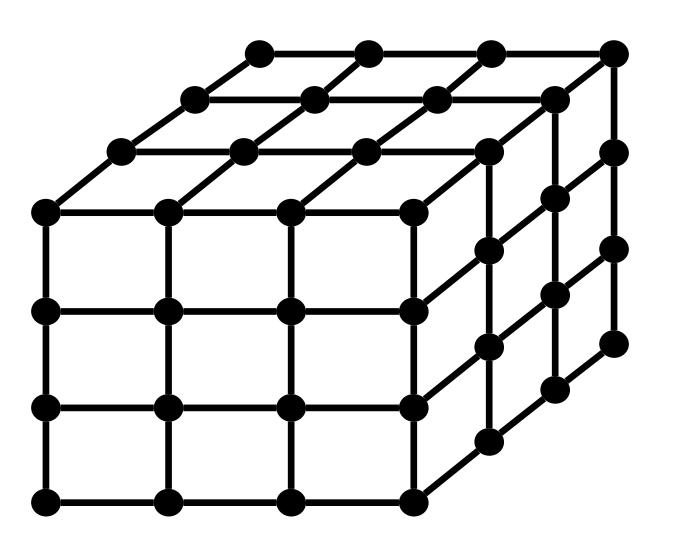
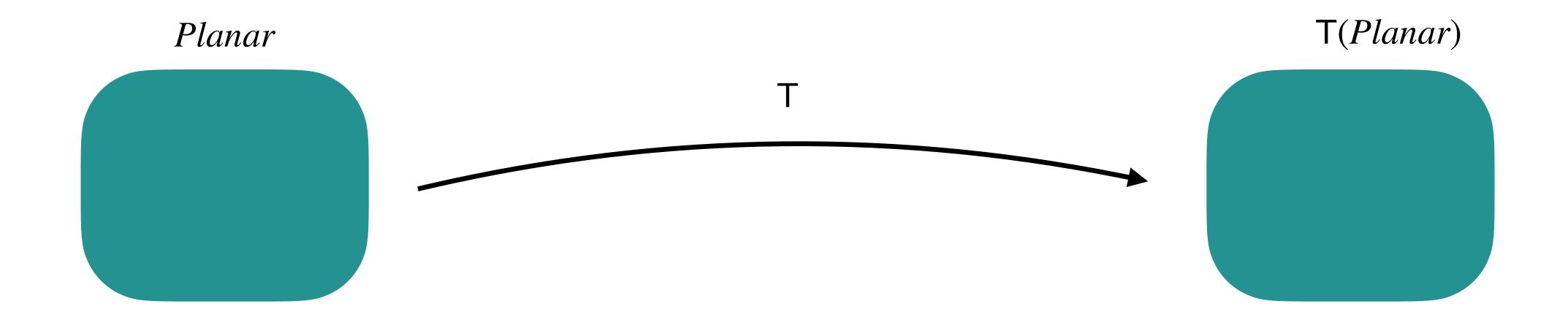
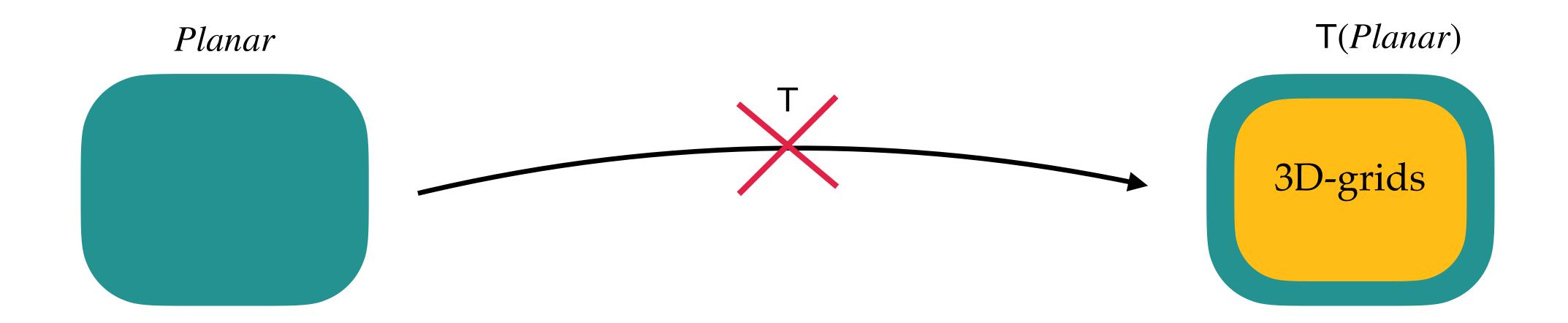
3D-grids are not transducible from planar graphs

Jakub Gajarský, Michał Pilipczuk, Filip Pokrývka

LOGALG 2025, Vienna







How and why prove such results?

