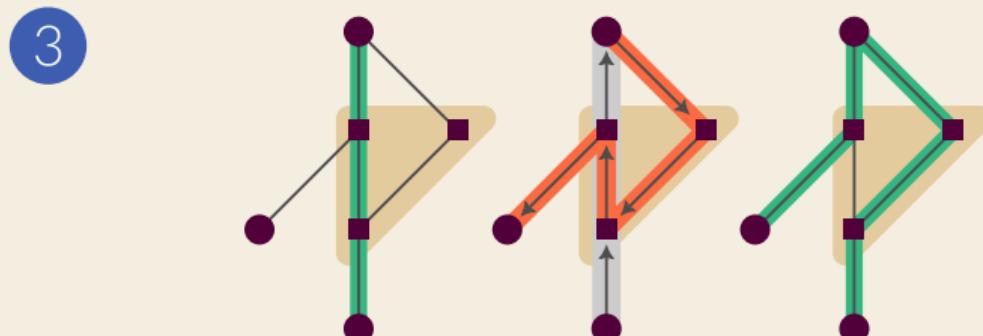
Computing 3-admissibility: careful escalation



Simple rerouting

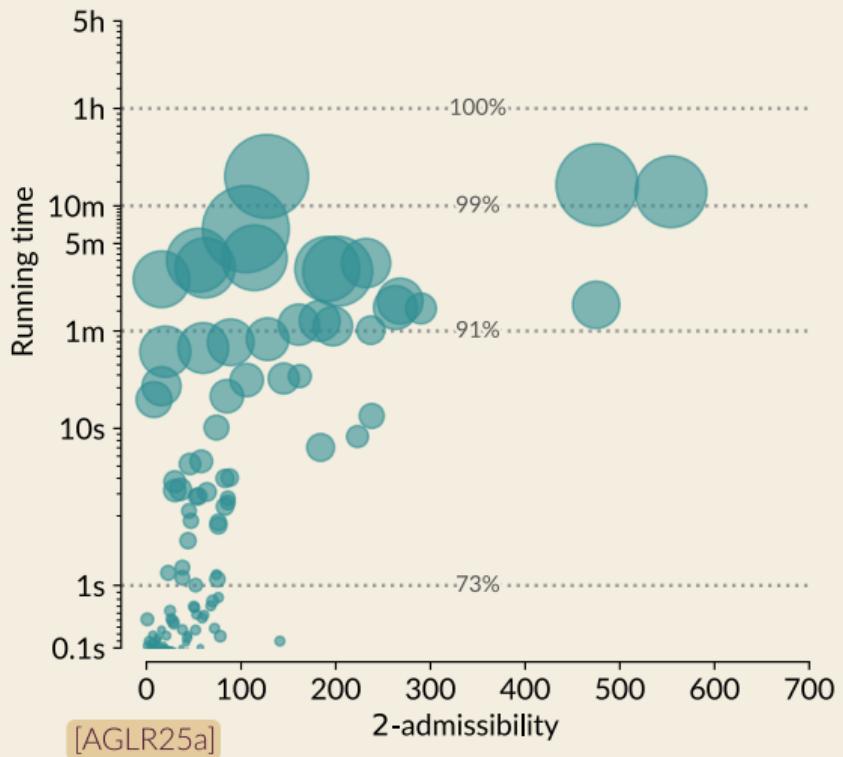


Find disjoint paths

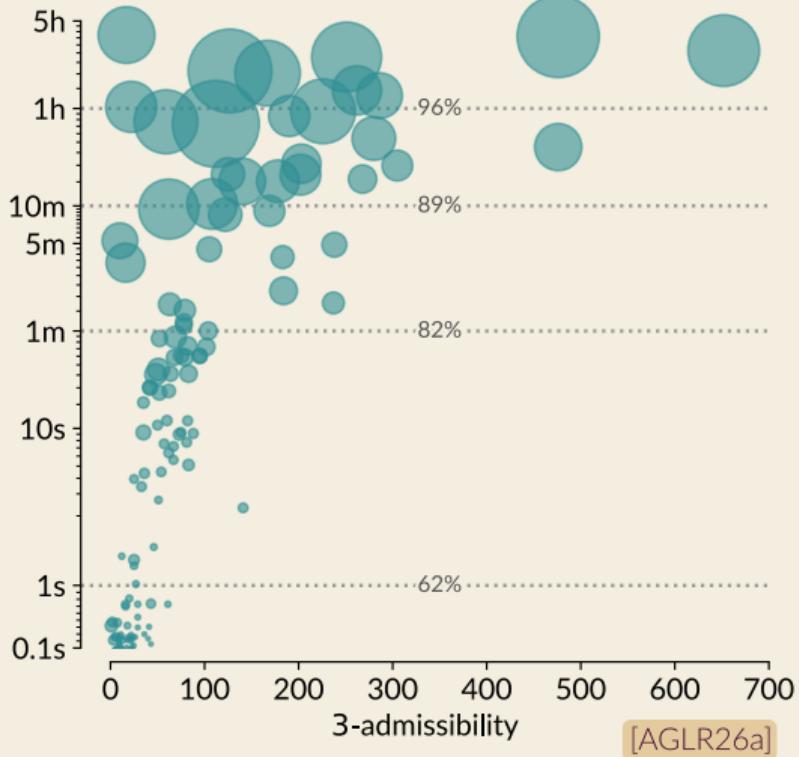


Find maximum packing

Experiments: running time



• 10K edges ● 100K edges ● 1M edges

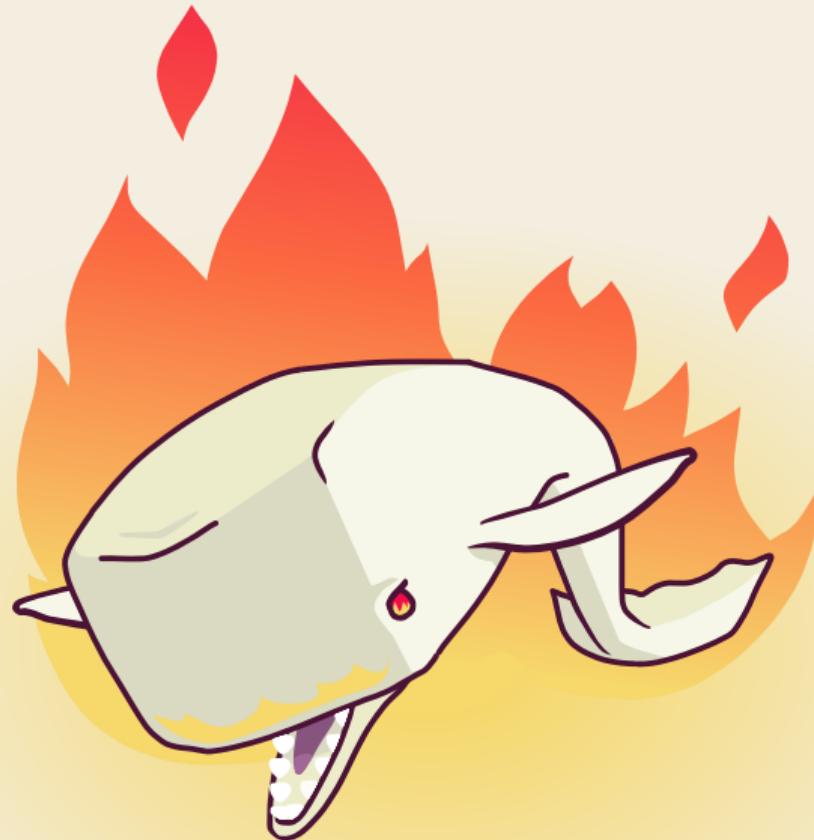


Part III

In practice

The big question

The big question



The big question

Do real-world *networks have*
‘bounded expansion’?

