

Transductions of Graph Classes Admitting Product Structure

Petr Hliněný, Jan Jedelský

Masaryk University, Brno, Czechia

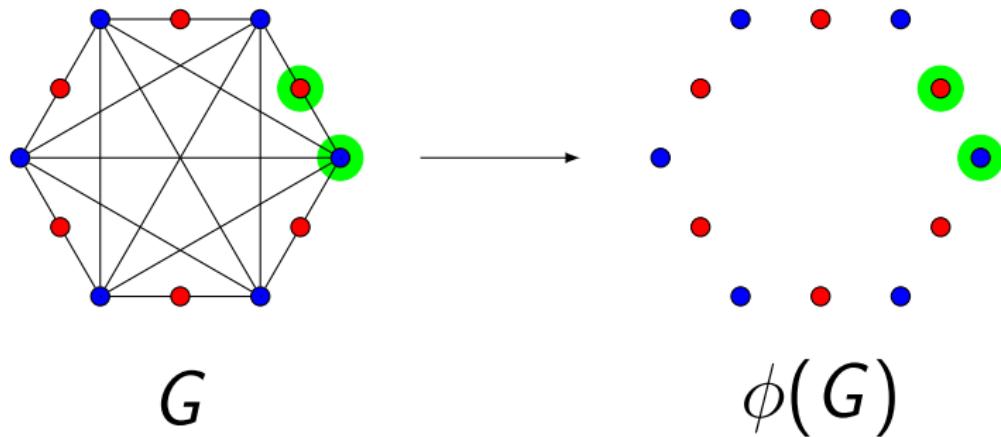
LOGALG 2025, Vienna, Austria

Outline

- First-order transductions
 - Interpretations, locality, and flips
- Global structure of planar graphs
 - Planar Product Structure Theorem
- Generalizing product structure to dense setting
 - \mathcal{H} -clique-width
- The main result
- Corollaries

