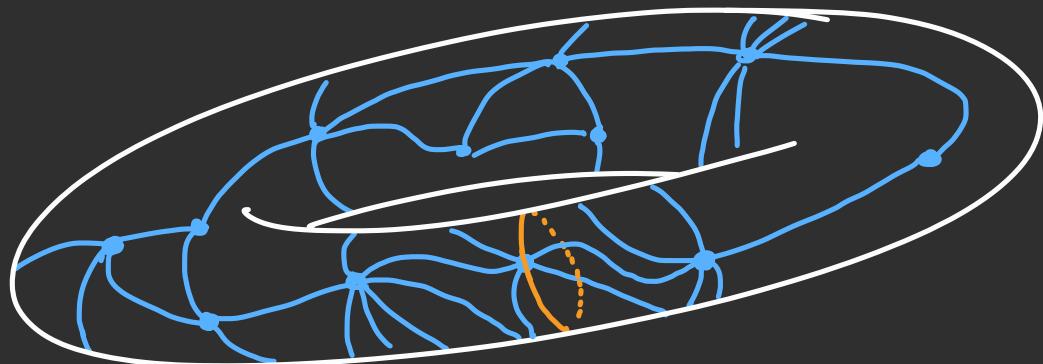


Catching Rats in H -minor-free graphs



joint work with: Giannos Stamoulis, Dimitrios Thilikos, Sebastian Wiederrecht
Université Paris Cité, CNRS LIRMM, CNRS KAIST

Width Parameters

Most of the work is done for branchwidth.

Because embedded graphs interact with branchwidth better than treewidth.

(Because of the rats!)

Proposition [Robertson & Seymour '91]

Let G be a non-acyclic graph.

Then $\text{bw}(G) - 1 \leq \text{tw}(G) \leq \lceil \frac{3}{2} \text{bw}(G) \rceil - 1$.

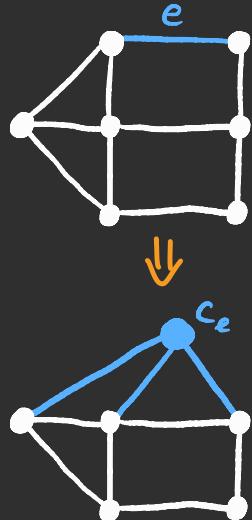
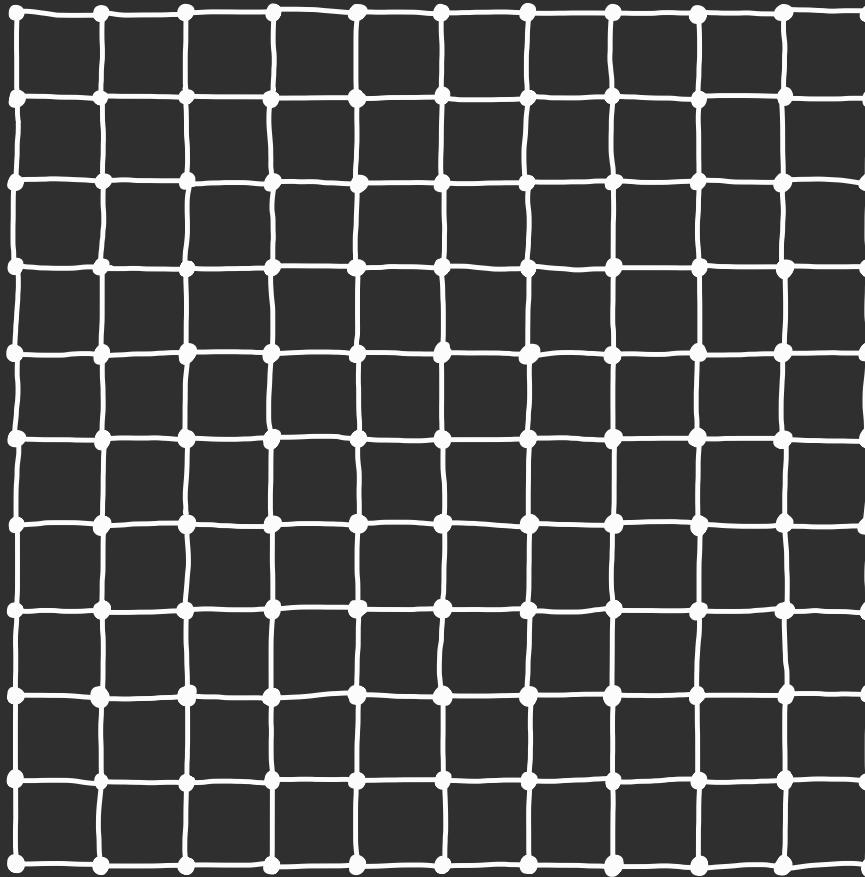
↑
branchwidth

↑
treewidth

When does a graph have high treewidth?

Minor

Take a subgraph and
contract some edges.

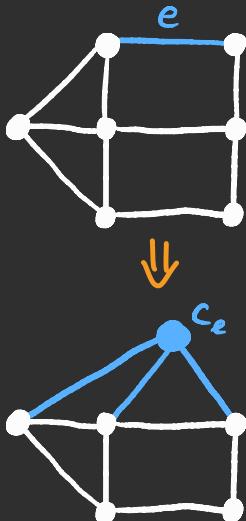
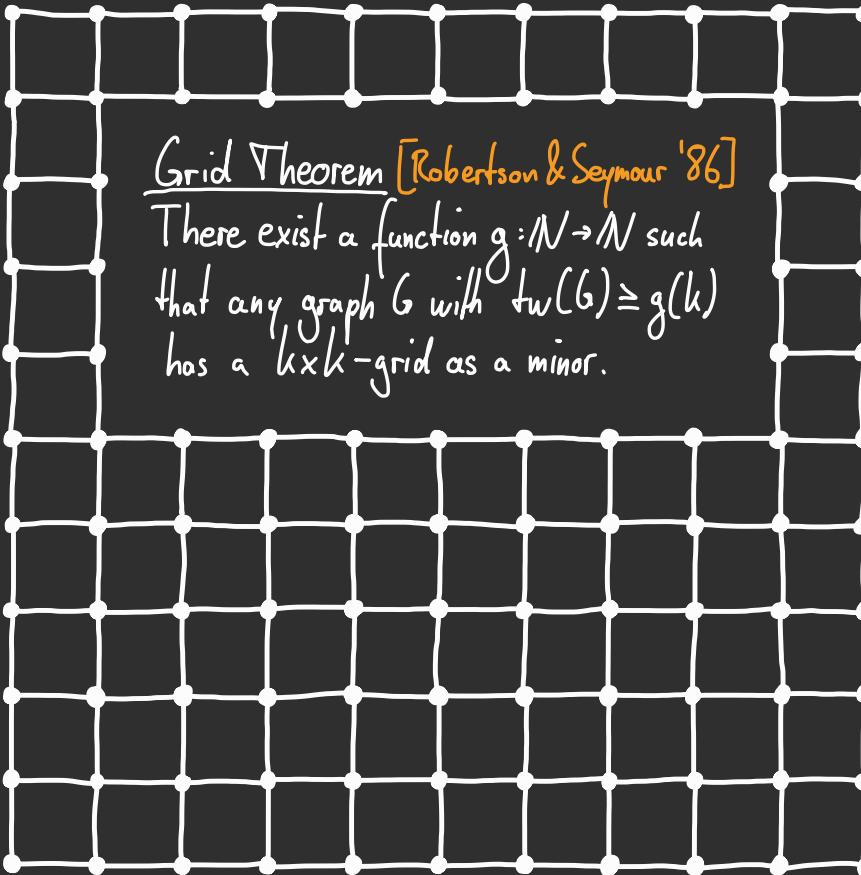


11×11 -grid

When does a graph have high treewidth?

