

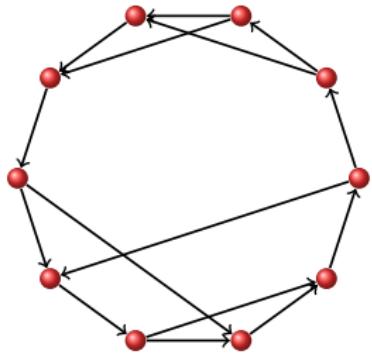
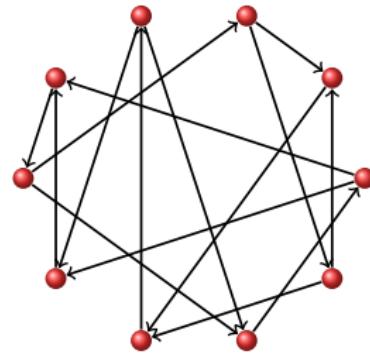
Isomorphism for Tournaments of Small Twin Width

Martin Grohe and Daniel Neuen

MPI Informatics

LogAlg 2025

Graph Isomorphism Problem



Graph Isomorphism Problem (GI)

Input: Two (directed) graphs G_1 and G_2

Problem: Decide whether $G_1 \cong G_2$

Existing Results

Many graph classes admit polynomial-time isomorphism tests:

- planar graphs [Hopcroft, Wong '74]
- graphs of maximum degree d [Luks '82]
- graphs of bounded tree-width [Bodlaender '88]
- graphs excluding a fixed minor [Ponomarenko '91]
- graphs excluding a fixed topological subgraph [Grohe, Marx '12]
- graphs of bounded rank width [Grohe, Schweitzer '15]

Existing Results

Many graph classes admit polynomial-time isomorphism tests:

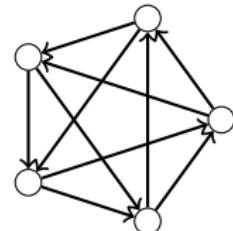
- planar graphs [Hopcroft, Wong '74]
- graphs of maximum degree d [Luks '82]
- graphs of bounded tree-width [Bodlaender '88]
- graphs excluding a fixed minor [Ponomarenko '91]
- graphs excluding a fixed topological subgraph [Grohe, Marx '12]
- graphs of bounded rank width [Grohe, Schweitzer '15]

Theorem (Babai 2016)

The Graph Isomorphism Problem can be solved in time $n^{\text{polylog}(n)}$.

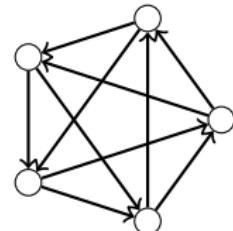
Tournament Isomorphism

Tournaments: For every pair of distinct vertices v, w either (v, w) or (w, v) is an edge.



Tournament Isomorphism

Tournaments: For every pair of distinct vertices v, w either (v, w) or (w, v) is an edge.



The Tournament Isomorphism Problem seems to be easier:

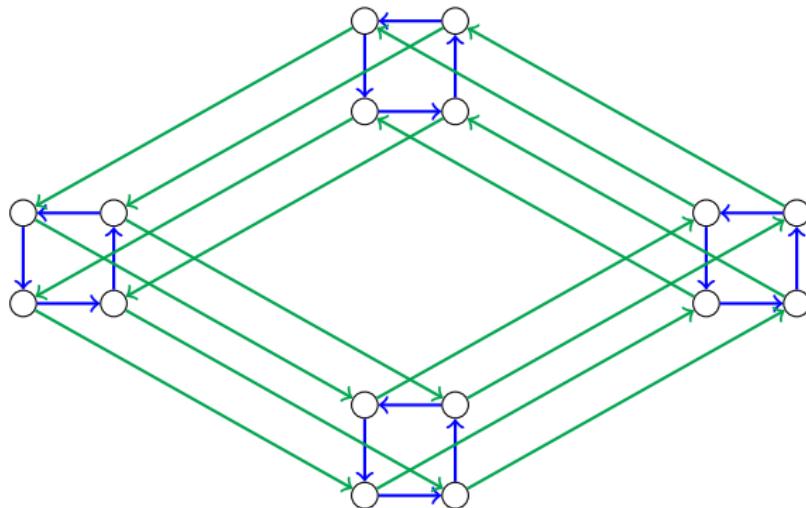
- $\text{Aut}(T)$ is solvable for every tournament T
- randomized reduction from tournament isomorphism to tournament rigidity [Schweitzer '17]

Theorem (Babai, Luks 1983)

The Tournament Isomorphism Problem can be solved in time $n^{O(\log n)}$.