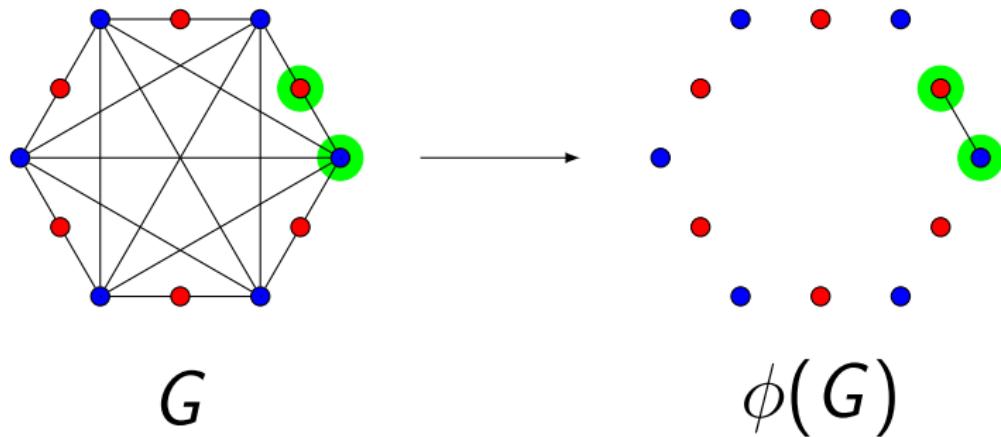
Interpretations

$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$



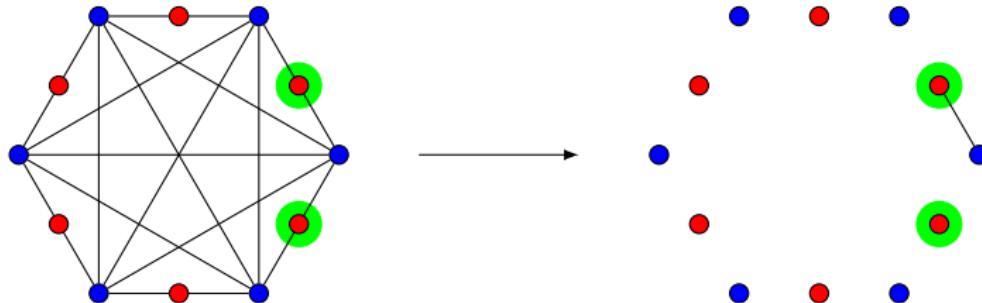
Interpretations

$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$



Interpretations

$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$

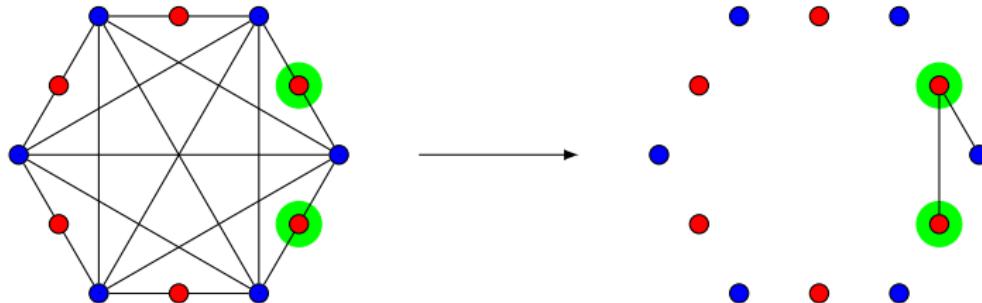


G

$\phi(G)$

Interpretations

$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$

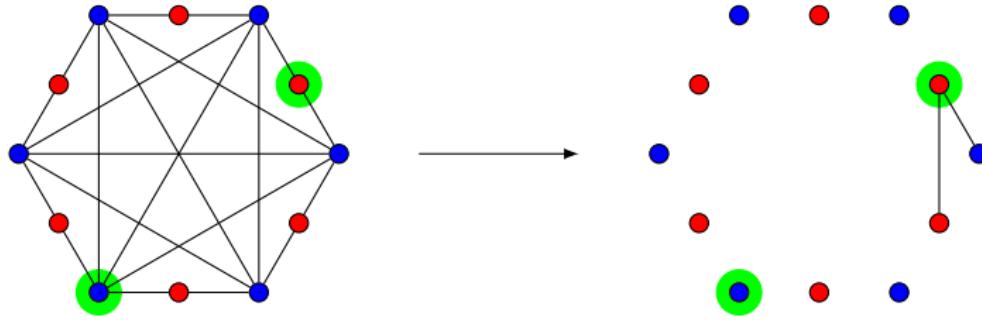


G

$\phi(G)$

Interpretations

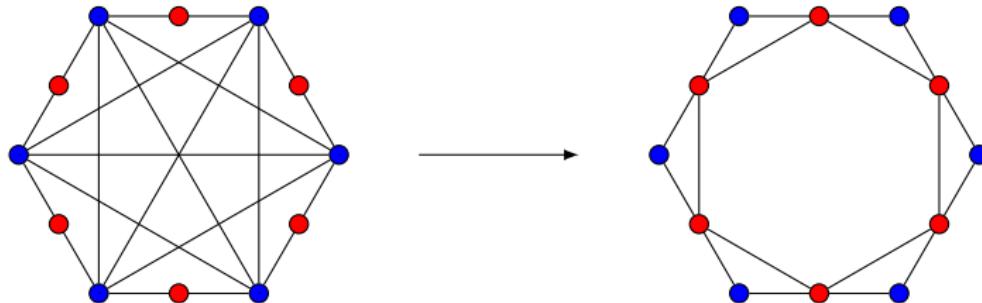
$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$



$\phi(G)$

Interpretations

$\phi(u, v) \equiv \text{"}(u \text{ and } v \text{ are red and they share common blue neighbor), or (}u \text{ and } v \text{ are adjacent and exactly one of them is red)"}$

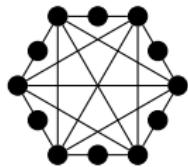


G

$\phi(G)$

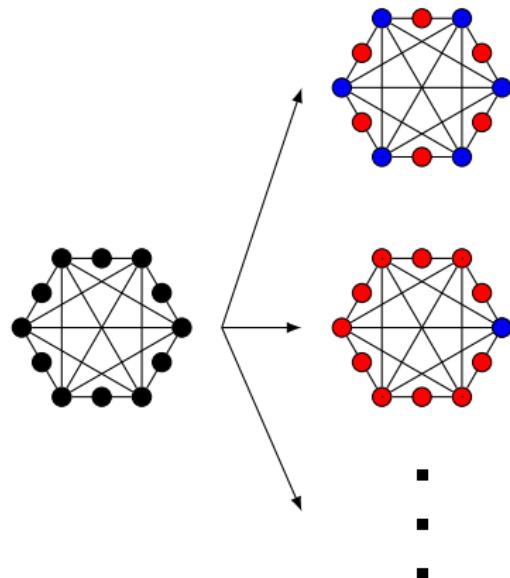
Transductions

Input graph \rightarrow nondeterministic coloring \rightarrow interpretation \rightarrow induced subgraph