Why are transductions important?

Transductions play a key role in the newly established field that can be called "structural logical graph theory".

Why are transductions important?

Transductions play a key role in the newly established field that can be called "structural logical graph theory".

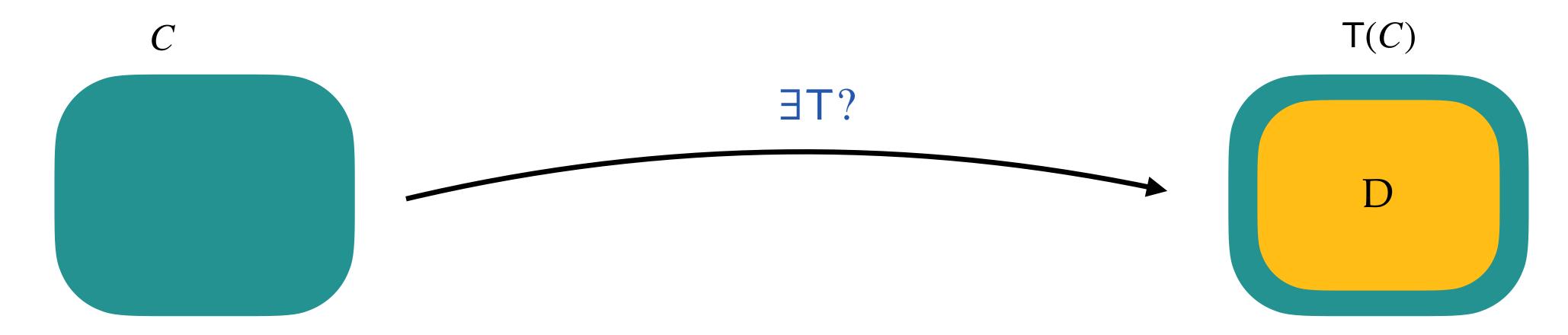
The core idea:

Study graph classes and the relationships between them using transductions.

Structural logical graph theory

Very basic question:

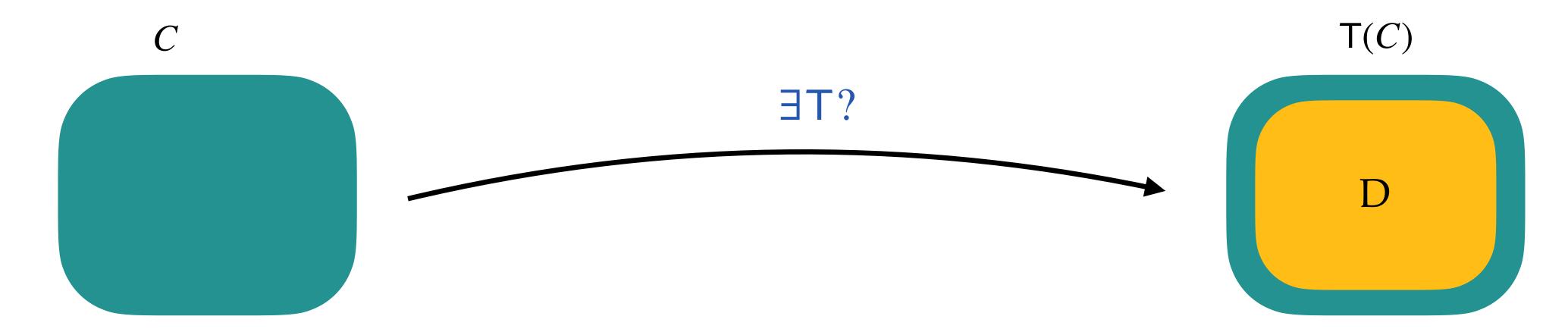
Given two graph classes C and D, does there exist a transduction T such that $D \subseteq T(C)$?