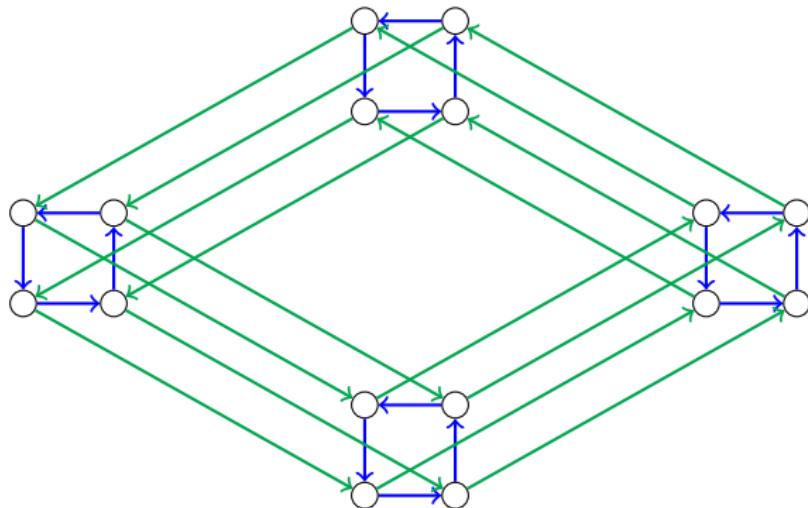
Isomorphism for k -Spanning Tournaments

An edge-colored tournament is d -spanning if the union of all edge-color classes of maximum degree d is strongly connected.



Isomorphism for k -Spanning Tournaments

An edge-colored tournament is d -spanning if the union of all edge-color classes of maximum degree d is strongly connected.

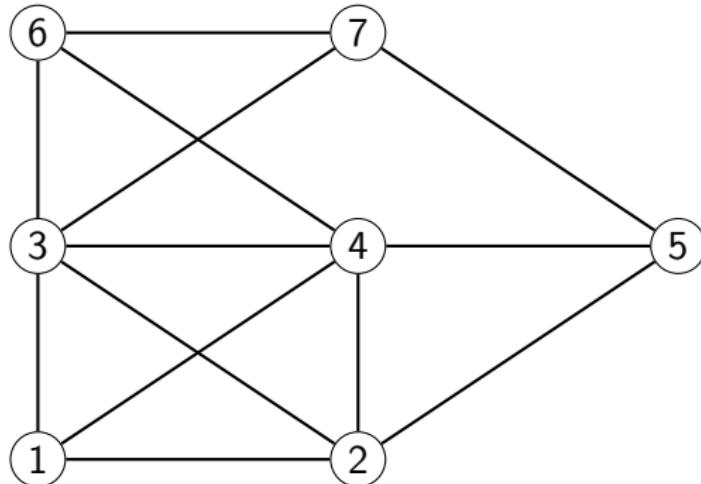


Theorem (Arvind, Ponomarenko, Ryabov 2022)

Isomorphism for d -spanning tournaments can be tested in $d^{O(\log d)} n^{O(1)}$.

Twin Width [Bonnet et al., 2020]

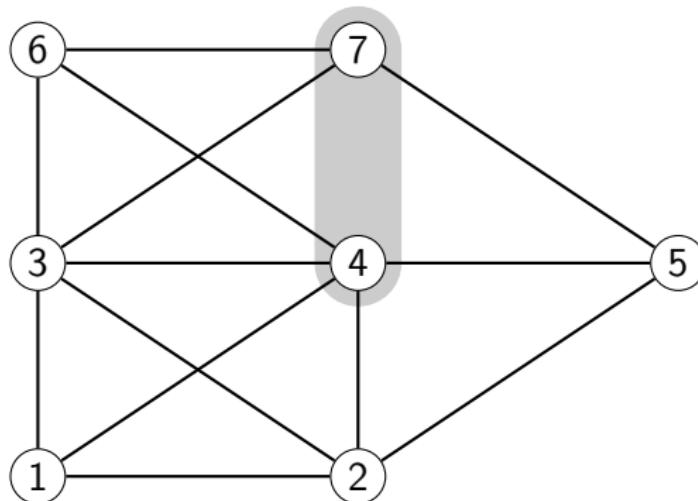
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

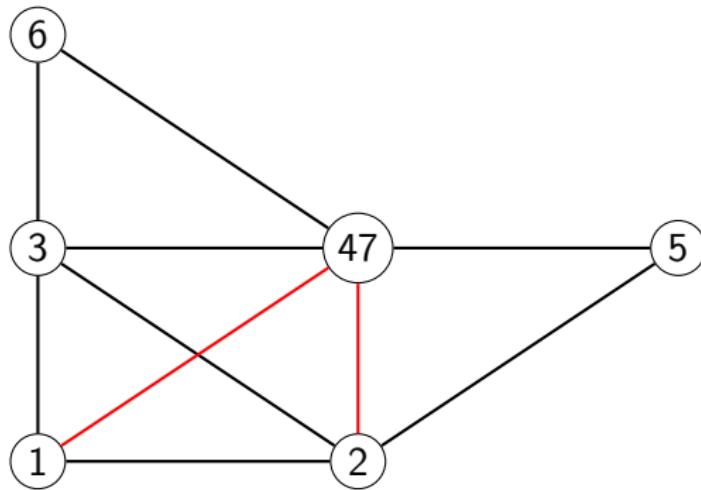
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