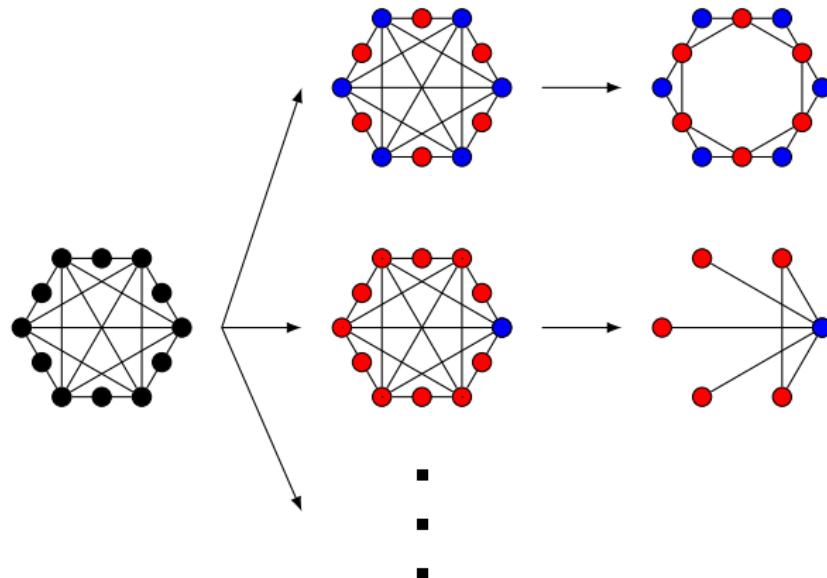
Transductions

Input graph \rightarrow nondeterministic coloring \rightarrow interpretation \rightarrow induced subgraph



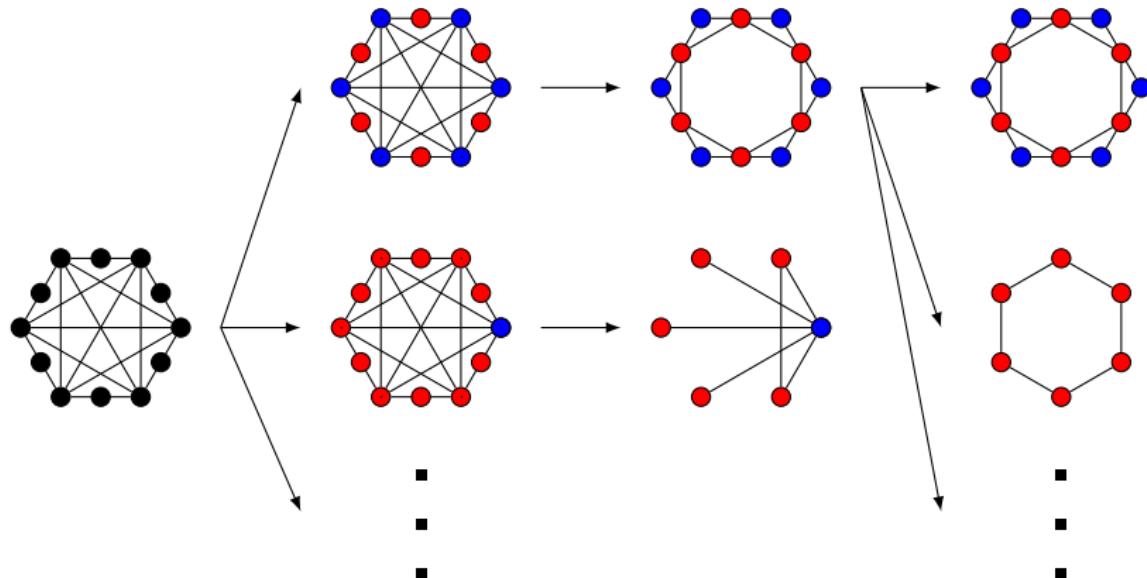
Transductions

Input graph \rightarrow nondeterministic coloring \rightarrow interpretation \rightarrow induced subgraph



Transductions

Input graph \rightarrow nondeterministic coloring \rightarrow interpretation \rightarrow induced subgraph



Locality

- FO is local – recall the theorems of Gaifman and Hanf

⇒ every FO transduction can be split into local and global part

Locality

- FO is local – recall the theorems of Gaifman and Hanf

⇒ every FO transduction can be split into local and global part

Definition (Local part)

A transduction τ is *strongly r -local* if it does not create edges between vertices x, y at distance greater than r , and the existence of an edge between x and y depends only on the union of r -neighborhoods of x and y .

