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Interpretations

ϕ(u, v) ≡“(u and v are red and they share common blue neighbor),
or (u and v are adjacent and exactly one of them is red)”

G ϕ(G )
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Transductions

Input graph → nondeterministic coloring → interpretation →
induced subgraph

...
...
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Locality

• FO is local – recall the theorems of Gaifman and Hanf

=⇒ every FO transduction can be split into local and global part

Definition (Local part)

A transduction τ is strongly
r -local if it does not create edges
between vertices x , y at distance
greater than r , and the existence
of an edge between x and y
depends only on the union of
r -neighborhoods of x and y .

Definition (Glocal part)

A graph H is a k-flip of a
graph G if H can be obtained
by coloring G using k colors
and possibly flipping
adjacency (edges became
non-edges and vice versa)
between some color classes.

Theorem (Nešeťril, Ossona de Mendez, Siebertz)

If a graph class C is FO-transducible from a class D (without
copying), then there are number k and r , and a strongly r -local
transduction τ such that C is contained in a k-flip of τ(D).
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Planar Product Structure Theorem

Definition (Strong product G ⊠ H of graphs G and H)

• • V (G ⊠ H) = V (G )× V (H)
• [g1, h1][g2, h2] ∈ E (G⊠H) if one of the
following conditions holds:

• g1 = g2 and h1h2 ∈ E (H),
• g1g2 ∈ E (G ) and h1 = h2, or
• g1g2 ∈ E (G ) and h1h2 ∈ E (H).

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G ∈ C is a subgraph of the strong product
P ⊠M of a path P and a graph M of tree-width at most k .

Theorem (Dujmovic, Joret, Micek, Morin, Ueckerdt, Wood)

Planar graphs as well as graphs embeddable on a fixed surface
admit product structure.
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Dense analogue of product structure

Definition (Product structure)

A graph class C admits product structure if there is a constant k
such that every graph G ∈ C is a subgraph of the strong product
P ⊠M of a path P and a graph M of tree-width at most k.

Definition (Product structure for dense graphs)

A graph class C admits hereditary product structure if there is a
constant k such that every graph G ∈ C is an induced subgraph of
the strong product P ⊠M of a path P and a graph M of
clique-width at most k.

Theorem

Let C be a graph class admitting product structure, and let D be a
graph class FO-transducible from C. Then, D is a flip of some
graph class D′ which admits hereditary product structure.
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Product structure – another view
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Hereditary product structure = H-clique-width

Definition

A graph G has clique-width at most k if there is a
k-expression valued G .

If no such expression exists, then we
say that H-Clique-Width is ∞.

k-expression: k colors and the following operations:

• Given c ∈ [k], create a graph having single vertex with
color c

and parameter vertex p ∈ V (H)

• Take disjoint union
• Given a pair of colors c1 ̸= c2, add edges between every
pair of vertices u, v satisfying that:

• color of u is c1, and
• color of v is c2

, and
• the parameter vertices of u and v are adjacent in H

• Recolor c1 to c2

without changing parameter vertices
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Hereditary product structure = H-clique-width

Definition

A graph G has H-clique-width at most k if there is a loop
graph H ∈ H and a (H,k)-expression valued G . If no such
expression exists, then we say that H-Clique-Width is ∞.
(H,k)-expression: k colors and the following operations:

• Given c ∈ [k] and p ∈ V (H), create a graph having single
vertex with color c and parameter vertex p ∈ V (H)

• Take disjoint union
• Given a pair of colors c1 ̸= c2, add edges between every
pair of vertices u, v satisfying that:

• color of u is c1, and
• color of v is c2, and
• the parameter vertices of u and v are adjacent in H

• Recolor c1 to c2 without changing parameter vertices
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Example: 2D grid

• P◦ := reflexive paths (all vertices have loop)

• 2D grid has P◦-clique-width at most 5

• Create path colored “modulo 2”:

. . .

. . . . . .

Create a grid:

. . .

. . .

. . .

. . .
...

...
...

...
...

...
...

...
...

Petr Hliněný, Jan Jedelský Transductions of Graph Classes Admitting Product Structure



Example: 2D grid

• P◦ := reflexive paths (all vertices have loop)

• 2D grid has P◦-clique-width at most 5

• Create path colored “modulo 2”:

. . .

. . . . . .

Create a grid:

. . .

. . .

. . .

. . .
...

...
...

...
...

...
...

...
...
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Petr Hliněný, Jan Jedelský Transductions of Graph Classes Admitting Product Structure



Example: 2D grid

• P◦ := reflexive paths (all vertices have loop)

• 2D grid has P◦-clique-width at most 5

• Create path colored “modulo 2”:

. . .

. . .

. . .

Create a grid:
. . .

. . .

. . .

. . .
...

...
...

...
...

...
...

...
...
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Main result (again and more generally)

Let Q be a class of bounded degree simple graphs. We denote by
Q◦

r the reflexive closure of the r -th power of Q.

Definition

A graph class C admits Q-product structure if there is a constant k
such that every graph G ∈ C is a subgraph of the strong product
Q ⊠M of a graph Q ∈ Q and a graph M of tree-width at most k .

Theorem

Let C be a graph class admitting Q-product structure (e.g. planar
graphs). Let D be a graph class FO-transducible from C. Then,
there are constants k, ℓ, and r such that D is contained in a k-flip
(global path) of a class with Q◦

r -clique-width at most ℓ (local part).
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Going there and back again

Definition (Product structure for dense graphs)

A graph class C admits hereditary product structure if there is a
constant k such that every graph G ∈ C is an induced subgraph of
the strong product P ⊠M of a path P and a graph M of
clique-width at most k.

Theorem

Let D be a class of bounded stable clique-width (stable = does not
FO-transduce all half-graphs). Let C be a class admitting
hereditary product structure such that, the graph M from the
above definition can be chosen from D. Then, there is a class G
admitting (the classical) product structure such that C is
FO-transducible from G.
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Corollaries – 3D grids

Theorem

The class of all 3D grids is not FO-transducible from planar graphs.

Proof.

• Any balanced bipartiton A,B (|A| ≤ 2|B| ≤ 4|A|) of a× a× a
grid Ga×a×a induces a matching of size Ω(a2)

• Ga×a×a has diameter Θ(a)
• If a is large enough, then any k-flip of Ga×a×a contains a large
induced subgraph H of diameter d ∈ Ok(a) such that any
balanced bipartiton of H induces a matching or anti-matching
of size m ∈ Ωk(a

2)
• Suppose that there is (P, ℓ)-expression ϕ valued H
• Some node of ϕ corresponds to balanced bipartition A,B but
the maximum size of both matching and anti-matching at
every node is at most O(ℓ · d) = Oℓ(a)
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Conclusions

• Transductions of graph classes admitting product structure
(subgraphs of Path ⊠ bnd. Tree-Width) are k-flips of a class
admitting hereditary product structure (induced subgraphs of
Path ⊠ bnd. Clique-Width)

• C admits hereditary product structure ⇐⇒ C has bounded
Path◦-clique-width

• Using (H, k)-expressions, it is easy to prove some
non-transducibility results – eq. 3D grids are not transducible
from planar graphs
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