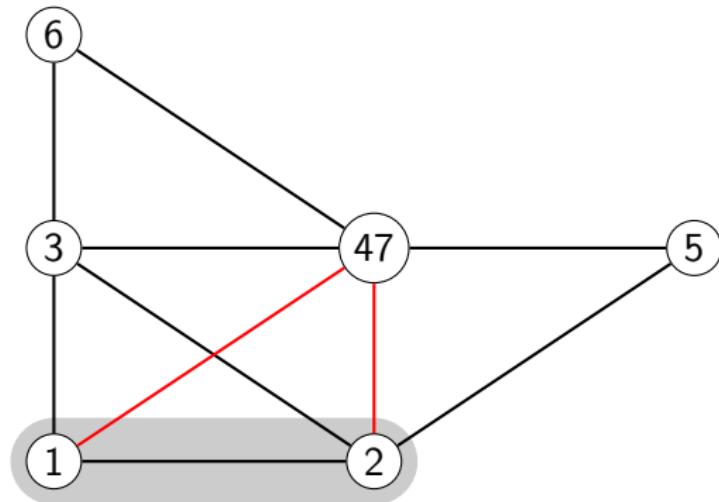
Contraction Sequence: Repeatedly merge vertices v, w ; introduce red edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has red degree at most k .

Twin Width [Bonnet et al., 2020]

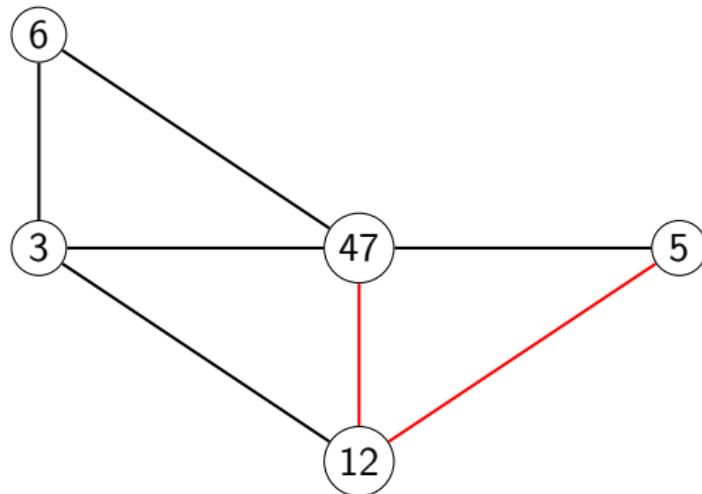
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

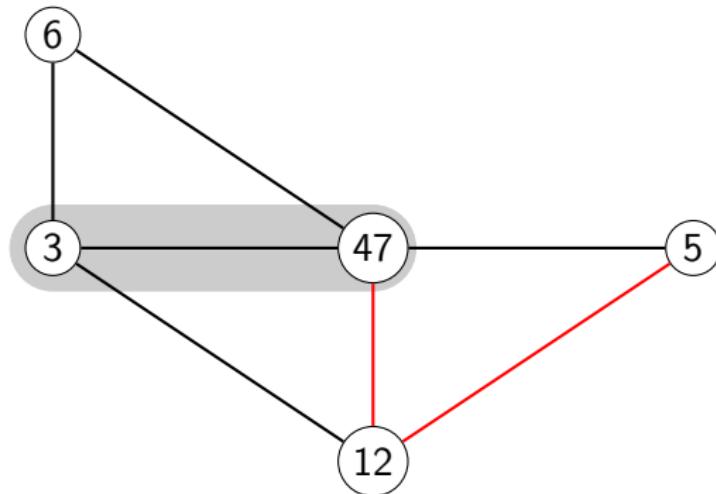
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