What we know

Do real-world networks have **'bounded expansion'?**

- [FGLRVS15] • Many random graph models predict B.E.

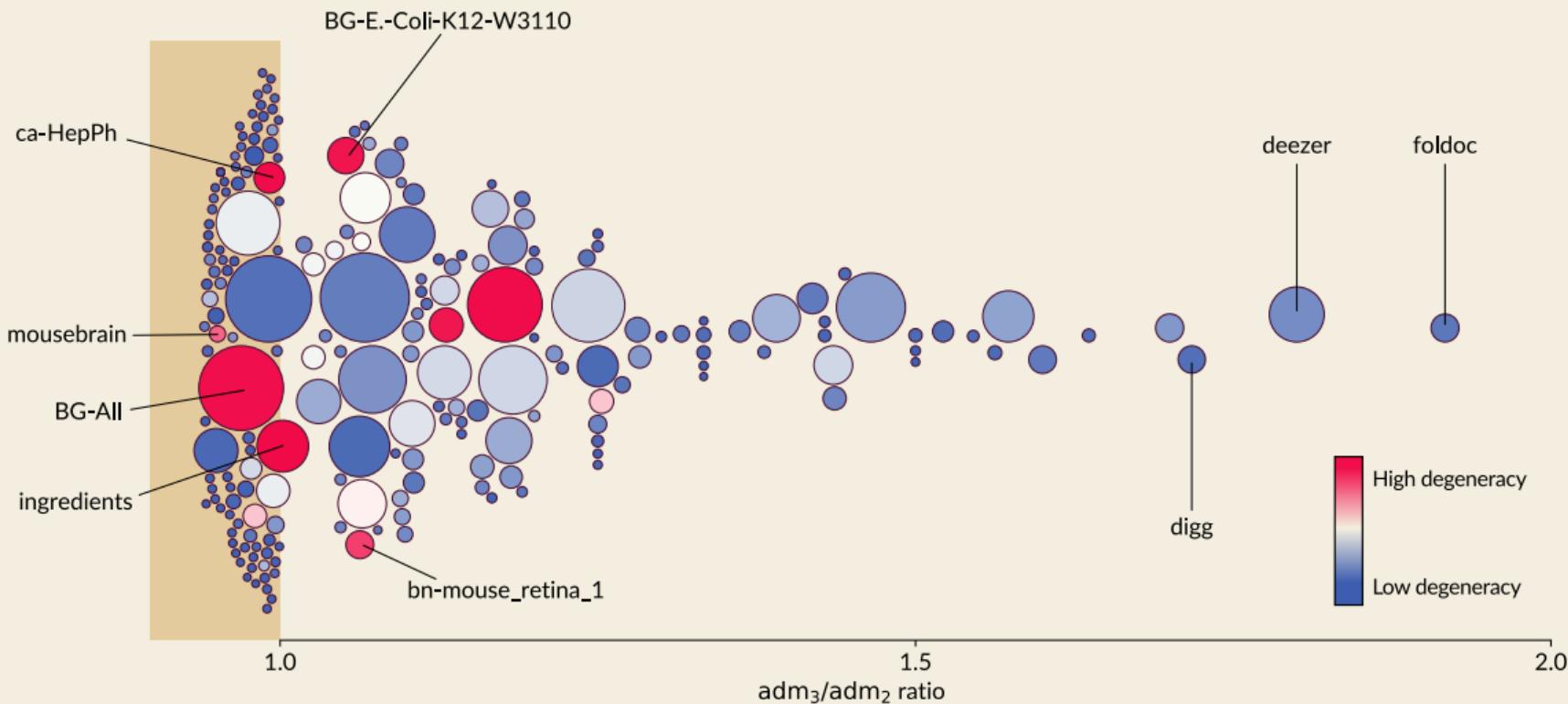
[DRRSSS19] Chung-Lu & configuration model, random intersection model, block model, bounded degree+noise

On many networks, with larger r ,

- [Rdl16] • dtf-augmentations grow quickly
- [OS17] • low-treewidth colourings grow very quickly
- [NPRRS18] • scol and wcol grow pretty quickly

- It just makes sense!

The true value of admissibility



But four is hard?

Algorithmic uses

wcol_r

scol_r

adm_r

Application

Quite natural for
algorithm design
once you get used to it

Direct use?

Computation

NP-hard for
 $r = 2$

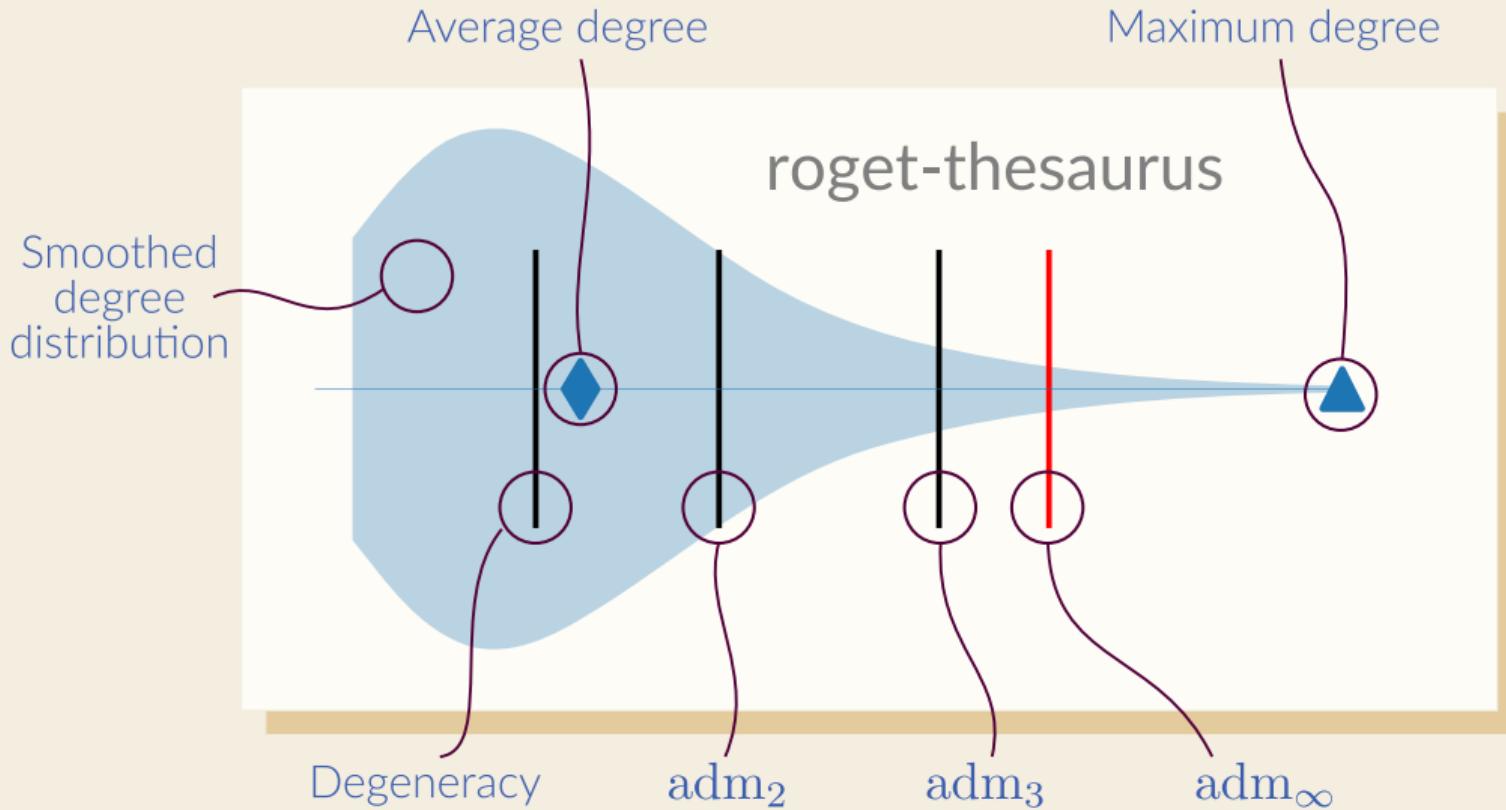
[BKL25]