Definition (Glocal part)

A graph H is a *k -flip* of a graph G if H can be obtained by coloring G using k colors and possibly flipping adjacency (edges became non-edges and vice versa) between some color classes.

Locality

- FO is local – recall the theorems of Gaifman and Hanf

⇒ every FO transduction can be split into local and global part

Definition (Local part)

A transduction τ is *strongly r -local* if it does not create edges between vertices x, y at distance greater than r , and the existence of an edge between x and y depends only on the union of r -neighborhoods of x and y .

Definition (Glocal part)

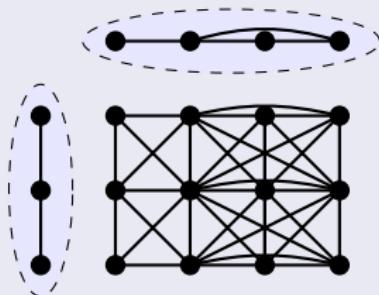
A graph H is a *k -flip* of a graph G if H can be obtained by coloring G using k colors and possibly flipping adjacency (edges became non-edges and vice versa) between some color classes.

Theorem (Nešetřil, Ossona de Mendez, Siebertz)

If a graph class \mathcal{C} is FO-transducible from a class \mathcal{D} (without copying), then there are number k and r , and a strongly r -local transduction τ such that \mathcal{C} is contained in a k -flip of $\tau(\mathcal{D})$.

Planar Product Structure Theorem

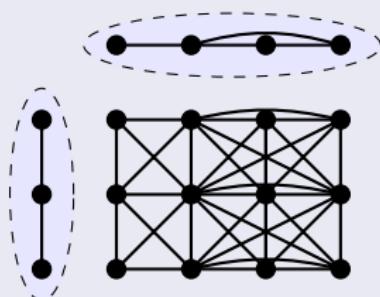
Definition (Strong product $G \boxtimes H$ of graphs G and H)



- $V(G \boxtimes H) = V(G) \times V(H)$
- $[g_1, h_1][g_2, h_2] \in E(G \boxtimes H)$ if one of the following conditions holds:
 - $g_1 = g_2$ and $h_1 h_2 \in E(H)$,
 - $g_1 g_2 \in E(G)$ and $h_1 = h_2$, or
 - $g_1 g_2 \in E(G)$ and $h_1 h_2 \in E(H)$.

Planar Product Structure Theorem

Definition (Strong product $G \boxtimes H$ of graphs G and H)



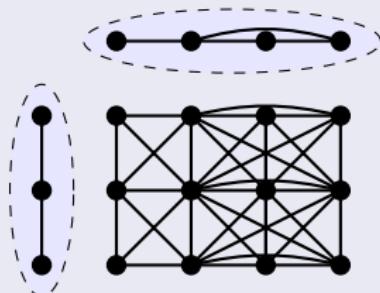
- $V(G \boxtimes H) = V(G) \times V(H)$
- $[g_1, h_1][g_2, h_2] \in E(G \boxtimes H)$ if one of the following conditions holds:
 - $g_1 = g_2$ and $h_1 h_2 \in E(H)$,
 - $g_1 g_2 \in E(G)$ and $h_1 = h_2$, or
 - $g_1 g_2 \in E(G)$ and $h_1 h_2 \in E(H)$.

Definition (Product structure)

A graph class \mathcal{C} *admits product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is a subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of tree-width at most k .

Planar Product Structure Theorem

Definition (Strong product $G \boxtimes H$ of graphs G and H)



- $V(G \boxtimes H) = V(G) \times V(H)$
- $[g_1, h_1][g_2, h_2] \in E(G \boxtimes H)$ if one of the following conditions holds:
 - $g_1 = g_2$ and $h_1 h_2 \in E(H)$,
 - $g_1 g_2 \in E(G)$ and $h_1 = h_2$, or
 - $g_1 g_2 \in E(G)$ and $h_1 h_2 \in E(H)$.

Definition (Product structure)

A graph class \mathcal{C} *admits product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is a subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of tree-width at most k .