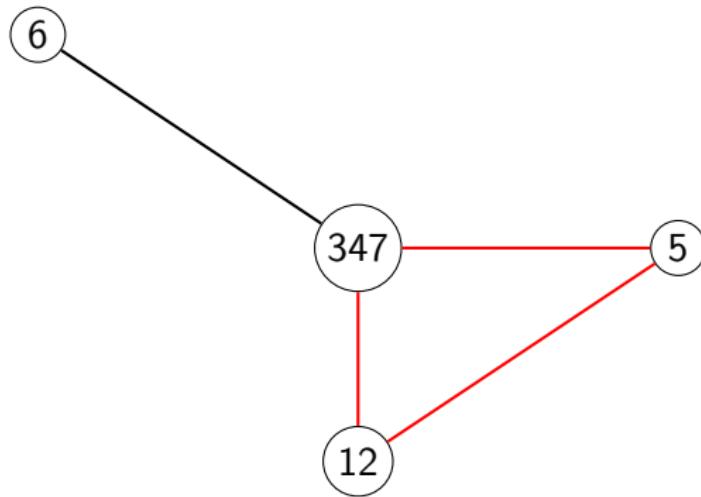
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

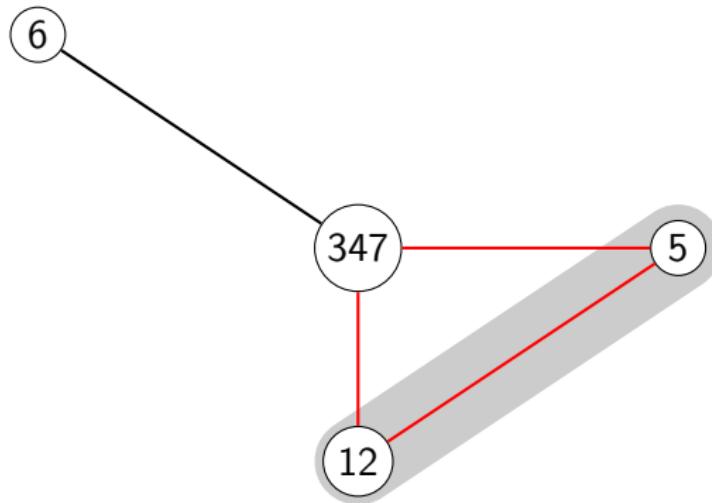
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

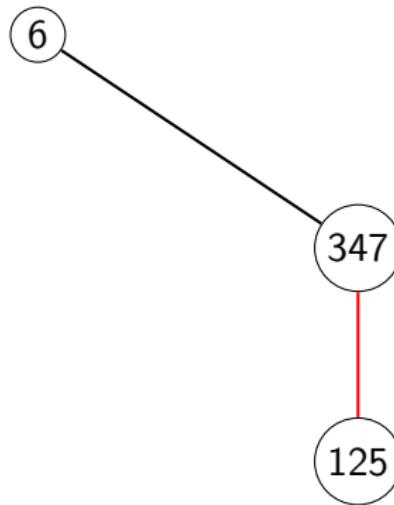
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

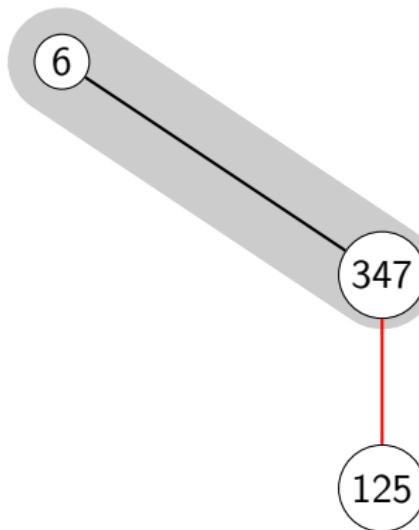
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

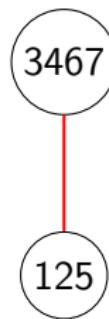
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

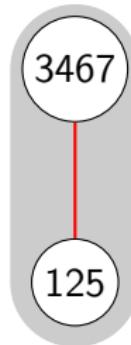
Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.



The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Twin Width [Bonnet et al., 2020]

Contraction Sequence: Repeatedly merge vertices v, w ; introduce **red** edges to all vertices in $N(v) \oplus N(w)$.

The **twin width** of G is the minimum k for which there is a contraction where every graph has **red** degree at most k .

Isomorphism for Graphs of Bounded Twin Width

Isomorphism for graphs of bounded twin width is GI complete.

Theorem

$$\text{Graph Isomorphism} \leq_{\text{PTIME}} \text{Graph Isomorphism for graphs of twin width } \leq 4$$

Isomorphism for Graphs of Bounded Twin Width

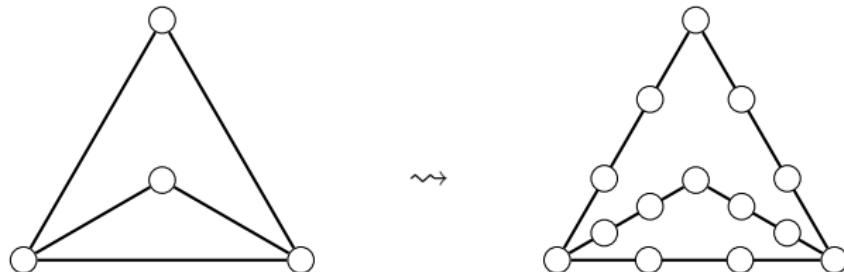
Isomorphism for graphs of bounded twin width is GI complete.