Minor

Take a subgraph and contract some edges.



Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that any graph G with $tw(G) \geq g(k)$ has a $k \times k$ -grid as a minor.

$l \times l$ -grid

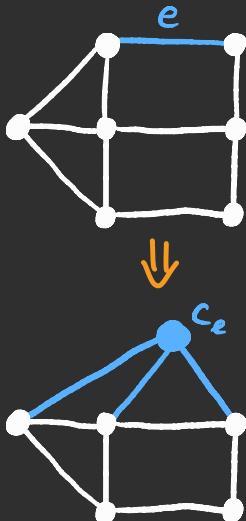
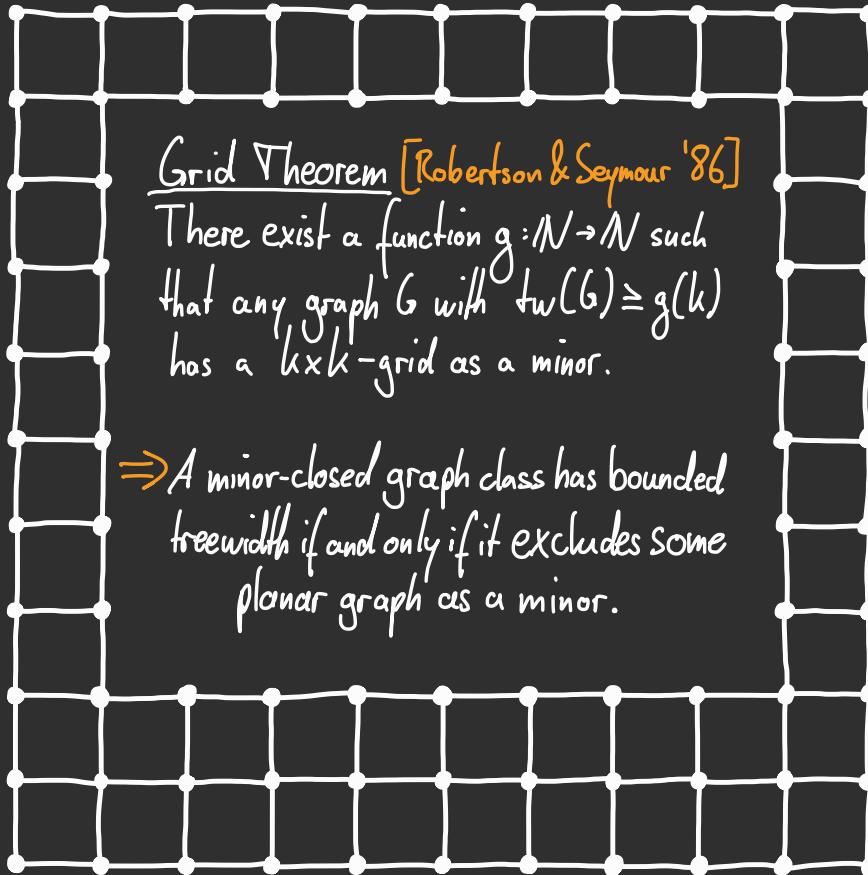
$n \times n$ -grids

have treewidth roughly n

When does a graph have high treewidth?

Minor

Take a subgraph and contract some edges.



Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that any graph G with $\text{tw}(G) \geq g(k)$ has a $k \times k$ -grid as a minor.

⇒ A minor-closed graph class has bounded treewidth if and only if it excludes some planar graph as a minor.

11×11 -grid

The relationship between treewidth and grid-minors

Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such

that any graph G with $\text{tw}(G) \geq g(k)$
has a $k \times k$ -grid as a minor.

upper bounds

- $g(k) \in 2^{O(k^5)}$ [Robertson, Seymour & Thomas '94]
- $g(k) \in 2^{O(k^2 \log k)}$ [Leaf & Seymour '15]
- $g(k) \in O(k^{98} \log^c k)$ [Chekuri & Chuzhoy '16]
- $g(k) \in O(k^9 \log^c k)$ [Chuzhoy & Tan '21]

The relationship between treewidth and grid-minors

Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such

that any graph G with $\text{tw}(G) \geq g(k)$
has a $k \times k$ -grid as a minor.

upper bounds

- $g(k) \in 2^{O(k^5)}$ [Robertson, Seymour & Thomas '94]
- $g(k) \in 2^{O(k^2 \log k)}$ [Leaf & Seymour '15]
- $g(k) \in O(k^{98} \log^c k)$ [Chekuri & Chuzhoy '16]
- $g(k) \in O(k^9 \log^c k)$ [Chuzhoy & Tan '21]

lower bound:

- $g(k) \in \Omega(k^2 \log k)$ [Robertson, Seymour & Thomas '94]

The relationship between treewidth and grid-minors

Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that any graph G with $\text{tw}(G) \geq g(k)$ has a $k \times k$ -grid as a minor.

A minor-closed graph class has bounded treewidth if and only if it excludes some planar graph as a minor.

What if we exclude additional non-planar minors?

upper bounds

- $g(k) \in 2^{O(k^5)}$ [Robertson, Seymour & Thomas '94]
- $g(k) \in 2^{O(k^2 \log k)}$ [Leaf & Seymour '15]
- $g(k) \in O(k^{98} \log^c k)$ [Chekuri & Chuzhoy '16]
- $g(k) \in O(k^9 \log^c k)$ [Chuzhoy & Tan '21]

lower bound:

- $g(k) \in \Omega(k^2 \log k)$ [Robertson, Seymour & Thomas '94]

The relationship between treewidth and grid-minors

Grid Theorem [Robertson & Seymour '86]

There exist a function $g: \mathbb{N} \rightarrow \mathbb{N}$ such that any graph G with $\text{tw}(G) \geq g(k)$ has a $k \times k$ -grid as a minor.

A minor-closed graph class has bounded treewidth if and only if it excludes some planar graph as a minor.

upper bounds

- $g(k) \in 2^{O(k^5)}$ [Robertson, Seymour & Thomas '94]
- $g(k) \in 2^{O(k^2 \log k)}$ [Leaf & Seymour '15]
- $g(k) \in O(k^{98} \log^c k)$ [Chekuri & Chuzhoy '16]
- $g(k) \in O(k^9 \log^c k)$ [Chuzhoy & Tan '21]

lower bound:

- $g(k) \in \Omega(k^2 \log k)$ [Robertson, Seymour & Thomas '94]

What if we exclude additional non-planar minors?