Structural logical graph theory

Very basic question:

Given two graph classes C and D, does there exist a transduction T such that $D \subseteq T(C)$?



More concisely:

Given two graph classes C and D, is D transducible from C?

Basic question:

Given two graph classes C and D, is D transducible from C?

Basic question:

Given two graph classes C and D, is D transducible from C?

Examples:

For any k, the class of graphs of pathwidth k is transducible from planar graphs.

Basic question:

Given two graph classes C and D, is D transducible from C?

Examples:

- For any *k*, the class of graphs of pathwidth k is transducible from planar graphs.
- For $k \ge 4$, the class of graphs of treewidth k is not transducible from planar graphs.

Basic question:

Given two graph classes C and D, is D transducible from C?

Examples:

- For any *k*, the class of graphs of pathwidth k is transducible from planar graphs.
- For $k \ge 4$, the class of graphs of treewidth k is not transducible from planar graphs.
- The class of 3D-grids is not transducible from planar graphs.

Basic question:

Given two graph classes C and D, is D transducible from C?

Examples:

- For any *k*, the class of graphs of pathwidth k is transducible from planar graphs.
- For $k \ge 4$, the class of graphs of treewidth k is not transducible from planar graphs.
- The class of 3D-grids is not transducible from planar graphs.
- The class of graphs of treewidth k + 1 not transducible from treewidth k.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

• For positive answer one just needs to provide a suitable transduction T.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

• For positive answer one just needs to provide a suitable transduction T.

One has to expose the simplicity of *D* and the richness of *C*.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π .

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π .

Trees have bounded cliquewidth.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π .

Trees have bounded cliquewidth.

- If C has Π , then $\mathsf{T}(C)$ has Π .

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π . Trees have bounded cliquewidth.

- If C has Π , then $\mathsf{T}(C)$ has Π . Cliquewidth is closed under transductions.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π . Trees have bounded cliquewidth.

- If C has Π , then $\mathsf{T}(C)$ has Π . Cliquewidth is closed under transductions.

- D does not have Π .

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π . Trees have bounded cliquewidth.

- If C has Π , then $\mathsf{T}(C)$ has Π . Cliquewidth is closed under transductions.

- D does not have Π . Planar graphs have unbounded cliquewidth.

Given two graph classes C and D, is D transducible from C?

How to answer such a question?

- For positive answer one just needs to provide a suitable transduction T.
- For negative answer, the proofs are more interesting.

Example: Planar graphs are not transducible from trees.

Standard idea — find a graph property Π such that:

- C has Π . Trees have bounded cliquewidth.

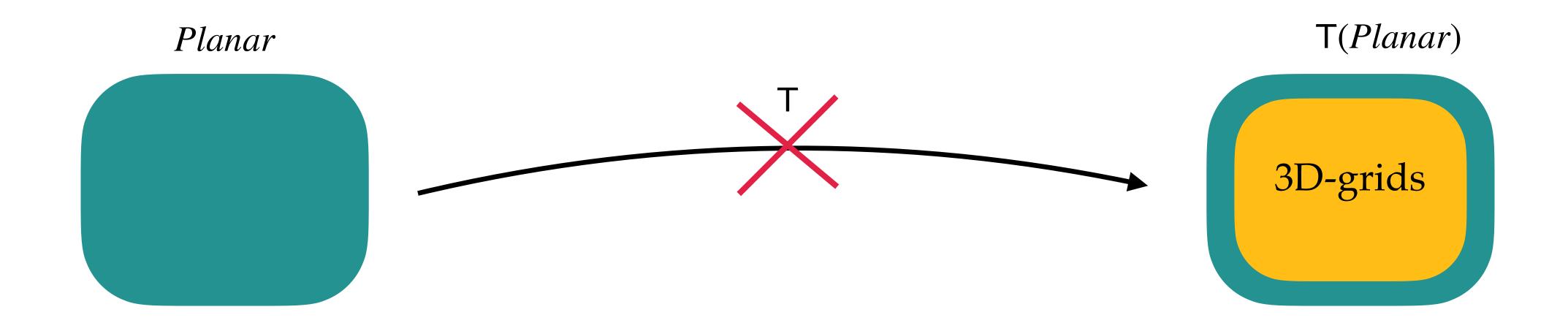
- If C has Π , then $\mathsf{T}(C)$ has Π . Cliquewidth is closed under transductions.

- D does not have Π . Planar graphs have unbounded cliquewidth.