Theorem

Graph Isomorphism \leq_{PTIME}

*Graph Isomorphism for
graphs of twin width ≤ 4*

Proof: Replace every edge with path of length $\Omega(\log n)$.



The resulting graph has twin width ≤ 4 [Bergé et al., 2022].

Isomorphism for Tournaments of Bounded Twin Width

Theorem

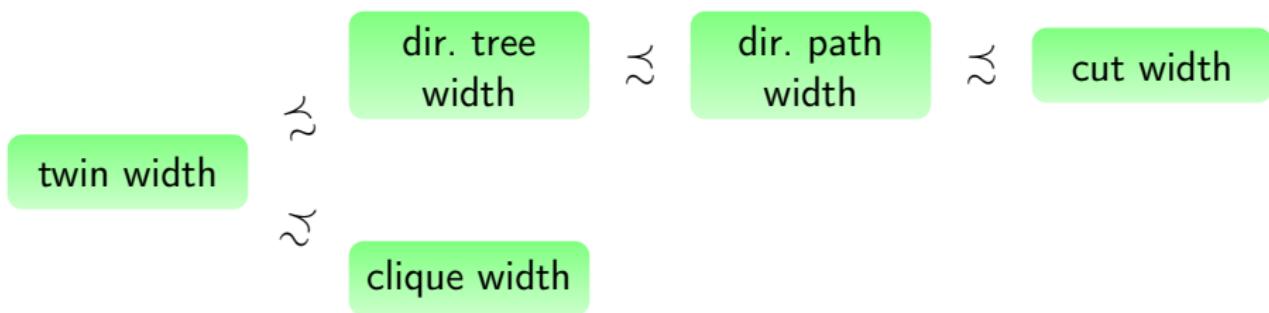
Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Isomorphism for Tournaments of Bounded Twin Width

Theorem

Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Connections between graph parameters on tournaments:



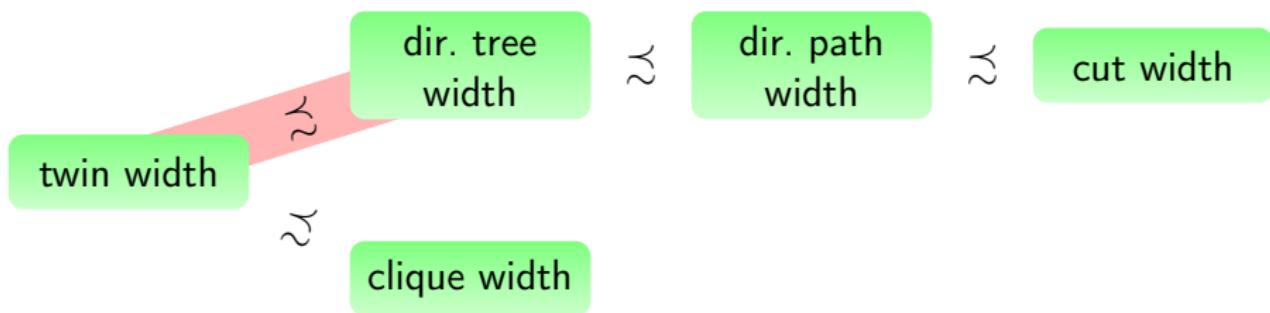
Isomorphism of tournaments is FPT for all these parameters.

Isomorphism for Tournaments of Bounded Twin Width

Theorem

Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Connections between graph parameters on tournaments:

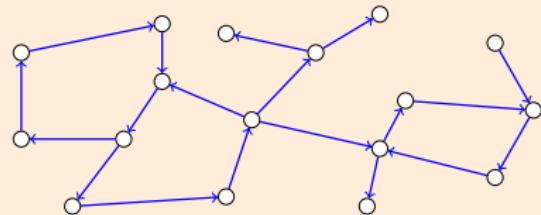


Isomorphism of tournaments is FPT for all these parameters.