Poly-time for $r \leq 3$

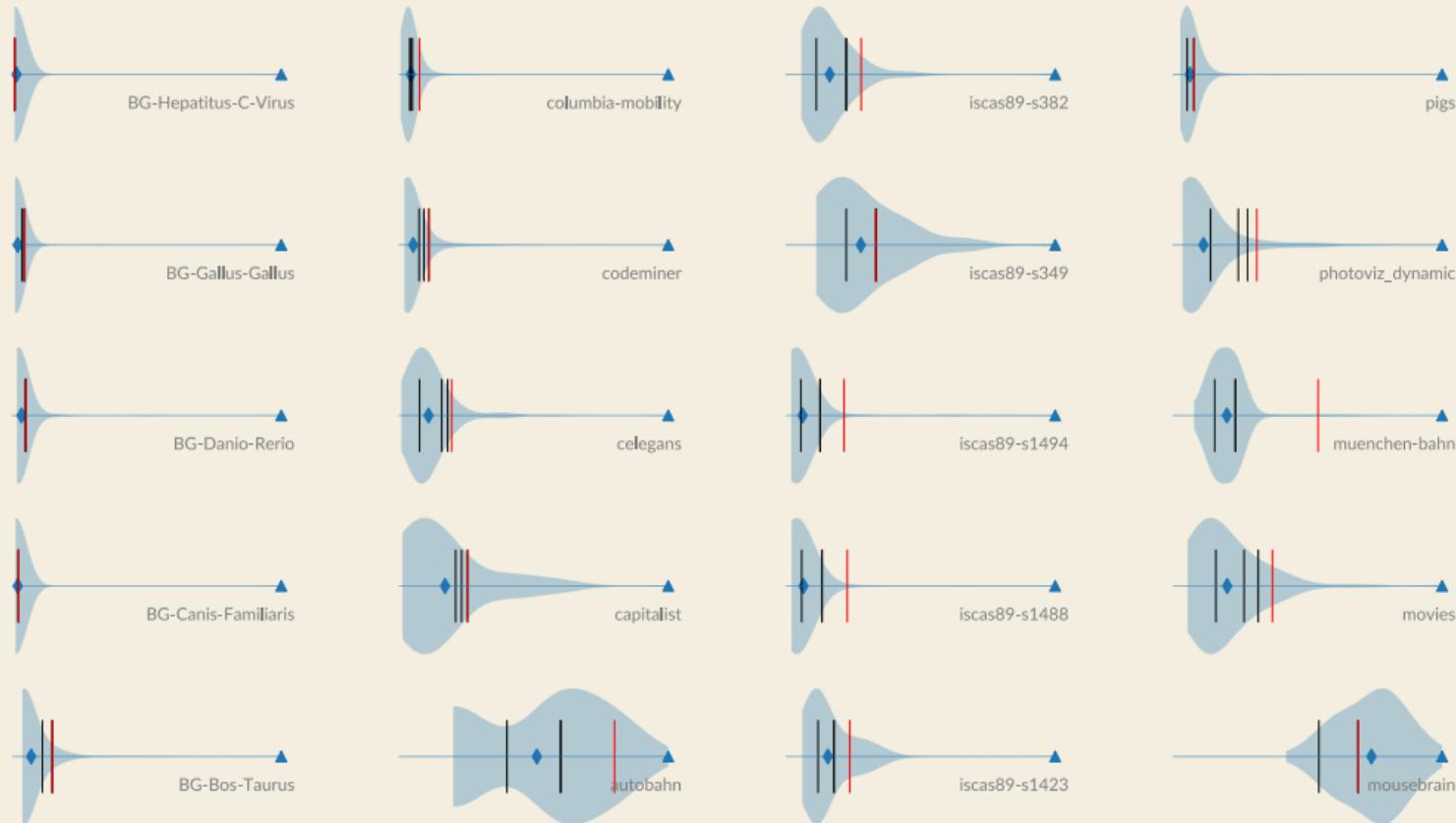
Greedy algorithm
for ordering

r -admissibility can be computed in polynomial
time for $r \in \{1, 2, 3, \infty\}$.