- also exclude K_5 and $K_{3,3}$
 $\Rightarrow g(k) \leq 6k-5$ [Robertson, Seymour & Thomas '94] + [Wagner '37]
- also exclude K_5 (or $K_{3,3}$)
 $\Rightarrow g(k) \leq 6k-5$ [Robertson, Seymour & Thomas '94] + [Wagner '37] (+ Hall)

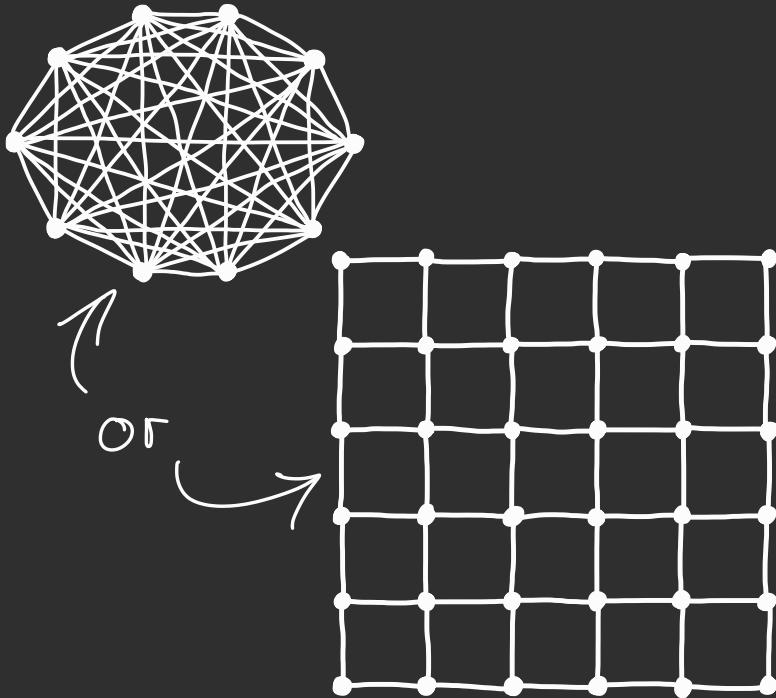
ca. 2000

Finding a large grid- or clique-minor

Diestel's proof for the grid theorem:

For any graph G , if $\text{tw}(G) \in \Omega(k^{t^2 k})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



ca. 2000

Finding a large grid- or clique-minor

Diestel's proof for the grid theorem:

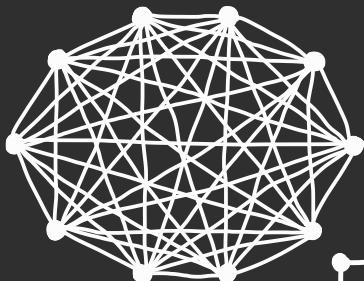
For any graph G , if $\text{tw}(G) \in \Omega(k^{t^2 k})$
then G contains a K_t - or a $(k \times k)$ -grid-minor.

Actually, this relation is linear in k !

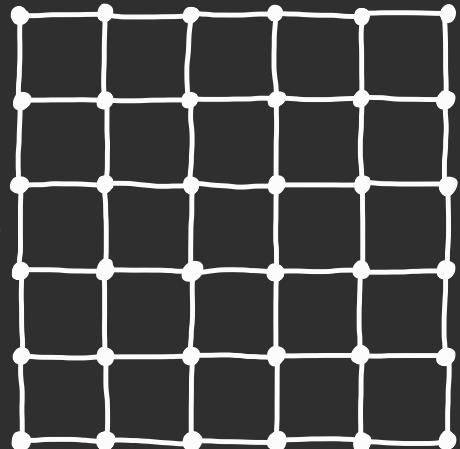
- $\text{tw}(G) \in \Omega_t(k)$ [Demaine & Hajiaghayi '08]

What exactly does this mean?

-\-(y)-/-



OR

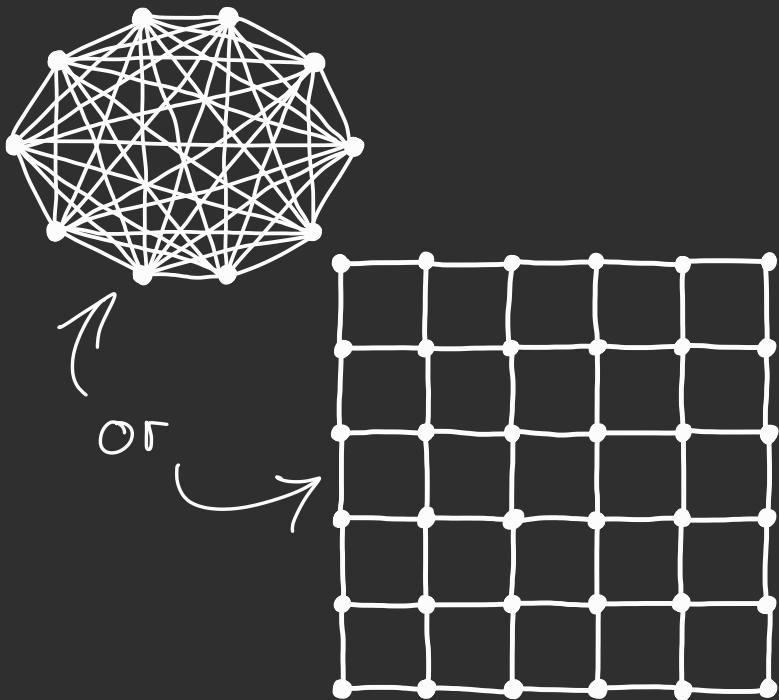


ca. 2000

Finding a large grid- or clique-minor

Diestel's proof for the grid theorem:

For any graph G , if $\text{tw}(G) \in \Omega(k^{t^2 k})$
then G contains a K_t - or a $(k \times k)$ -grid-minor.



Actually, this relation is linear in k !

- $\text{tw}(G) \in \Omega_t(k)$ [Demaine & Hajiaghayi '08]

What exactly does this mean?

-\-(y)-/-

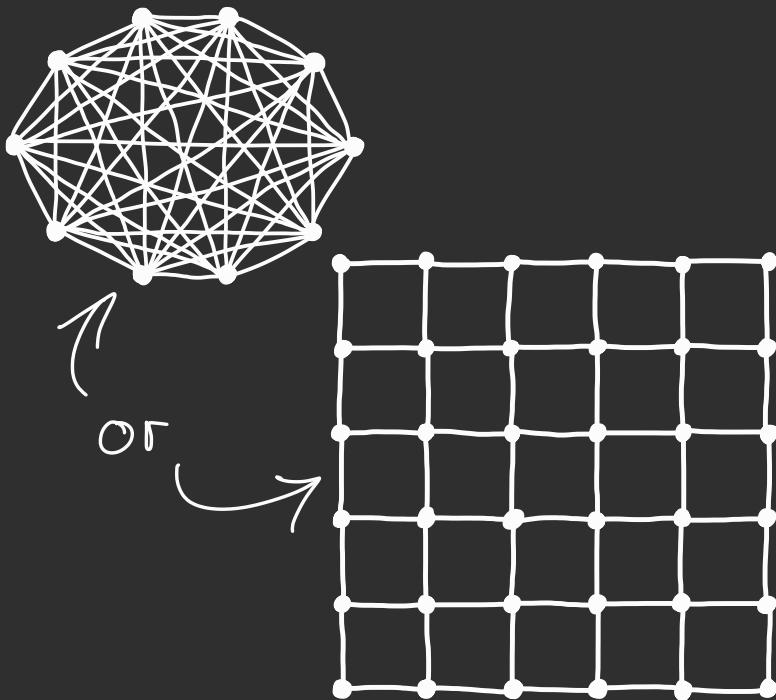
- $\text{tw}(G) \in \Omega(t \log t) k$ [Kawarabayashi & Kobayashi '20]

ca. 2000

Finding a large grid- or clique-minor

Diestel's proof for the grid theorem:

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k)$
then G contains a K_t - or a $(k \times k)$ -grid-minor.



Actually, this relation is linear in k !

- $\text{tw}(G) \in \Omega_t(k)$ [Demaine & Hajiaghayi '08]

What exactly does this mean?