Phase 1:

- compute coloring of edges
- find sequence of colors that induce a “near bounded degree” structure

Structure Extraction

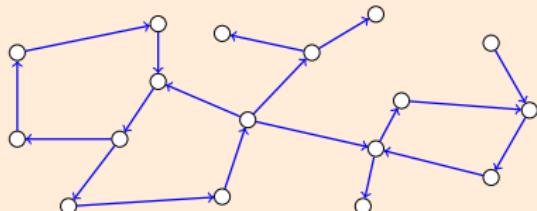


Overview on Algorithm

Phase 1:

- compute coloring of edges
- find sequence of colors that induce a “near bounded degree” structure

Structure Extraction



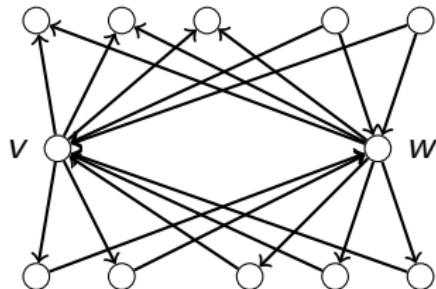
Phase 2:

Group-Theoretic Methods

- compute isomorphisms based on “near bounded degree” structure
- use group-theoretic methods dating back to [\[Luks 1982\]](#)
- extend methods from [\[Arvind et al., 2022\]](#)

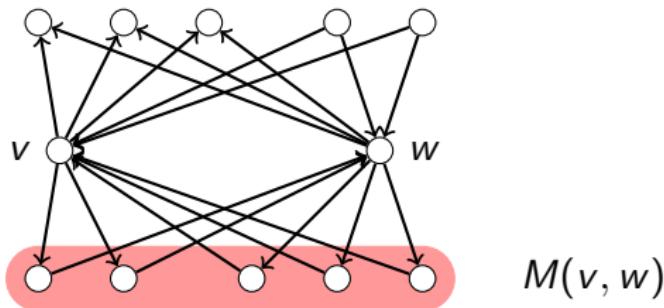
Mixed Neighbors

We define $M(v, w) := (N_+(v) \cap N_-(w)) \cup (N_-(v) \cap N_+(w))$



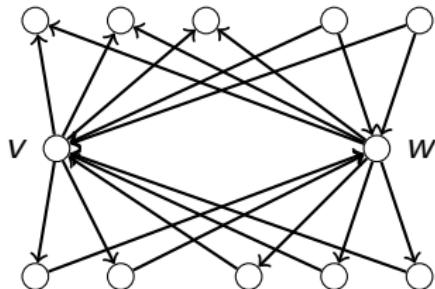
Mixed Neighbors

We define $M(v, w) := (N_+(v) \cap N_-(w)) \cup (N_-(v) \cap N_+(w))$



Mixed Neighbors

We define $M(v, w) := (N_+(v) \cap N_-(w)) \cup (N_-(v) \cap N_+(w))$

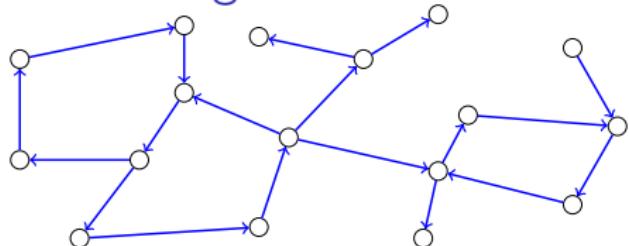


Lemma

There are $v, w \in V(T)$ such that $|M(v, w)| \leq \text{tww}(T)$.

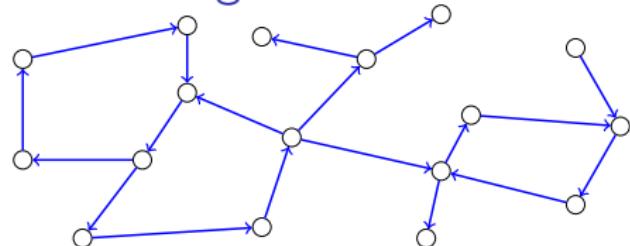
Finding a Structure of Near Bounded Degree

We **mark** all edges (v, w) such that $M(v, w) \leq \text{tww}(T)$.



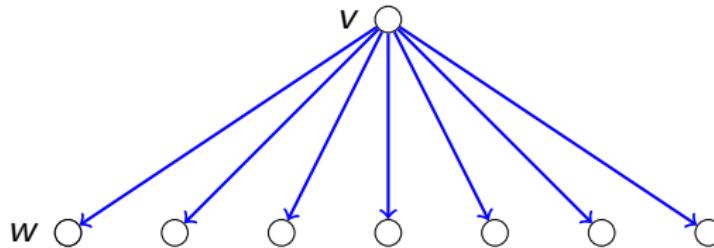
Finding a Structure of Near Bounded Degree

We **mark** all edges (v, w) such that $M(v, w) \leq \text{tww}(T)$.



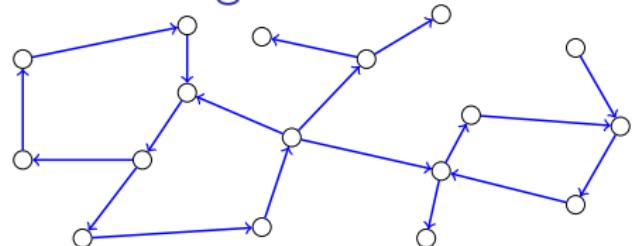
Lemma

The marked subgraph has maximum out-degree $2 \cdot \text{tww}(T) + 1$.