Real-world admissibility

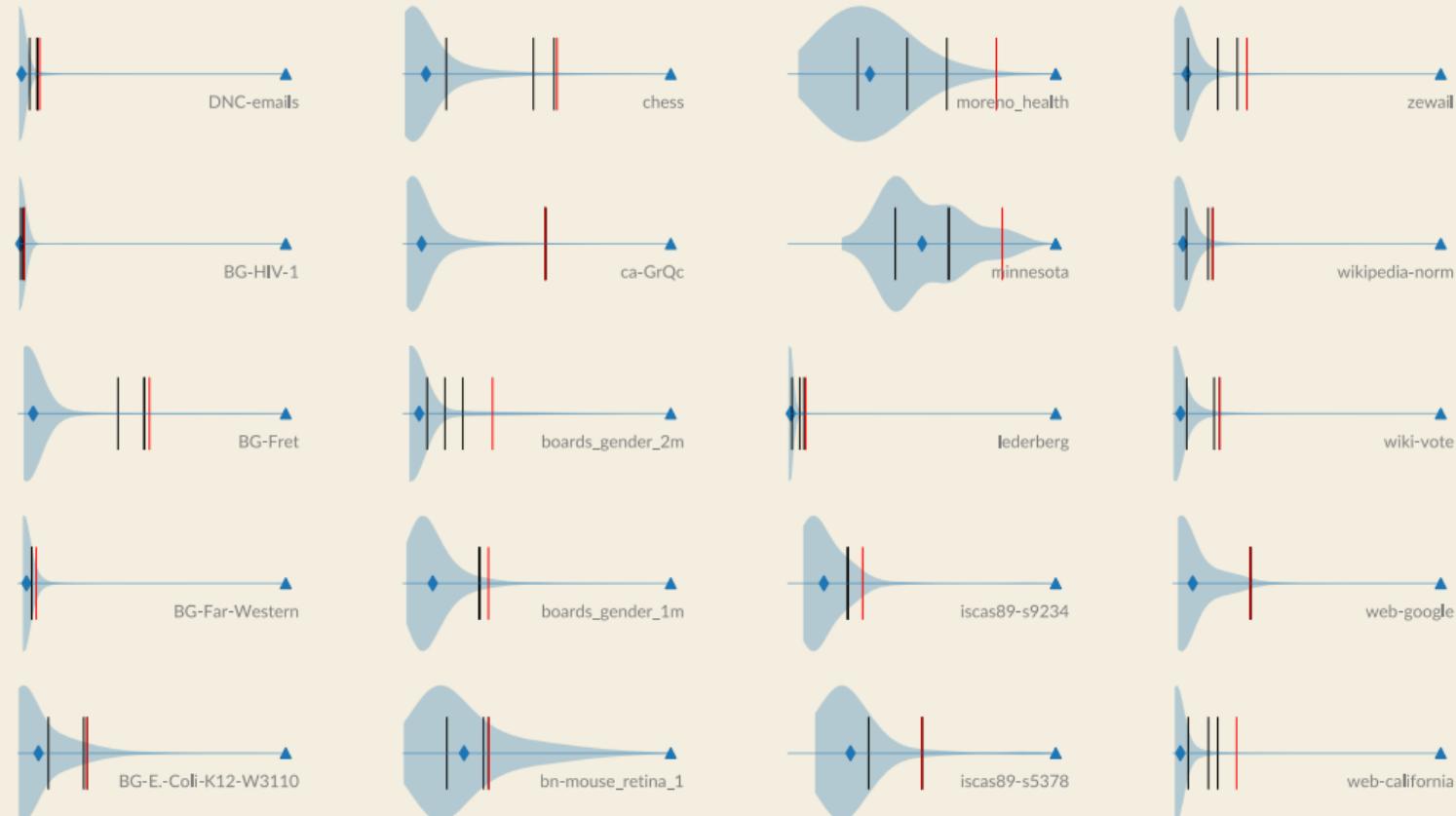


Real-world admissibility



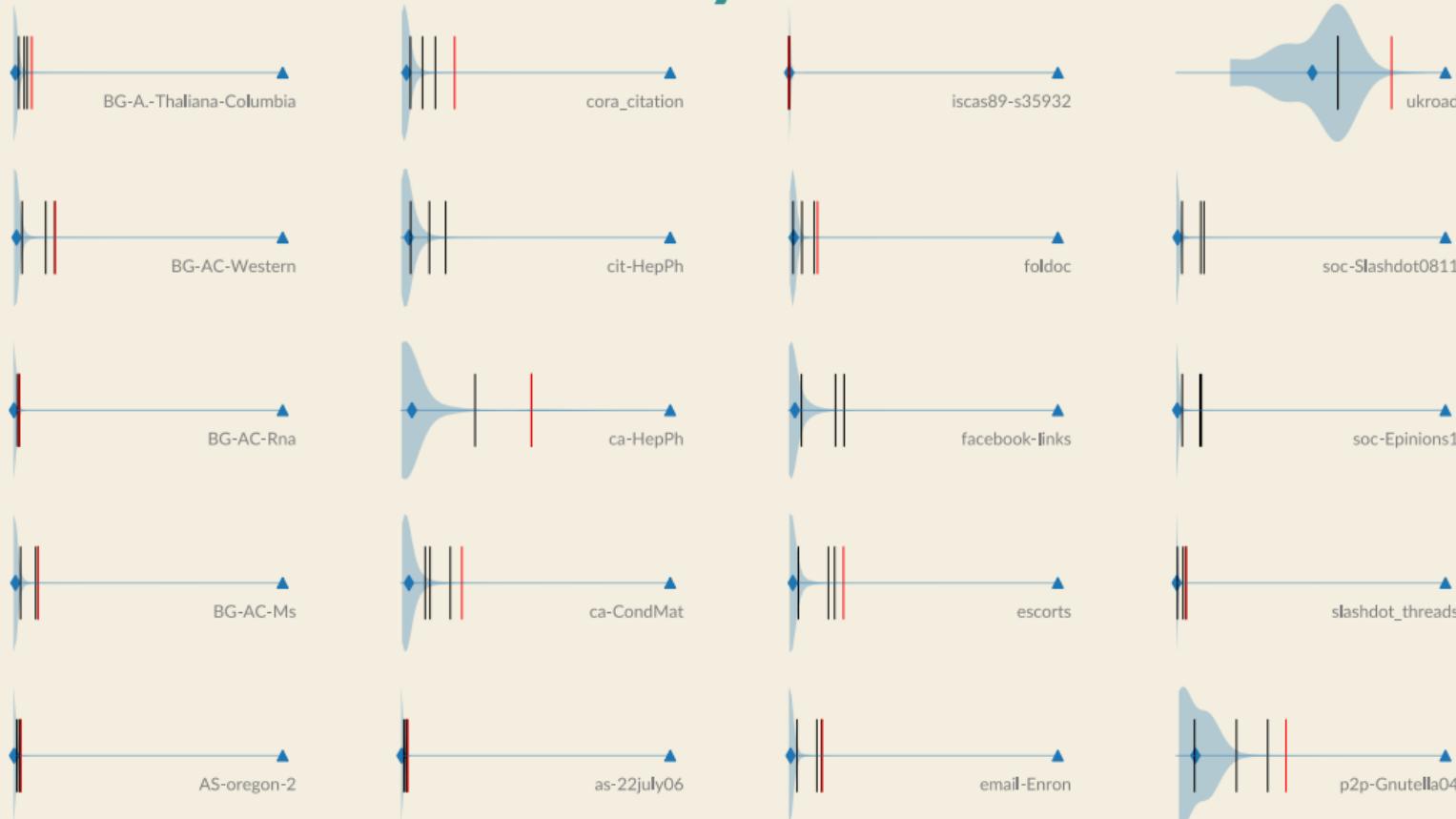
Selection of networks with less than 1000 nodes