$\neg \exists (y) \neg \exists$

- $\text{tw}(G) \in \Omega(t \log t) k$ [Kawarabayashi & Kobayashi '20]

- $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$ [G. Stamoulis, Thilikos, & Wiederrecht '25t]

general answer to

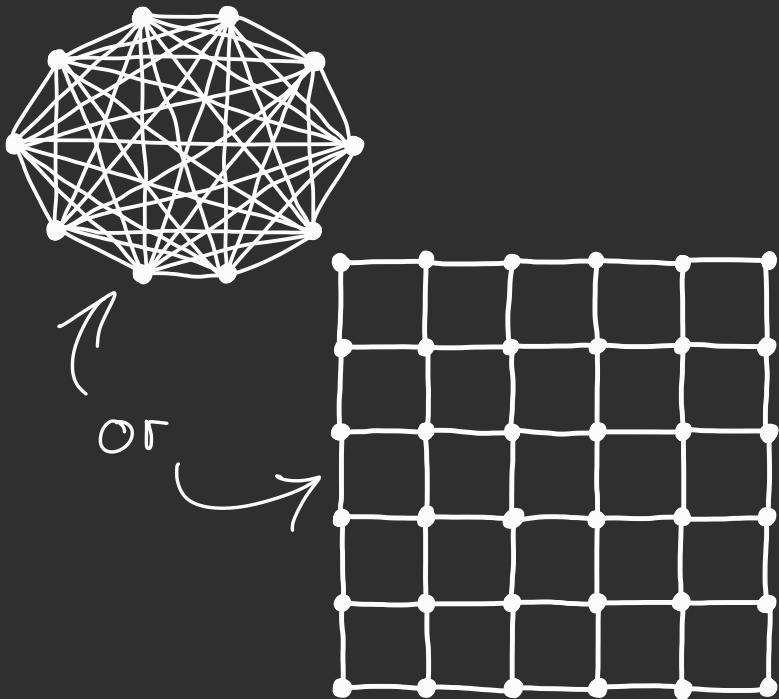
What if we exclude
additional non-planar minors?

Finding a large grid- or clique-minor

Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

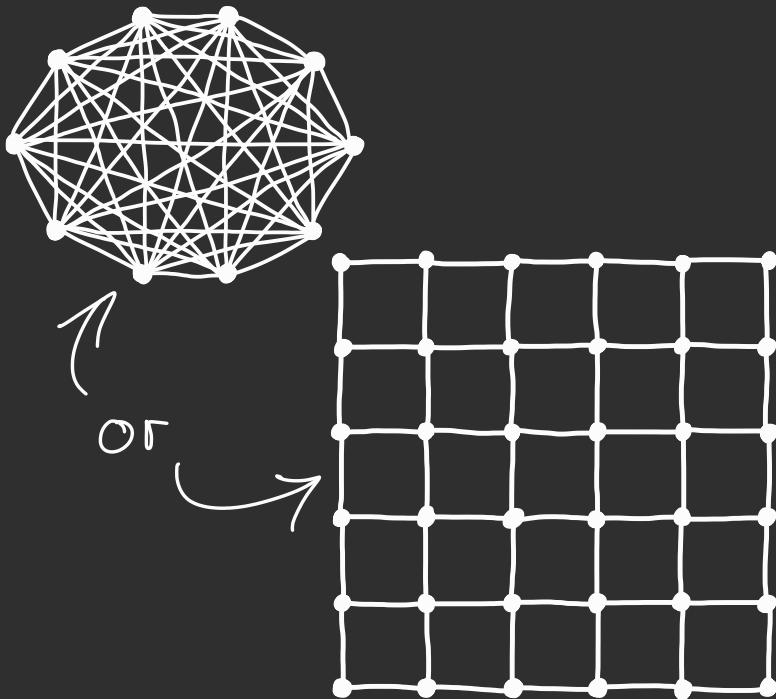
- a K_t -minor
- a $(k \times k)$ -grid-minor, or
- a branch-decomposition of G with approximately the correct width for G .

Finding a large grid- or clique-minor

Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

- a K_t -minor
- a $(k \times k)$ -grid-minor, or
- a branch-decomposition of G with approximately the correct width for G .

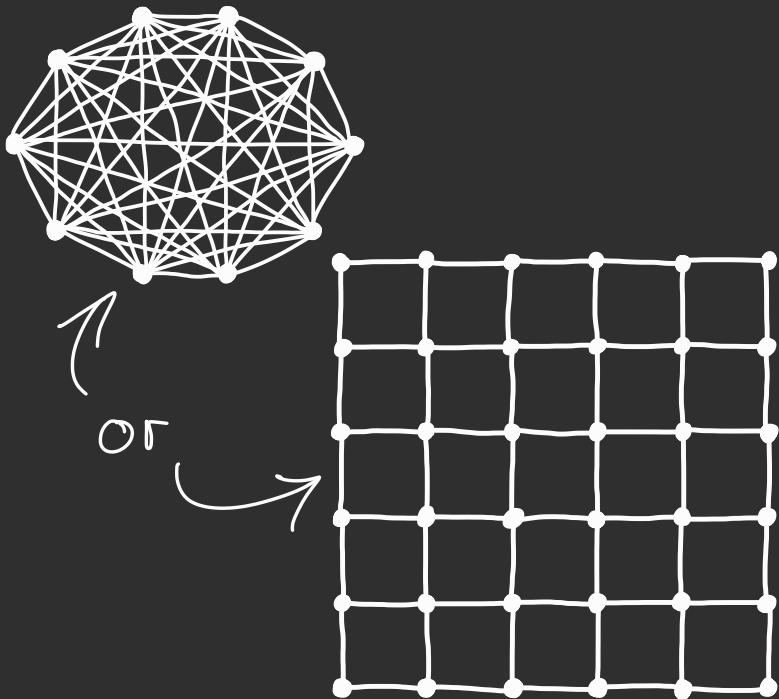
or randomized $(t+n)^{O(1)}$ -time (with worse but still poly-bounds)

Finding a large grid- or clique-minor

Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

- a K_t -minor
- a $(k \times k)$ -grid-minor, or
(In fact an induced wall!)
- a branch-decomposition of G with approximately the correct width for G .

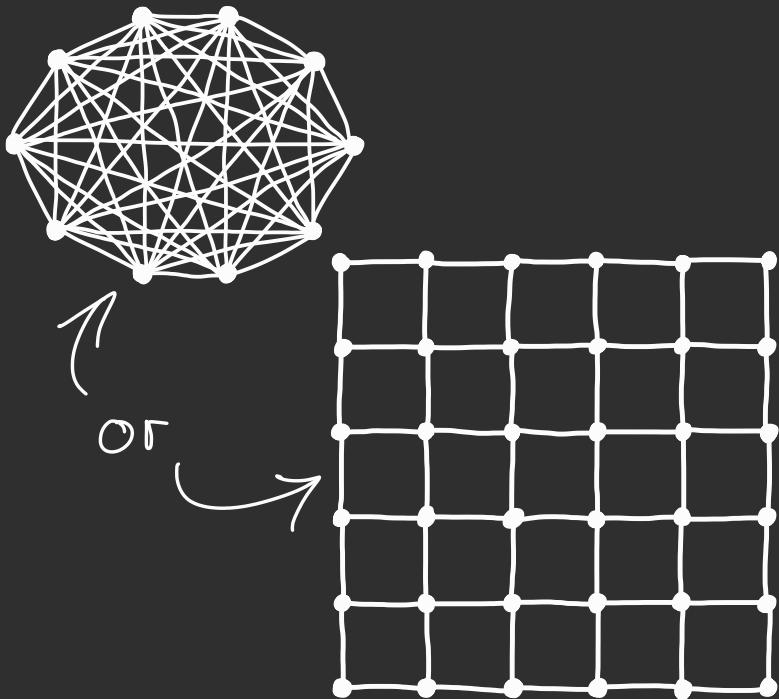
or randomized $(t+n)^{O(1)}$ -time (with worse but still poly-bounds)

Finding a large grid- or clique-minor

Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

- a K_t -minor
- a $(k \times k)$ -grid-minor, or
(In fact an induced wall!)
- a branch-decomposition of G with
approximately the correct width for G .