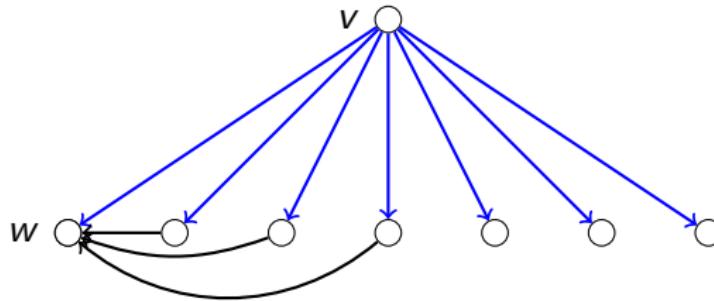
Finding a Structure of Near Bounded Degree

We **mark** all edges (v, w) such that $M(v, w) \leq \text{tww}(T)$.



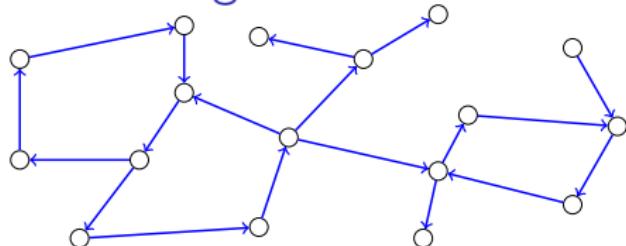
Lemma

The marked subgraph has maximum out-degree $2 \cdot \text{tww}(T) + 1$.



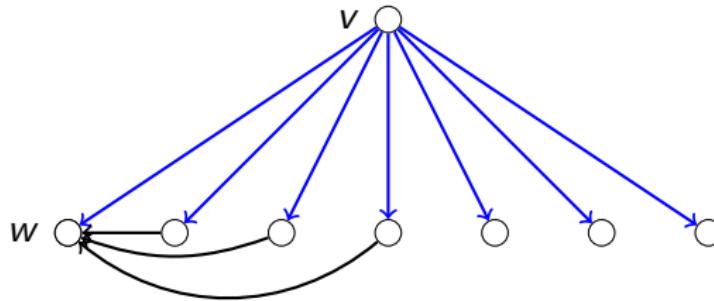
Finding a Structure of Near Bounded Degree

We **mark** all edges (v, w) such that $M(v, w) \leq \text{tww}(T)$.



Lemma

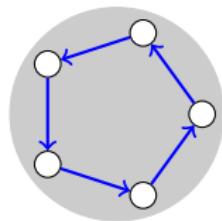
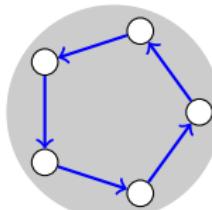
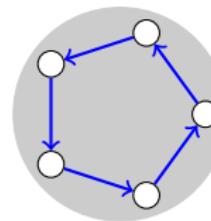
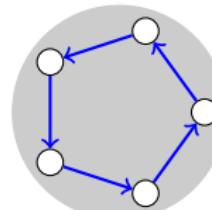
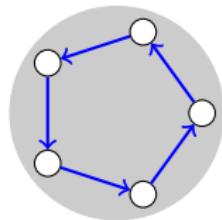
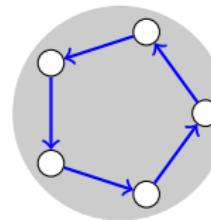
The marked subgraph has maximum out-degree $2 \cdot \text{tww}(T) + 1$.



If the **marked subgraph** is connected, we can use the algorithm from [Arvind et al., 2022] to decide isomorphism.