Real-world admissibility



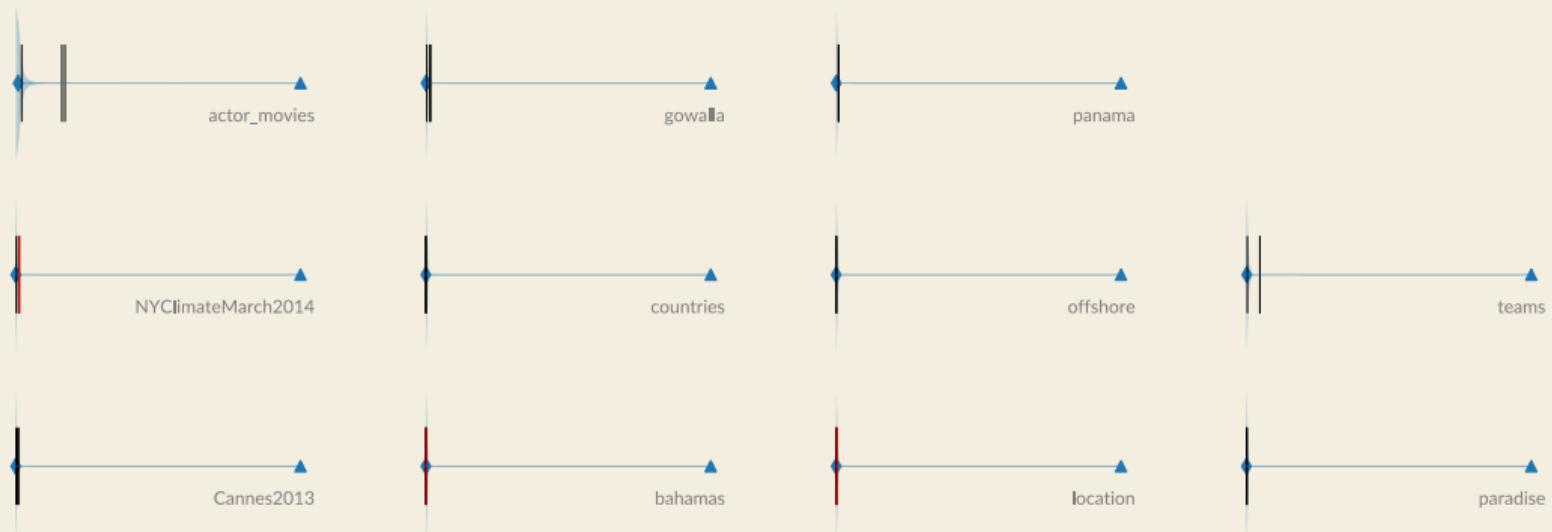
Selection of networks with less than 10 000 nodes

Real-world admissibility



Selection of networks with less than 100 000 nodes

Real-world admissibility



Selection of networks with more than 100 000 nodes

The true value of admissibility

- Help spread the 'bounded expansion' toolkit to other communities
- Helps us gauge heuristics for more useful measures like scol/wcol
- Helps me finally settle/catch my burning whale:

The true value of admissibility

- Help spread the ‘bounded expansion’ toolkit to other communities
- Helps us gauge heuristics for more useful measures like scol/wcol
- Helps me finally set 'em up to catch my burning whale:

*Do real-world networks have
‘bounded expansion’?*

YES! Even better:

Most real-world networks have
small ∞ -admissibility

THANKS!

Questions?

Bibliography I

[AGLLR] Christine Awofeso et al. "A sufficient condition for characterizing the one-sided testable properties of families of graphs in the Random Neighbour Oracle Model". In: submitted.

[AGLLR25] Christine Awofeso et al. "Testing C_k -Freeness in Bounded Admissibility Graphs". In: *52nd International Colloquium on Automata, Languages, and Programming, ICALP 2025, July 8-11, 2025, Aarhus, Denmark*. Ed. by Keren Censor-Hillel et al. Vol. 334. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025, 15:1–15:20. DOI: 10.4230/LIPIcs.ICALP.2025.15. URL: <https://doi.org/10.4230/LIPIcs.ICALP.2025.15>.

[AGLR25a] Christine Awofeso et al. "A Practical Algorithm for 2-Admissibility". In: *23rd International Symposium on Experimental Algorithms, SEA 2025, July 22-24, 2025, Venice, Italy*. Vol. 338. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2025, 3:1–3:19. DOI: 10.4230/LIPIcs.SEA.2025.3. URL: <https://doi.org/10.4230/LIPIcs.SEA.2025.3>.

[AGLR25b] Christine Awofeso et al. "Results on H-Freeness Testing in Graphs of Bounded r-Admissibility". In: *42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)*. Ed. by Olaf Beyersdorff et al. Vol. 327. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2025, 12:1–12:16. ISBN: 978-3-95977-365-2. DOI: 10.4230/LIPIcs.STACS.2025.12. URL: <https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.12>.

[AGLR26a] Christine Awofeso et al. "Results on H-Freeness Testing in Graphs of Bounded r-Admissibility". In: *51th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2026*. Lecture Notes in Computer Science. Springer. Forthcoming.

[BKLS25] Michael Breen-McKay, Brian Lavallee, and Blair D. Sullivan. "Hardness of the generalized coloring numbers". In: *European Journal of Combinatorics* 123 (2025). SI: Sparsity in Algorithms, Combinatorics and Logic, p. 103709. ISSN: 0195-6698. DOI: <https://doi.org/10.1016/j.ejc.2023.103709>. URL: <https://www.sciencedirect.com/science/article/pii/S0195669823000264>.

[CS19] Artur Czumaj and Christian Sohler. "A Characterization of Graph Properties Testable for General Planar Graphs with one-Sided Error (It's all About Forbidden Subgraphs)". In: *2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS)*. IEEE. 2019, pp. 1525–1548.

Bibliography II

[DKT13] Zdeněk Dvořák, Daniel Král, and Robin Thomas. "Testing first-order properties for subclasses of sparse graphs". In: *J. ACM* 60.5 (Oct. 2013). ISSN: 0004-5411. DOI: 10.1145/2499483. URL: <https://doi.org/10.1145/2499483>.

[DRRSSS19] E. D. Demaine et al. "Structural sparsity of complex networks: Bounded expansion in random models and real-world graphs". In: *Journal of Computer and System Sciences* (2019).

[Dvrk13] Zdeněk Dvořák. "Constant-factor approximation of the domination number in sparse graphs". In: *European Journal of Combinatorics* 34.5 (2013).

[Dvrk22] Zdeněk Dvořák. "On Weighted Sublinear Separators". In: *Journal of Graph Theory* 100.2 (2022), pp. 270–280. ISSN: 1097-0118. DOI: 10.1002/jgt.22777. URL: <https://onlinelibrary.wiley.com/doi/abs/10.1002/jgt.22777> (visited on 12/09/2022).

[FGLRVS15] Matthew Farrell et al. "Hyperbolicity, Degeneracy, and Expansion of Random Intersection Graphs". In: *Algorithms and Models for the Web Graph - 12th International Workshop, WAW 2015, Eindhoven, The Netherlands, December 10-11, 2015, Proceedings*. Vol. 9479. Lecture Notes in Computer Science. Springer, 2015, pp. 29–41. DOI: 10.1007/978-3-319-26784-5_3. URL: https://doi.org/10.1007/978-3-319-26784-5%5C_3.

[IPS82] Alon Itai, Yehoshua Perl, and Yossi Shiloach. "The Complexity of Finding Maximum Disjoint Paths with Length Constraints". In: *Networks. An International Journal* 12.3 (1982), pp. 277–286.

[NODM12] Jaroslav Nešetřil and Patrice Ossona De Mendez. *Sparsity: graphs, structures, and algorithms*. Vol. 28. Springer Science & Business Media, 2012.

[NPRRS18] W. Nadara et al. "Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness". In: *Leibniz International Proceedings in Informatics (LIPIcs)* 103 (2018), 14:1–14:16. ISSN: 1868-8969.