$\hookrightarrow \in \Omega(t^2 k + t^{2309})$

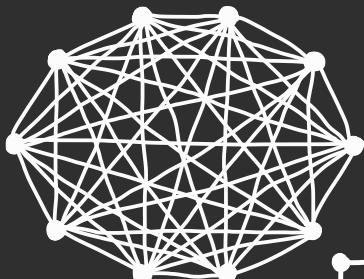
or randomized $(t+n)^{O(1)}$ -time (with worse
but still
poly-bounds)

Finding a large grid- or clique-minor

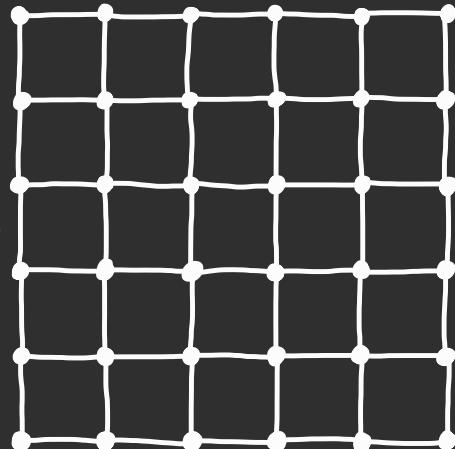
Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



OR



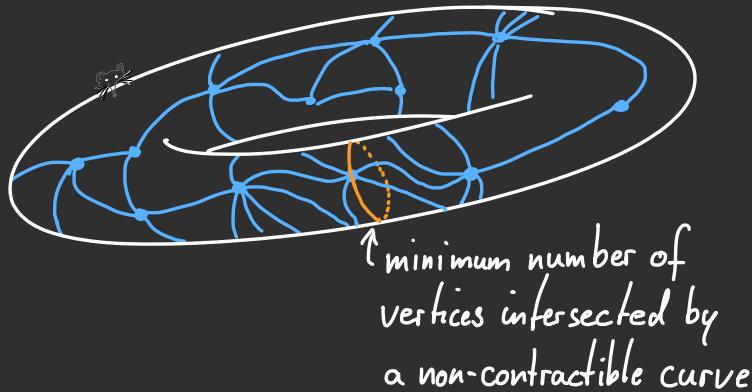
In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

- a K_t -minor
- a $(k \times k)$ -grid-minor, or
(In fact an induced wall!)
- a branch-decomposition of G with approximately the correct width for G .

$\hookrightarrow \in \Omega(t^2 k + t^{2309})$
 \hookrightarrow branchwidth can be verified to either be at least k or $\in \Omega(t^2 k + t^{2302})$

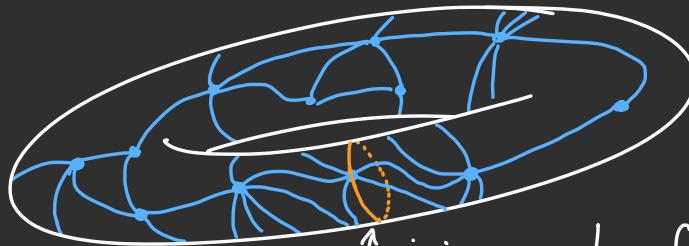
Embedded graphs

representativity (of an embedded graph):



Embedded graphs

representativity (of an embedded graph):



↑ minimum number of
vertices intersected by
a non-contractible curve

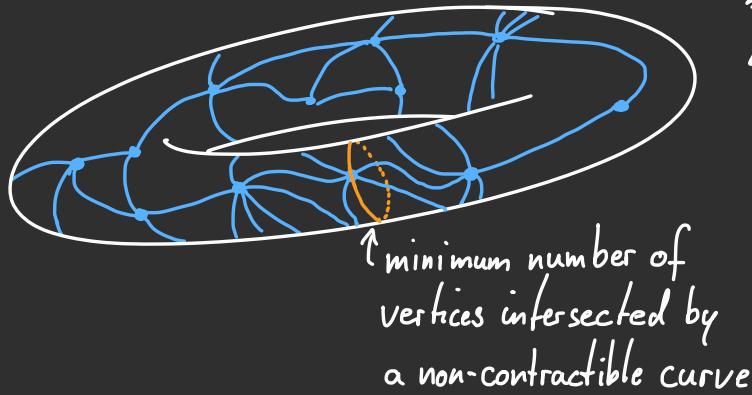
Theorem [Demaine, Fomin, Hajiaghayi & Thilikos '05]

Let G be an embedded graph (on a surface with positive genus) with representativity $4k$.

Then G contains a $(k \times k)$ -grid-minor.

Embedded graphs

representativity (of an embedded graph):



Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$ s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

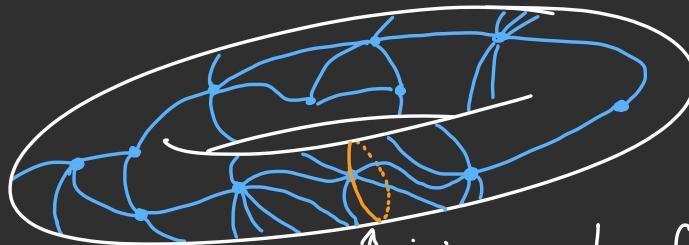
Theorem [Demaine, Fomin, Hajiaghayi & Thilikos '05]

Let G be an embedded graph (on a surface with positive genus) with representativity $4k$.

Then G contains a $(k \times k)$ -grid-minor.

Embedded graphs

representativity (of an embedded graph):



↑ minimum number of
vertices intersected by
a non-contractible curve

Theorem [Demaine, Fomin, Hajiaghayi & Thilikos '05]

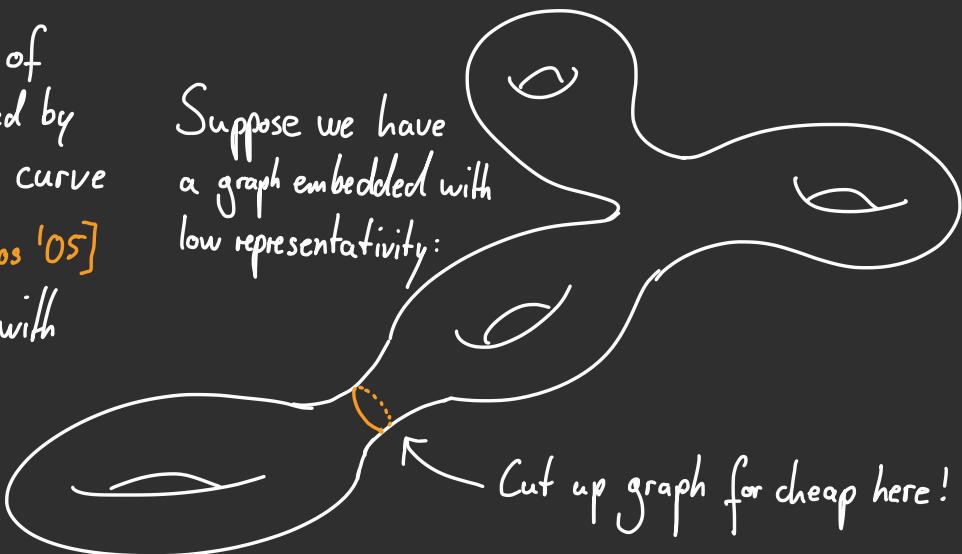
Let G be an embedded graph (on a surface with positive genus) with representativity $4k$.