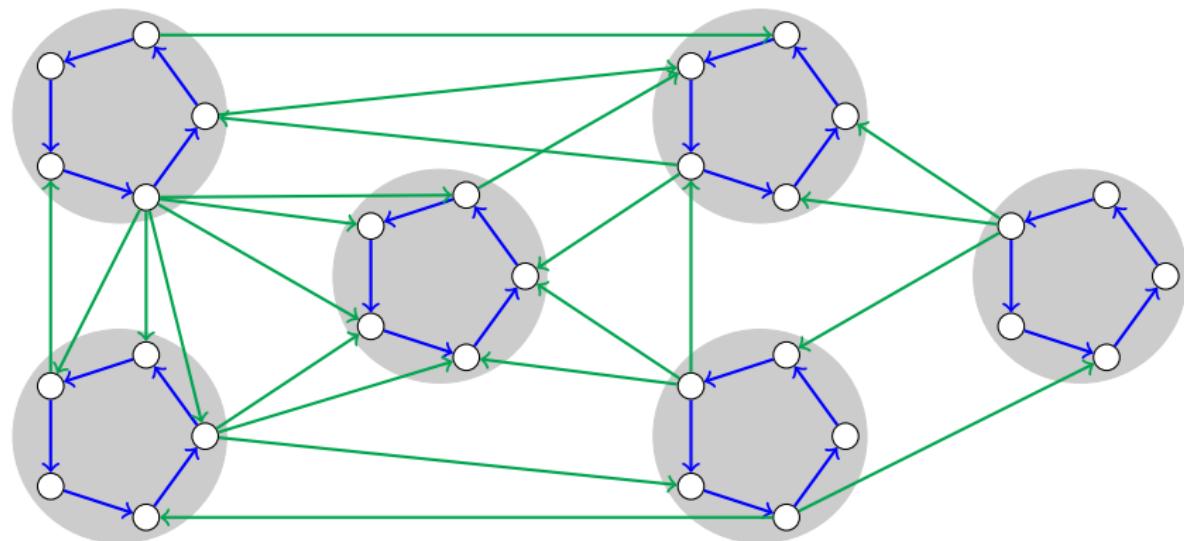
Finding a Structure of Near Bounded Degree

If the **marked subgraph** is not connected, we mark further edges between components.



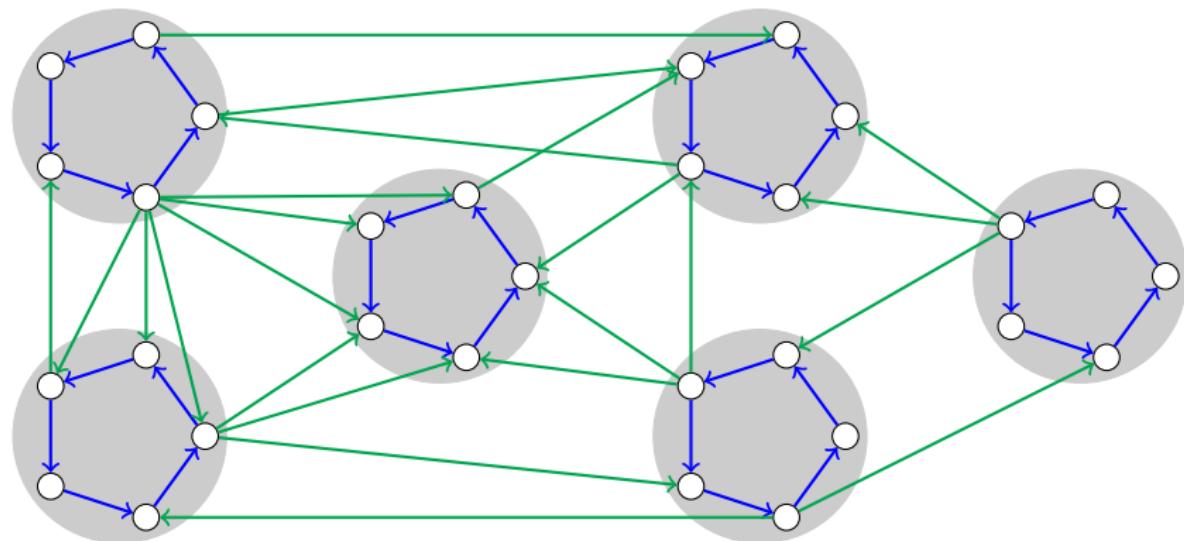
Finding a Structure of Near Bounded Degree

If the **marked subgraph** is not connected, we mark further edges between components.



Finding a Structure of Near Bounded Degree

If the **marked subgraph** is not connected, we mark further edges between components.



Each vertex has **green** edges to at most $2 \text{tww}(T) + 1$ many **blue** components.

Isomorphism for Tournaments of Bounded Twin Width

Theorem

Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Theorem

The k -dimensional Weisfeiler-Leman algorithm fails to decide isomorphism of tournaments of twin width 35 for $k = o(n)$.

Open Questions

Theorem

Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Open Questions:

- Isomorphism for tournaments with bounded VC dimension of the set system $\{N_+(v) \mid V(T)\}$?
- Is Tournament Isomorphism in PTIME for every non-trivial hereditary class \mathcal{T} ?

Open Questions

Theorem

Isomorphism for tournaments of twin width k can be tested in time $k^{O(\log k)} n^{O(1)}$.

Open Questions:

- Isomorphism for tournaments with bounded VC dimension of the set system $\{N_+(v) \mid V(T)\}$?
- Is Tournament Isomorphism in PTIME for every non-trivial hereditary class \mathcal{T} ?

I Am Hiring

One Postdoc & one PhD position at TU Dresden