[OS17] Michael P. O'Brien and Blair D. Sullivan. "Experimental Evaluation of Counting Subgraph Isomorphisms in Classes of Bounded Expansion". In: *ArXiv* abs/1712.06690 (2017). URL: <https://api.semanticscholar.org/CorpusID:125821851>.

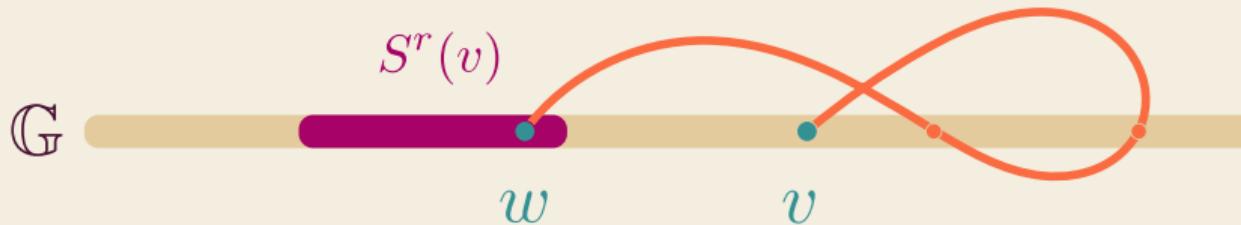
[Rdl16] F. Reidl. "Structural sparseness and complex networks". Aachen, Techn. Hochsch., Diss., 2015. Dr. Aachen: Aachen, Techn. Hochsch., 2016. URL: <http://publications.rwth-aachen.de/record/565064>.

Bibliography III

[RSVS19] Felix Reidl, Fernando Sánchez Villaamil, and Konstantinos S. Stavropoulos. “Characterising bounded expansion by neighbourhood complexity”. In: *Eur. J. Comb.* 75 (2019), pp. 152–168. DOI: 10.1016/J.EJC.2018.08.001. URL: <https://doi.org/10.1016/j.ejc.2018.08.001>.

[Zhu09] Xuding Zhu. “Colouring Graphs with Bounded Generalized Colouring Number”. In: *Discrete Mathematics. Combinatorics 2006, A Meeting in Celebration of Pavol Hell’s 60th Birthday (May 1–5, 2006)* 309.18 (Sept. 28, 2009), pp. 5562–5568. ISSN: 0012-365X. DOI: 10.1016/j.disc.2008.03.024. URL: <https://www.sciencedirect.com/science/article/pii/S0012365X08001982> (visited on 09/16/2025).

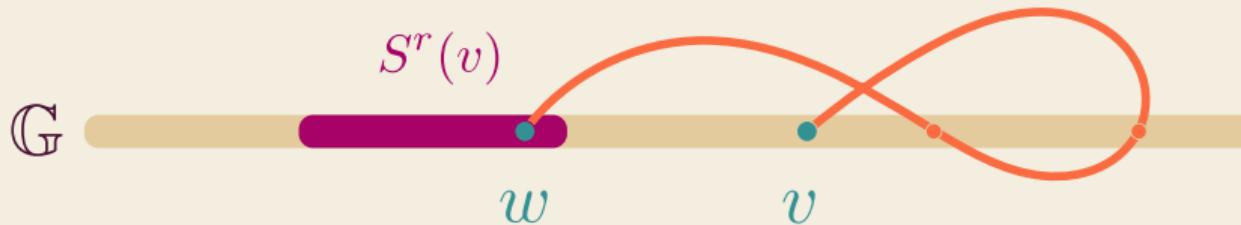
Strong colouring number



The set of strongly r -reachable vertices $S^r(v)$ from a vertex v contains all vertices w which can be reached via a path that

- 1) has length at most r , and
- 2) whose interior vertices are to the right of v .

Strong colouring number



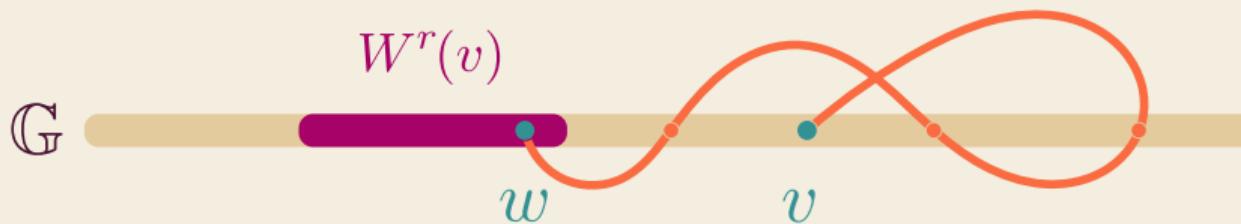
The strong r -colouring number $\text{scol}_r(\mathbb{G})$ of an ordered graph \mathbb{G} is

$$\text{scol}_r(\mathbb{G}) = \max_{v \in \mathbb{G}} |S^r(v)|$$

The strong r -colouring number of a graph G is the minimum value over all its orderings:

$$\text{scol}_r(G) = \min_{\mathbb{G} \in \pi(G)} \text{scol}_r(\mathbb{G})$$

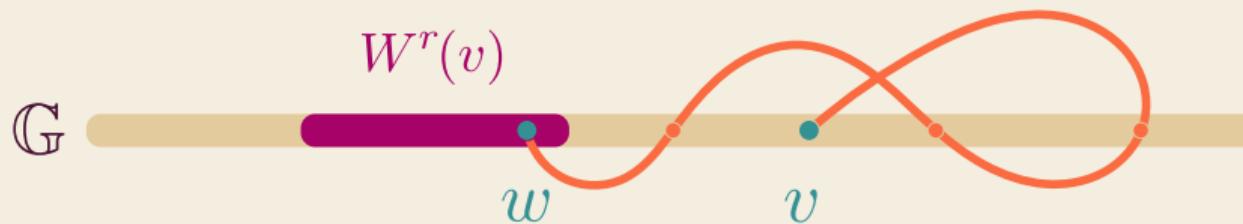
Weak colouring number



The set of weakly r -reachable vertices $W^r(v)$ from a vertex v contains all vertices w which can be reached via a path that

- 1) has length at most r , and
- 2) whose vertices are to the right of w .

Weak colouring number



The weak r -colouring number $\text{wcol}_r(\mathbb{G})$ of an ordered graph \mathbb{G} is

$$\text{wcol}_r(\mathbb{G}) = \max_{v \in \mathbb{G}} |W^r(v)|$$

The weak r -colouring number of a graph G is the minimum value over all its orderings:

$$\text{wcol}_r(G) = \min_{\mathbb{G} \in \pi(G)} \text{wcol}_r(\mathbb{G})$$

Computing good wcol/scol orders

In past experiments we found that sorting the vertices by descending degree or computing a simple degeneracy ordering often gives us a good wcol/scol ordering for small r .