Then G contains a $(k \times k)$ -grid-minor.

Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$ s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

Suppose we have
a graph embedded with
low representativity:



The bounded genus case

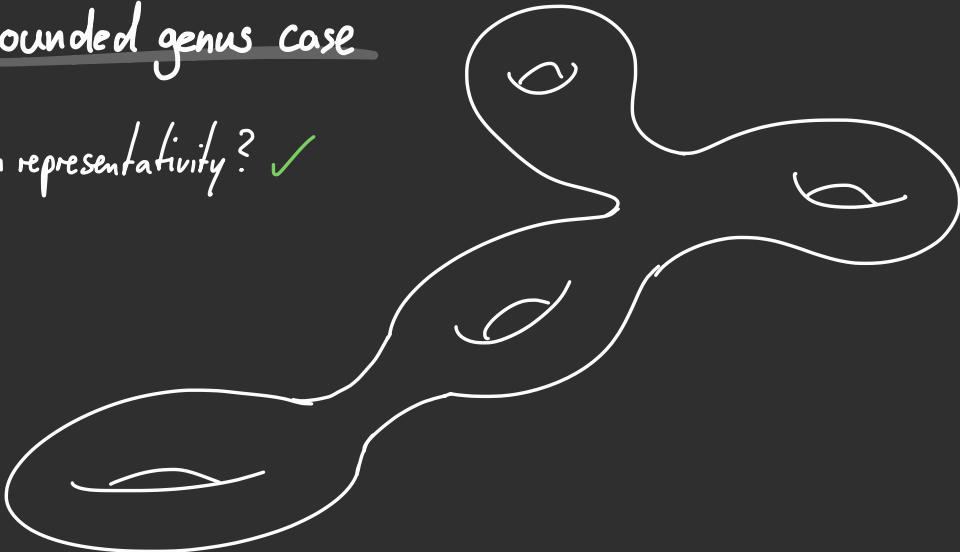
Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$

s.t. $bw(G-X) \geq 2$.

Then $bw(G-X) \geq bw(G) - |X|$.

High representativity? ✓

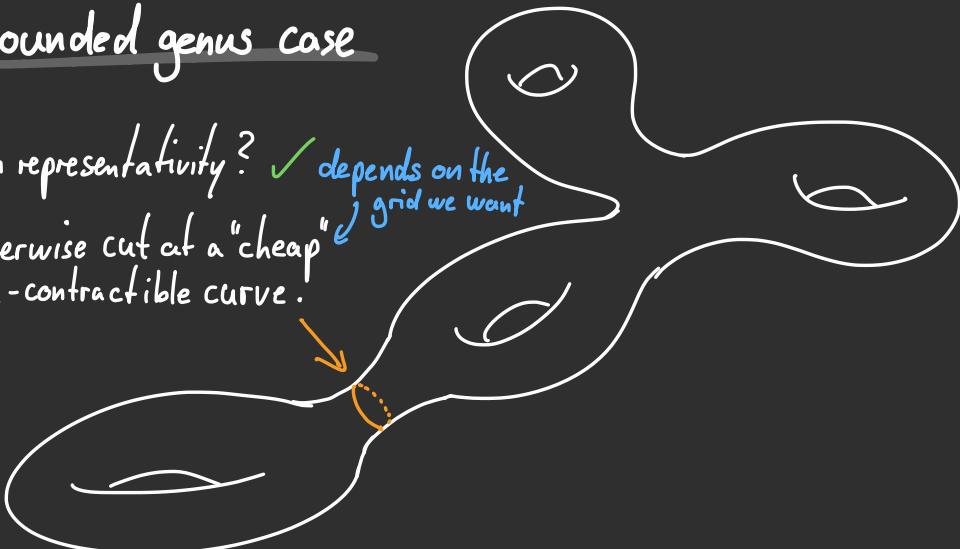
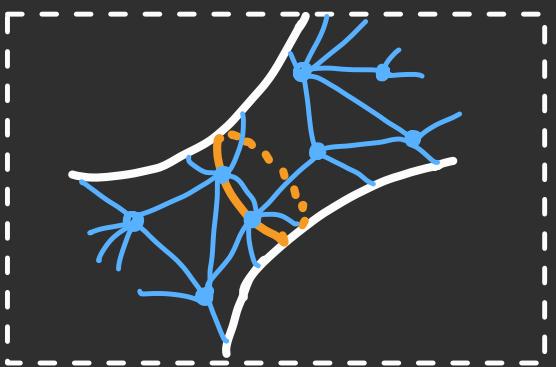


The bounded genus case

Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

High representativity? ✓ depends on the
grid we want
Otherwise cut at a "cheap"
non-contractible curve.

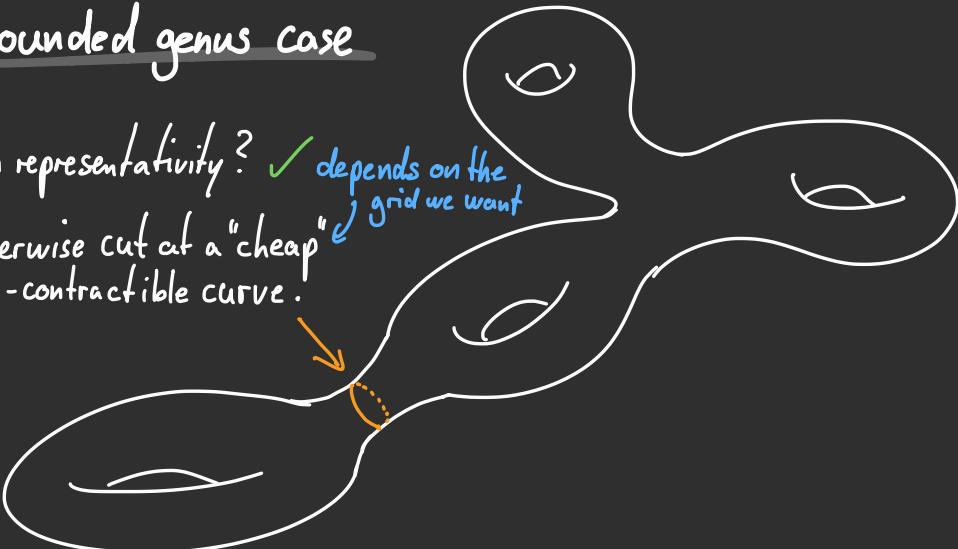
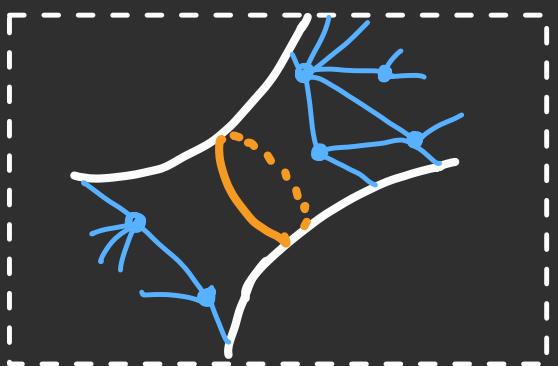


The bounded genus case

Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

High representativity? ✓ depends on the
grid we want
Otherwise cut at a "cheap"
non-contractible curve.