Theorem (Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood)

Planar graphs as well as graphs embeddable on a fixed surface admit product structure.

Dense analogue of product structure

Definition (Product structure)

A graph class \mathcal{C} *admits product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is a subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of tree-width at most k .

Definition (Product structure for dense graphs)

A graph class \mathcal{C} *admits hereditary product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is an **induced** subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of clique-width at most k .

Dense analogue of product structure

Definition (Product structure)

A graph class \mathcal{C} *admits product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is a subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of tree-width at most k .

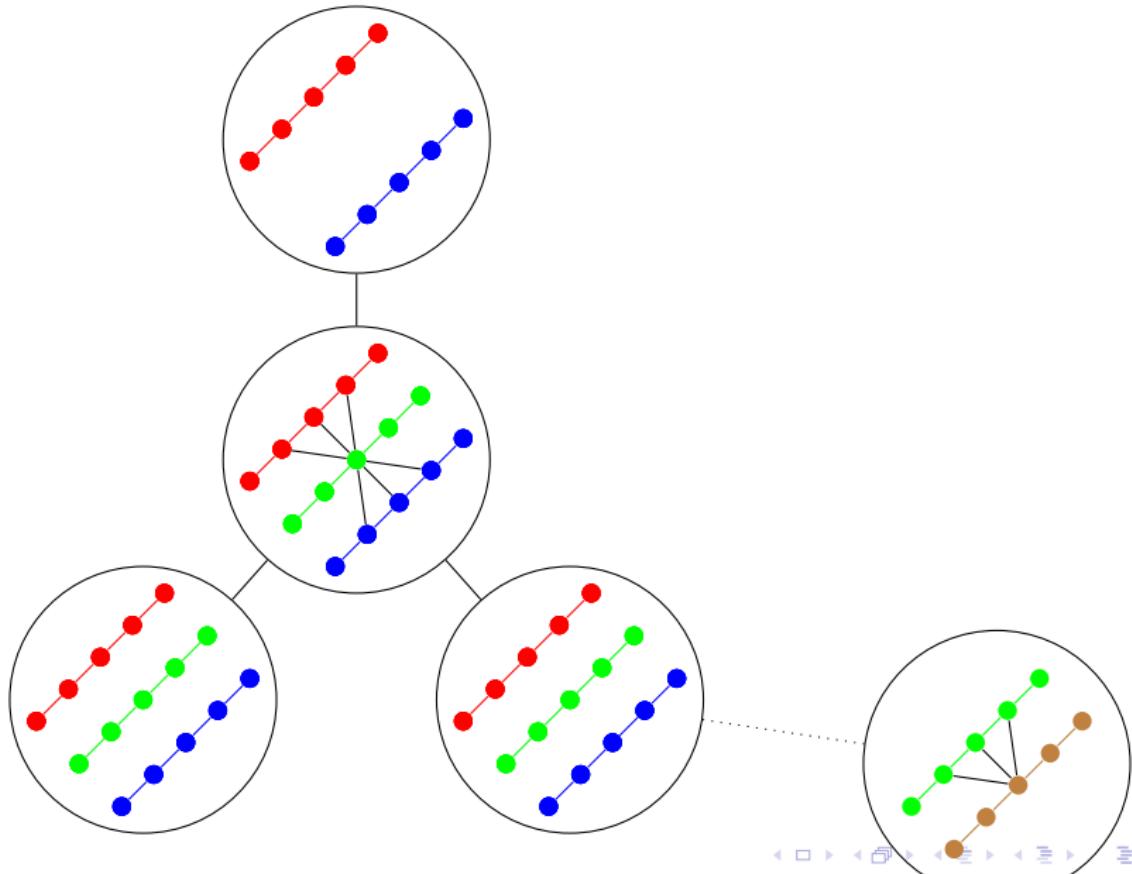
Definition (Product structure for dense graphs)

A graph class \mathcal{C} *admits hereditary product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is an **induced** subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of clique-width at most k .

Theorem

Let \mathcal{C} be a graph class admitting product structure, and let \mathcal{D} be a graph class *FO*-transducible from \mathcal{C} . Then, \mathcal{D} is a flip of some graph class \mathcal{D}' which admits hereditary product structure.