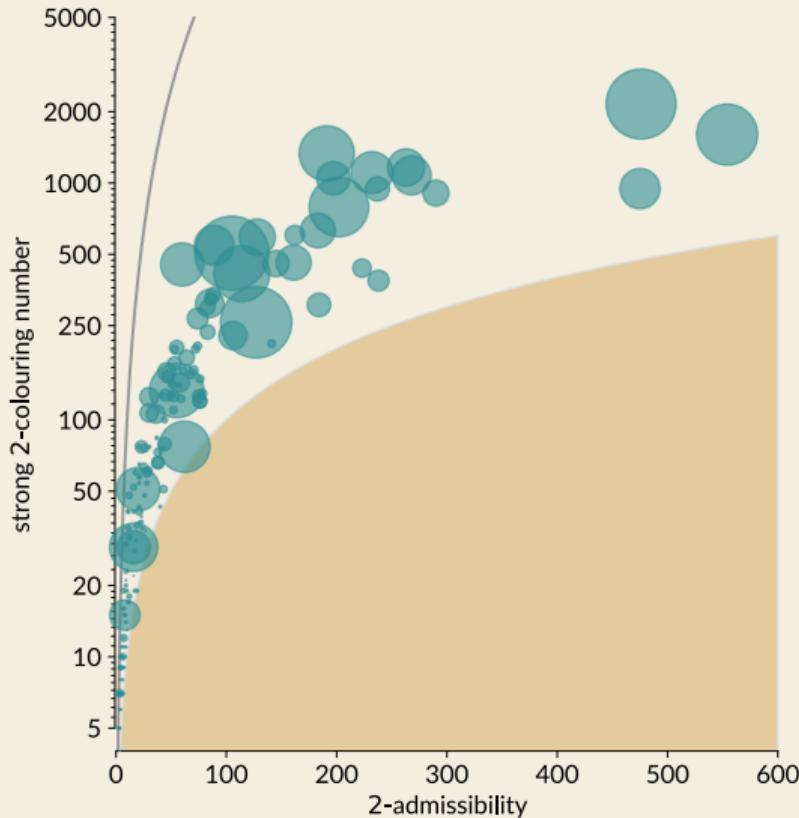
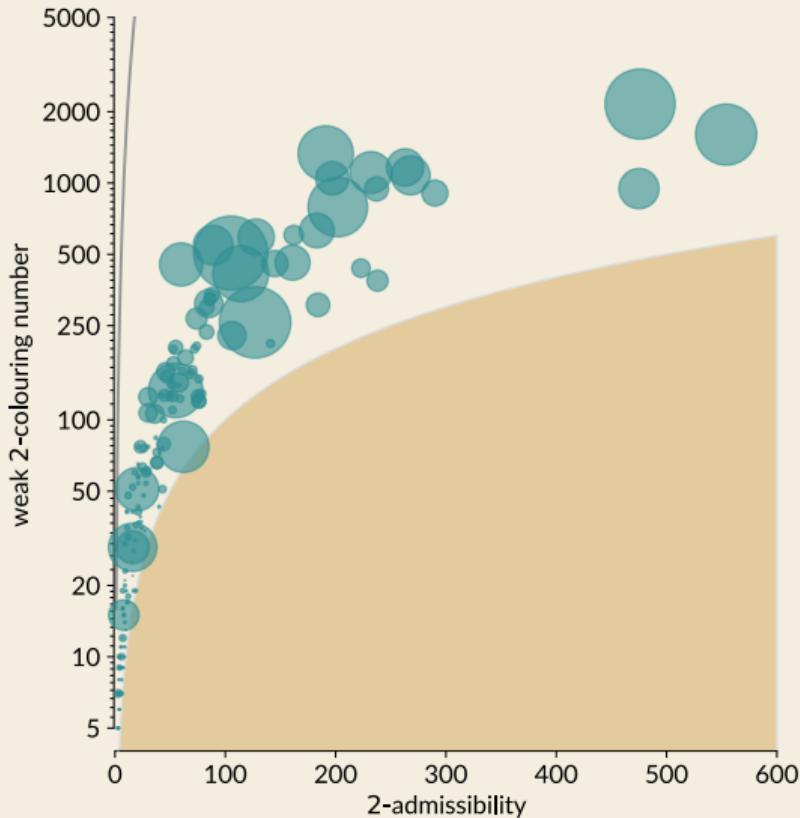
Empirical evaluation of approximation algorithms for generalized graph coloring and uniform quasi-wideness

[NPRRS18]

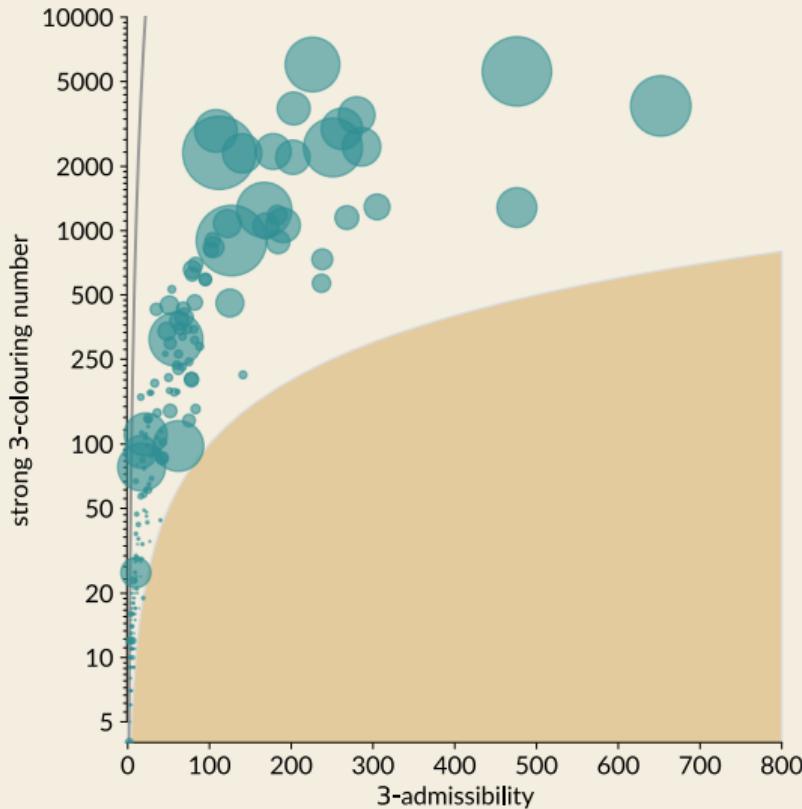
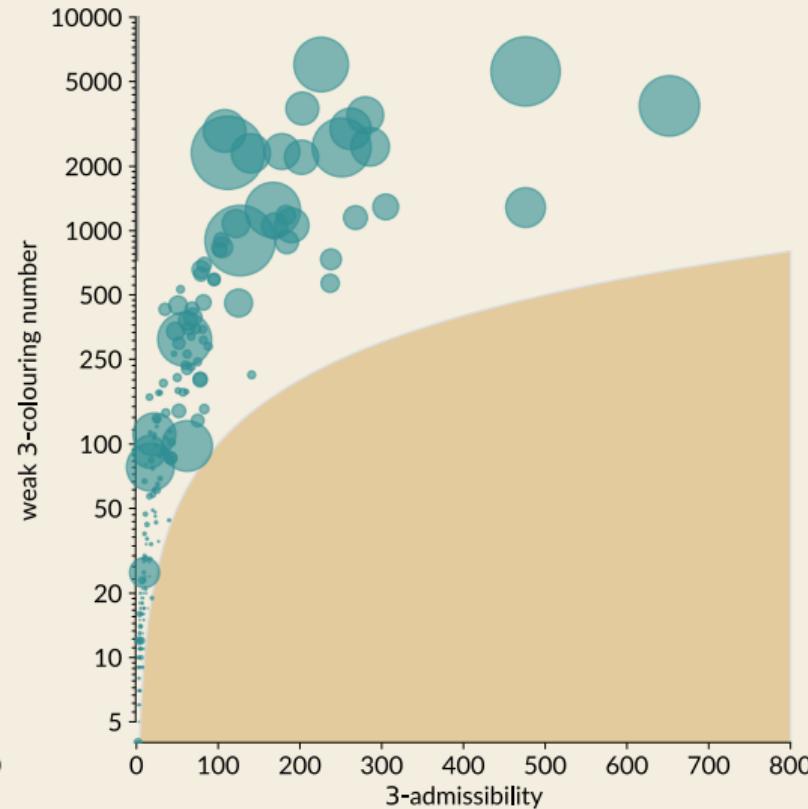
W. Nadara, M. Pilipczuk, R. Rabinovich, FR, S. Siebertz (SEA'18)