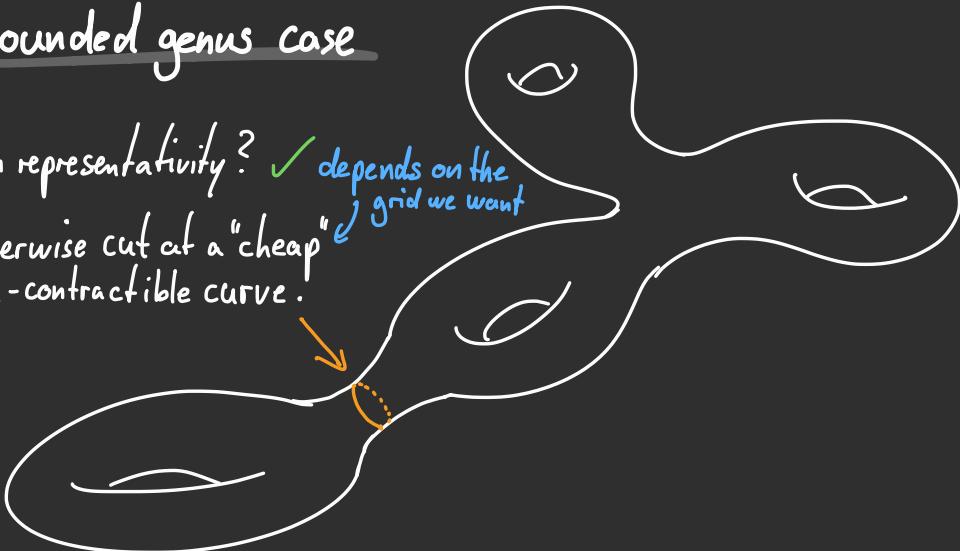


The bounded genus case

Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

High representativity? ✓ depends on the
grid we want
Otherwise cut at a "cheap"
non-contractible curve.



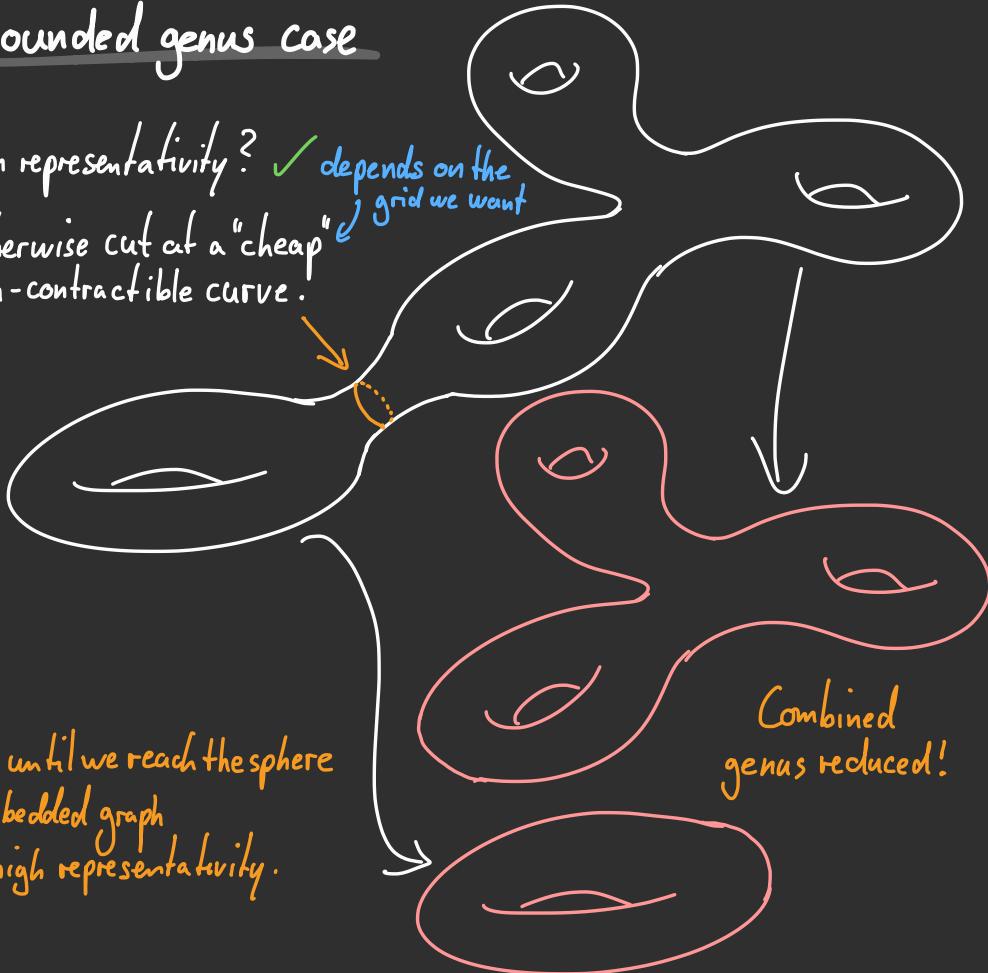
The bounded genus case

Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

Repeat until we reach the sphere
or embedded graph
with high representativity.

High representativity? ✓ depends on the
grid we want
Otherwise cut at a "cheap"
non-contractible curve.



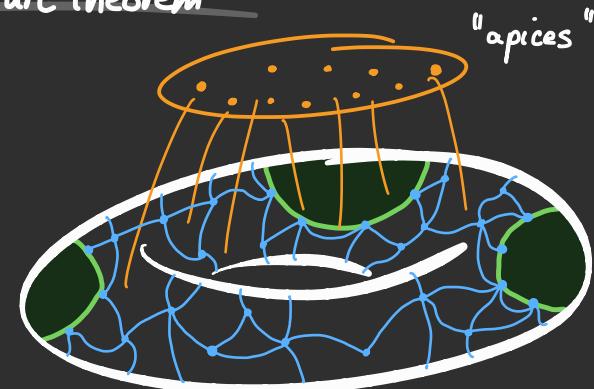
Combined
genus reduced!

Theorem [Original -
Robertson &
Seymour '03]

The Graph Minor Structure Theorem

There exists a function f such that for every graph H , $t := |V(H)|$
every H -minor-free G can be constructed via $\leq f(t)$ -sums
from graphs that are built via:

- i) taking a graph embedded "up to 3-separations" in a surface Σ into which H does not embed,
- ii) adding $f(t)$ vertices of width at most $f(t)$, and
- iii) adding at most $f(t)$ apices A to this graph.



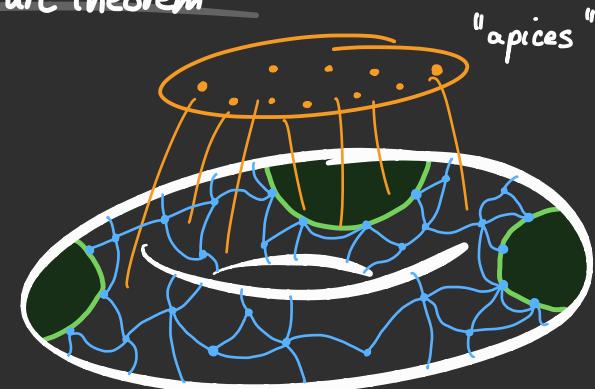
Theorem Original -
Robertson &
Seymour '03

The Graph Minor Structure Theorem

There exists a function f such that for every graph H , $t := |V(H)|$
every H -minor-free G can be constructed via $\leq f(t)$ -sums
from graphs that are built via:

- i) taking a graph embedded "up to 3-separations" in a surface Σ into which H does not embed, *
- ii) adding $f(t)$ vertices of width at most $f(t)$, and
- iii) adding at most $f(t)$ apices A to this graph.