Product structure – another view



Definition

A graph G has *clique-width* at most k if there is a k -expression valued G .

k -expression: k colors and the following operations:

- Given $c \in [k]$, create a graph having single vertex with *color* c
- Take disjoint union
- Given a pair of colors $c_1 \neq c_2$, add edges between every pair of vertices u, v satisfying that:
 - color of u is c_1 , and
 - color of v is c_2
- Recolor c_1 to c_2

Definition

A graph G has \mathcal{H} -clique-width at most k if there is a loop graph $H \in \mathcal{H}$ and a (H, k) -expression valued G . If no such expression exists, then we say that \mathcal{H} -Clique-Width is ∞ .

(H, k) -expression: k colors and the following operations:

- Given $c \in [k]$ and $p \in V(H)$, create a graph having single vertex with *color* c and *parameter vertex* $p \in V(H)$
- Take disjoint union
- Given a pair of colors $c_1 \neq c_2$, add edges between every pair of vertices u, v satisfying that:
 - color of u is c_1 , and
 - color of v is c_2 , and
 - the parameter vertices of u and v are adjacent in H
- Recolor c_1 to c_2 **without** changing parameter vertices

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



Example: 2D grid

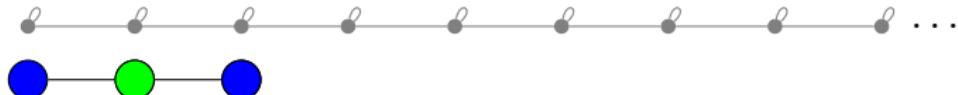
- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

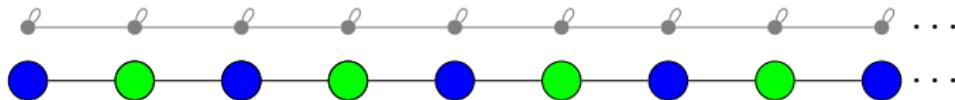
- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Example: 2D grid

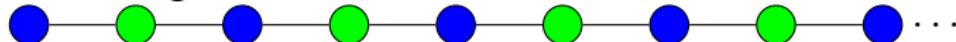
- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

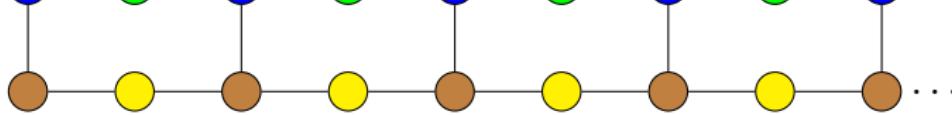
Create a grid:



Example: 2D grid

- \mathcal{P}° := reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

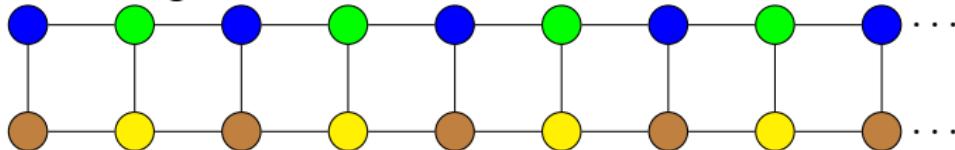
Create a grid:



Example: 2D grid

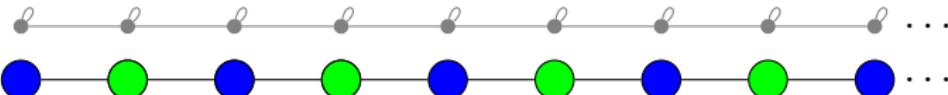
- \mathcal{P}° := reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Create a grid:

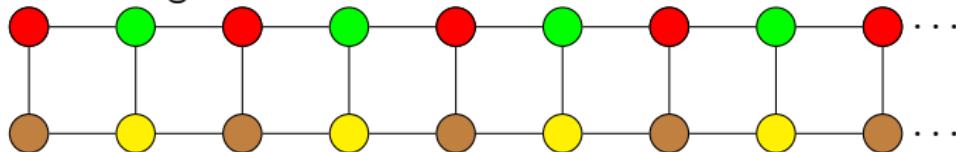


Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

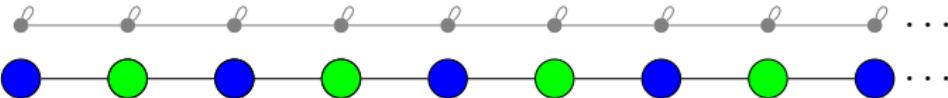


Create a grid:

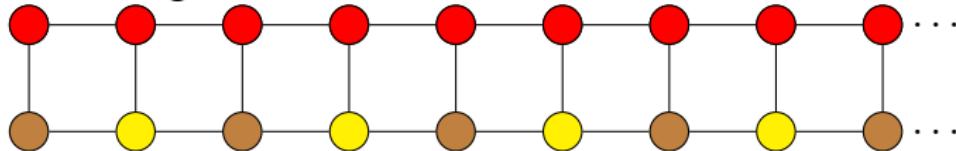


Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



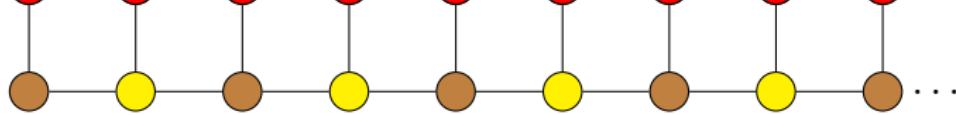
Create a grid:



Example: 2D grid

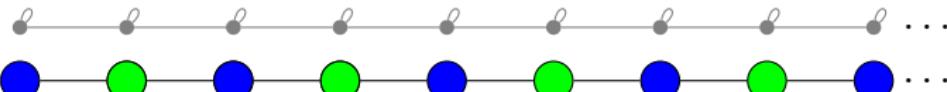
- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Create a grid:

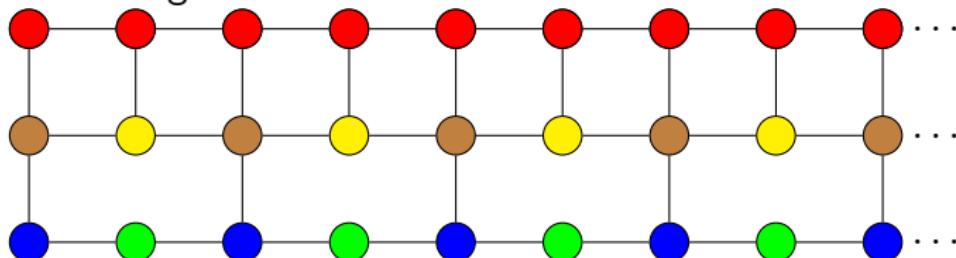


Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

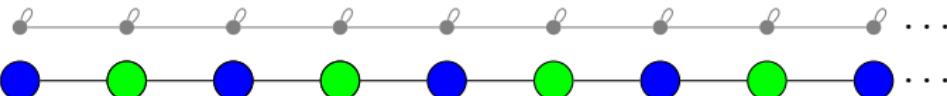


Create a grid:



Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

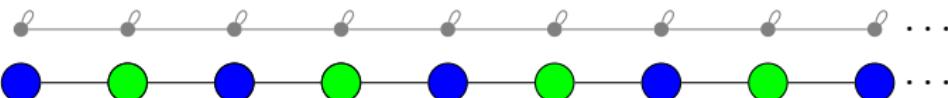


Create a grid:

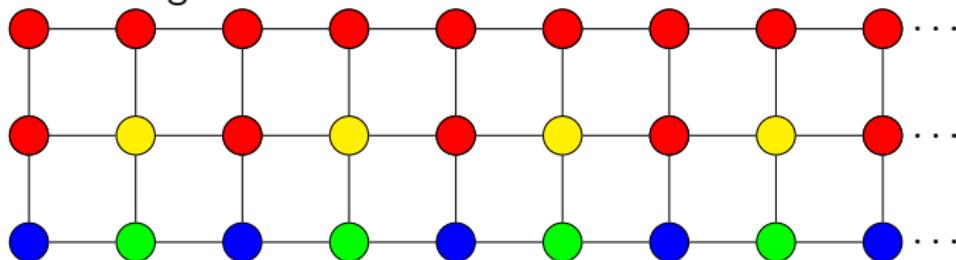


Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



Create a grid:



Example: 2D grid

- \mathcal{P}° := reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Create a grid:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

Create a grid:

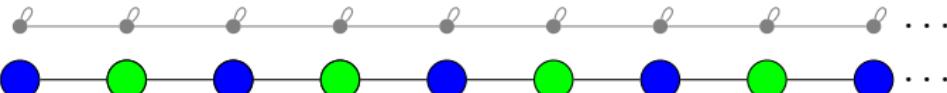
Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:

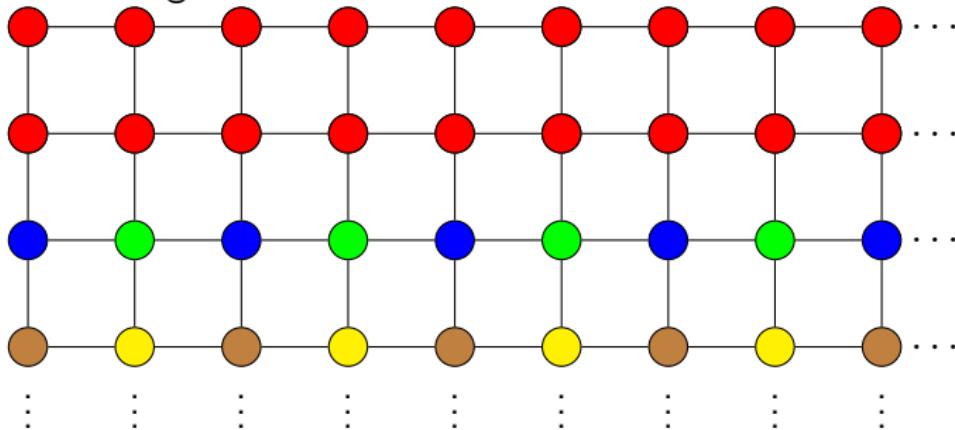
Create a grid:

Example: 2D grid

- $\mathcal{P}^\circ :=$ reflexive paths (all vertices have loop)
- 2D grid has \mathcal{P}° -clique-width at most 5
- Create path colored “modulo 2”:



Create a grid:



Main result (again and more generally)

Let \mathcal{Q} be a class of bounded degree simple graphs. We denote by \mathcal{Q}_r° the reflexive closure of the r -th power of \mathcal{Q} .

Definition

A graph class \mathcal{C} admits \mathcal{Q} -product structure if there is a constant k such that every graph $G \in \mathcal{C}$ is a subgraph of the strong product $Q \boxtimes M$ of a graph $Q \in \mathcal{Q}$ and a graph M of tree-width at most k .

Theorem

Let \mathcal{C} be a graph class admitting \mathcal{Q} -product structure (e.g. planar graphs). Let \mathcal{D} be a graph class FO -transducible from \mathcal{C} . Then, there are constants k , ℓ , and r such that \mathcal{D} is contained in a ***k*-flip (global path)** of a class with \mathcal{Q}_r° -clique-width at most ℓ (local part).

Going there and back again

Definition (Product structure for dense graphs)

A graph class \mathcal{C} *admits hereditary product structure* if there is a constant k such that every graph $G \in \mathcal{C}$ is an induced subgraph of the strong product $P \boxtimes M$ of a path P and a graph M of clique-width at most k .

Theorem

Let \mathcal{D} be a class of bounded stable clique-width (stable = does not FO -transduce all half-graphs). Let \mathcal{C} be a class admitting hereditary product structure such that, the graph M from the above definition can be chosen from \mathcal{D} . Then, there is a class \mathcal{G} admitting (the classical) product structure such that \mathcal{C} is FO -transducible from \mathcal{G} .

Theorem

The class of all 3D grids is not FO-transducible from planar graphs.

Proof.

- Any balanced bipartiton A, B ($|A| \leq 2|B| \leq 4|A|$) of $a \times a \times a$ grid $G_{a \times a \times a}$ induces a matching of size $\Omega(a^2)$
- $G_{a \times a \times a}$ has diameter $\Theta(a)$
- If a is large enough, then any k -flip of $G_{a \times a \times a}$ contains a large induced subgraph H of diameter $d \in \mathcal{O}_k(a)$ such that any balanced bipartiton of H induces a matching or anti-matching of size $m \in \Omega_k(a^2)$
- Suppose that there is (P, ℓ) -expression ϕ valued H
- Some node of ϕ corresponds to balanced bipartition A, B but the maximum size of both matching and anti-matching at every node is at most $\mathcal{O}(\ell \cdot d) = \mathcal{O}_\ell(a)$

Conclusions

- Transductions of graph classes admitting product structure (subgraphs of Path \boxtimes bnd. Tree-Width) are k -flips of a class admitting hereditary product structure (induced subgraphs of Path \boxtimes bnd. Clique-Width)
- \mathcal{C} admits hereditary product structure $\iff \mathcal{C}$ has bounded Path $^\circ$ -clique-width
- Using (H, k) -expressions, it is easy to prove some non-transducibility results – e.g. 3D grids are not transducible from planar graphs