But how good are these heuristics?

Computing good wcol/scol orders



Computing good wcol/scol orders



Lifting degeneracy



If \mathbb{G} is a d -degenerate ordering, then for every vertex $v \in \mathbb{G}$ it holds that

$$|N^-(v)| = \text{pp}^1(v) = |S^1(v)| = |W^1(v)|.$$

Therefore

$$d = \text{adm}_1(\mathbb{G}) = \text{scol}_1(\mathbb{G}) = \text{wcol}_1(\mathbb{G}).$$

Lifting degeneracy

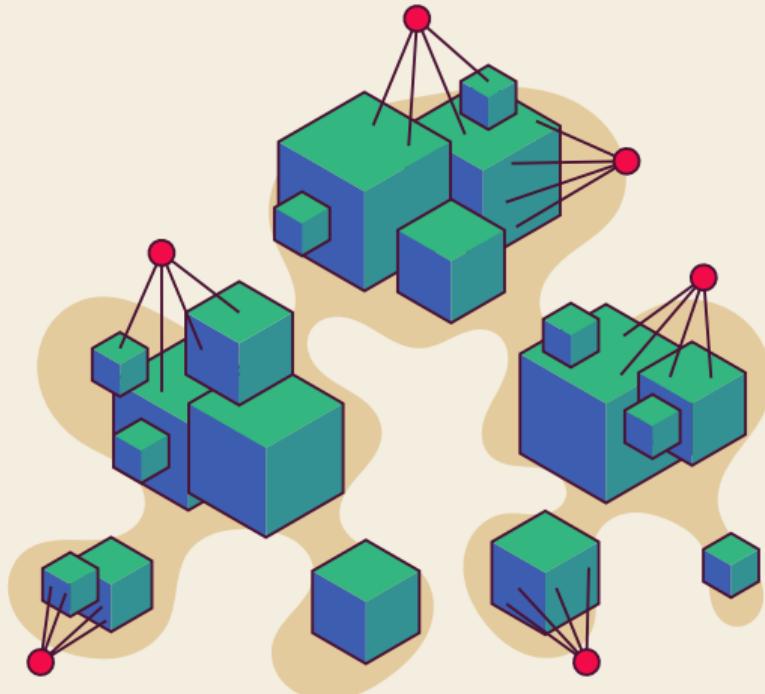
For every ordered graph \mathbb{G} , every integer $r \geq 1$ and vertex $v \in \mathbb{G}$ it holds that

$$pp^r(v) \leq |S^r(v)| \leq |W^r(v)|.$$

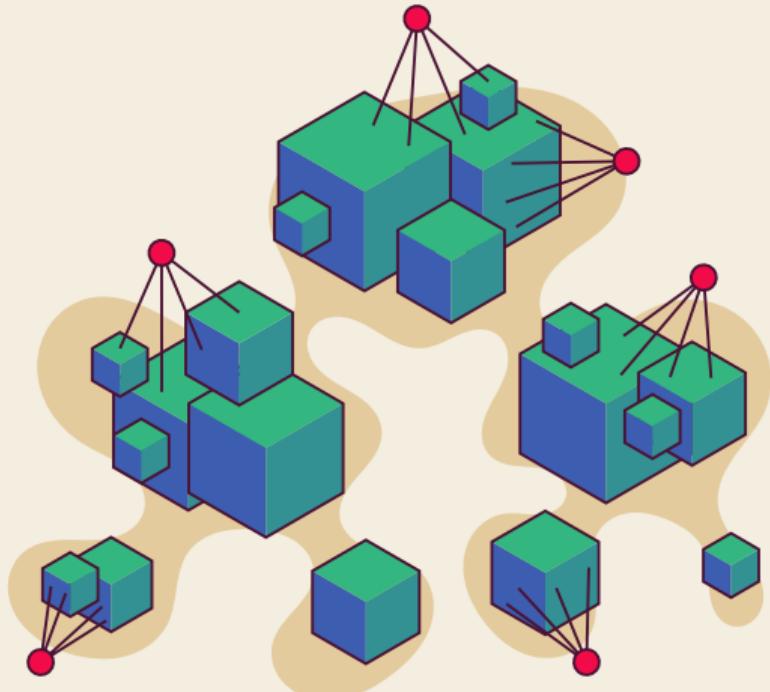
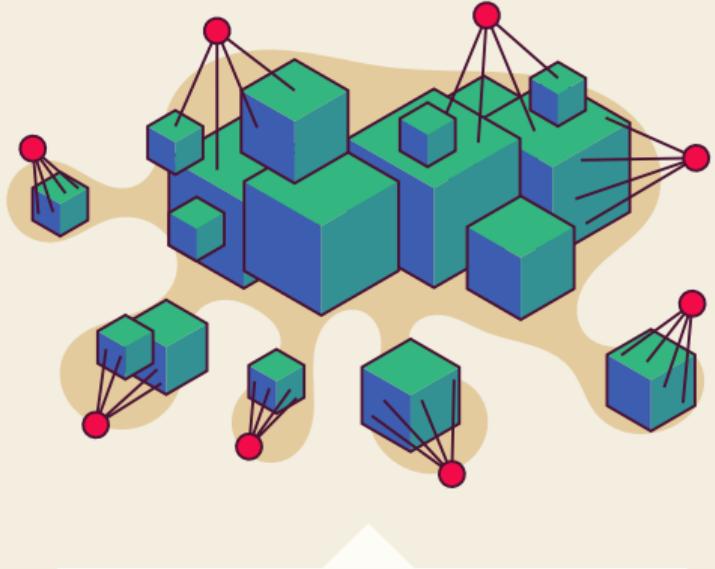
Therefore

$$adm_r(\mathbb{G}) \leq scol_r(\mathbb{G}) \leq wcol_r(\mathbb{G}).$$

∞ -admissibility decomposition



∞ -admissibility decomposition



'Degenerate' decomposition:
only one large bag