} gives a special tree-decomposition of G



$f \in \Theta(t^{2300})$ and * this part of the graph is a minor of G .

↑ Proved using [Grohe '16]

[G., Seweryn & Wiederrecht 25'+]

Apices:

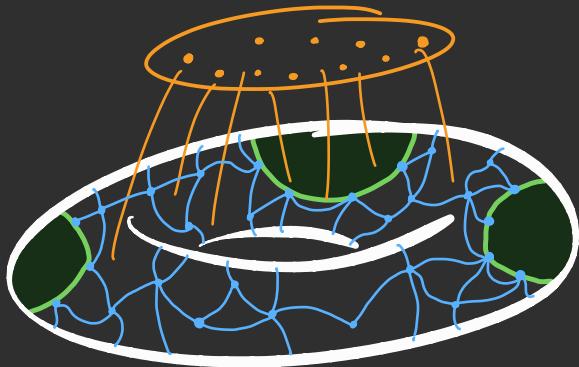
Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$

s.t. $bw(G-X) \geq 2$.

Then $bw(G-X) \geq bw(G) - |X|$.

General case



Apices:

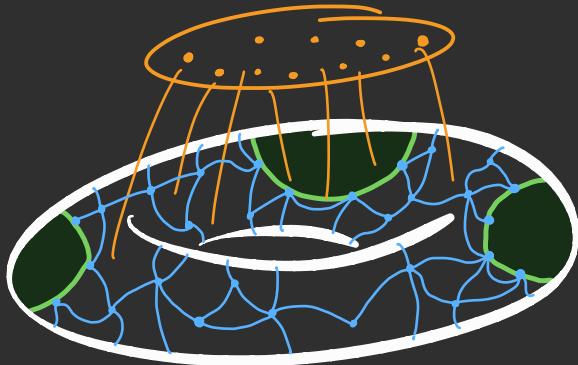
Lemma [folklore]

Let G be a graph and $X \subseteq V(G)$

s.t. $bw(G-X) \geq 2$.

Then $bw(G-X) \geq bw(G) - |X|$.

General case



Vortices:

Theorem [Thilikos & Wiederrecht '25]

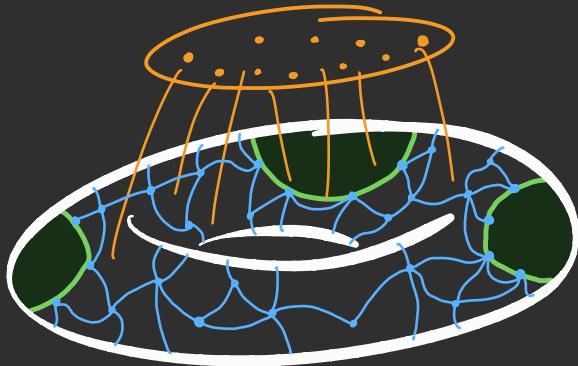
Let G be a graph embedded on the sphere with b vortices of width $\leq w$. Let G' be the result of deleting the "inside" of all vortices.

Then $bw(G) \leq bw(G') + 2wb$.

Apices:

Lemma [folklore]
Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

General case



Vortices:

Theorem [Thilikos & Wiederrecht '25]

Let G be a graph embedded on the sphere with b vortices of width $\leq w$. Let G' be the result of deleting the "inside" of all vortices.

Then $bw(G) \leq bw(G') + 2wb$.

Not algorithmic!

Proof uses sphere-cut decompositions & tangles.

Theorem

Let G be a graph embedded on the sphere with b vortices of width $\leq w$.

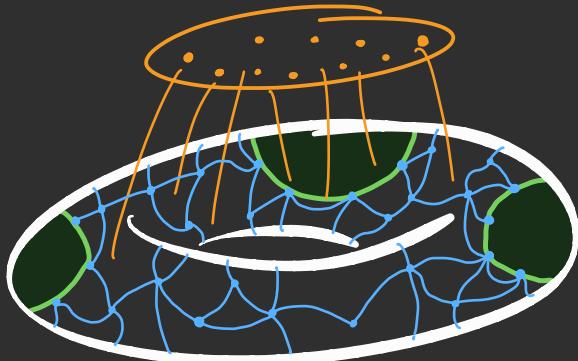
Let G' be the result of deleting the "inside" of all vortices.

Then $bw(G) \leq bw(G') + 2wb + 6b$ and an appropriate branch-decomposition can be found in $\Theta(bwm + n^3)$ -time.

Apices:

Lemma [folklore]
Let G be a graph and $X \subseteq V(G)$
s.t. $bw(G-X) \geq 2$.
Then $bw(G-X) \geq bw(G) - |X|$.

General case



Vortices:

Theorem [Thilikos & Wiederrecht '25]

Let G be a graph embedded on the sphere with b vortices of width $\leq w$. Let G' be the result of deleting the "inside" of all vortices.

Then $bw(G) \leq bw(G') + 2wb$.

Not algorithmic!

Proof uses sphere-cut decompositions & tangles.

Theorem

Let G be a graph embedded on the sphere with b vortices of width $\leq w$.

Let G' be the result of deleting the "inside" of all vortices.

Then $bw(G) \leq bw(G') + 2wb + 6b$ and an appropriate branch-decomposition can be found in $\Theta(bwm + n^3)$ -time.

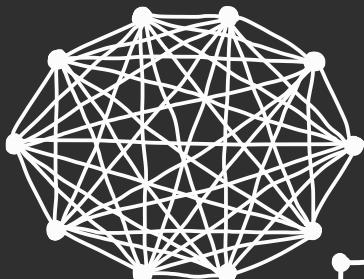
⇒ We can "more or less" reduce to the bounded genus case and proceed as explained earlier.

Finding a large grid- or clique-minor

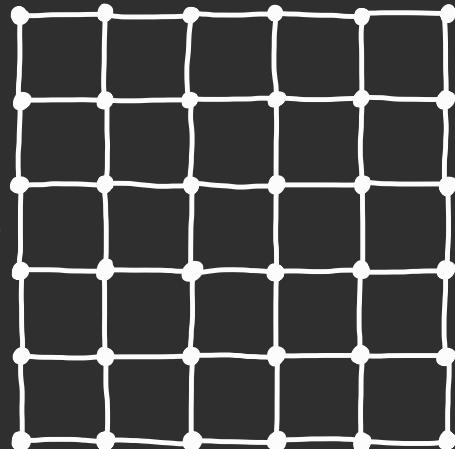
Theorem [G. Stamoulis, Thilikos,
& Wiederrecht '25+]

For any graph G , if $\text{tw}(G) \in \Omega(t^2 k + t^{2304})$

then G contains a K_t - or a $(k \times k)$ -grid-minor.



OR



In fact in $2^{\text{poly}(t)} \cdot \text{poly}(|V(G)|)$ -time we can find:

- a K_t -minor
- a $(k \times k)$ -grid-minor, or
(In fact an induced wall!)
- a branch-decomposition of G with approximately the correct width for G .

$\hookrightarrow \in \Omega(t^2 k + t^{2309})$
 \hookrightarrow branchwidth can be verified to either be at least k or $\in \Omega(t^2 k + t^{2302})$