Transduction closed properties:

cliquewidth, twin-width, shrub-depth, merge-width, monadic dependence, monadic stability...

The proof



There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

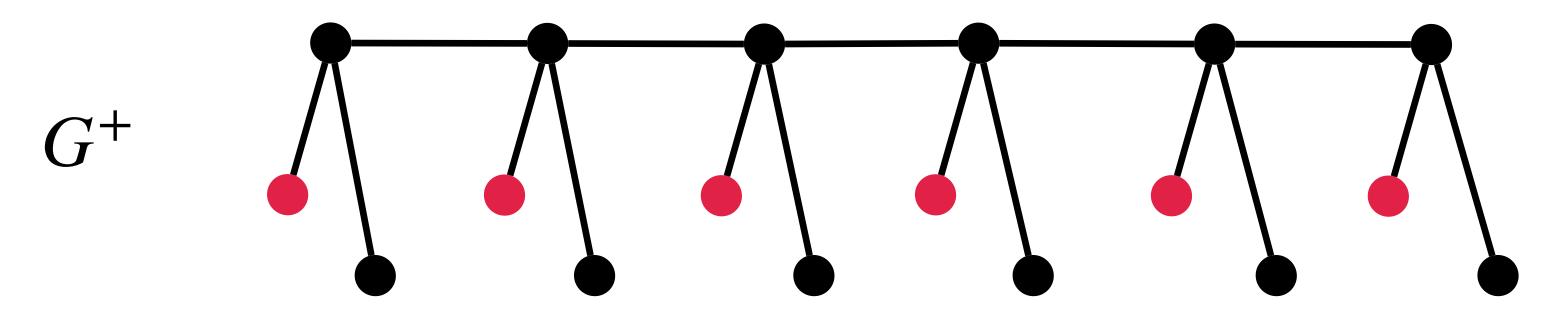
- Focus on transductions of **bounded range** first.
- Extend the results to full transductions.

We say that a transduction T has bounded range if there exists $b \in \mathbb{N}$ such that the following holds for any G:

If u, v are vertices of G such that $dist_G(u, v) > b$, then u, v are not adjacent in $\mathsf{T}(G)$.

We say that a transduction T has bounded range if there exists $b \in \mathbb{N}$ such that the following holds for any G:

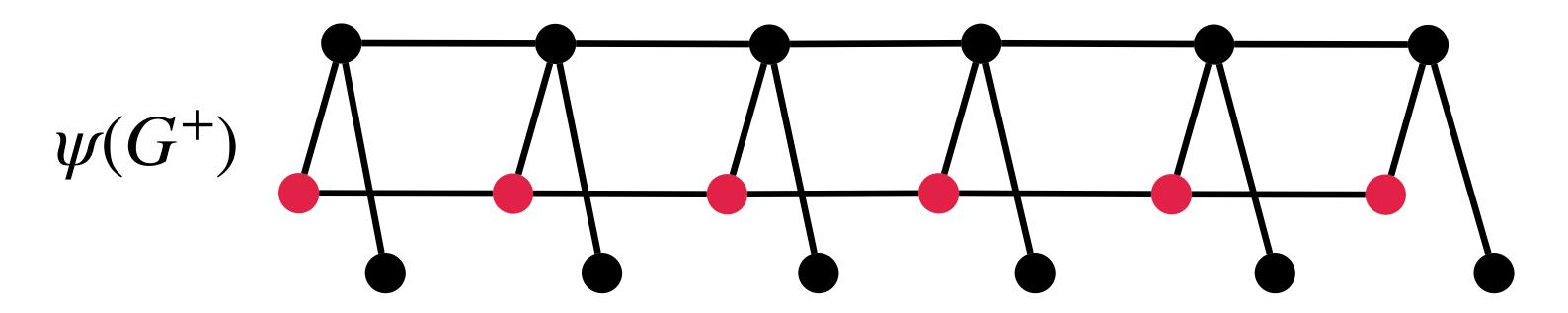
If u, v are vertices of G such that $dist_G(u, v) > b$, then u, v are not adjacent in $\mathsf{T}(G)$.



$$\psi(x,y) := E(x,y) \lor (dist(x,y) = 3 \land Red(x) \land Red(y))$$

We say that a transduction T has bounded range if there exists $b \in \mathbb{N}$ such that the following holds for any G:

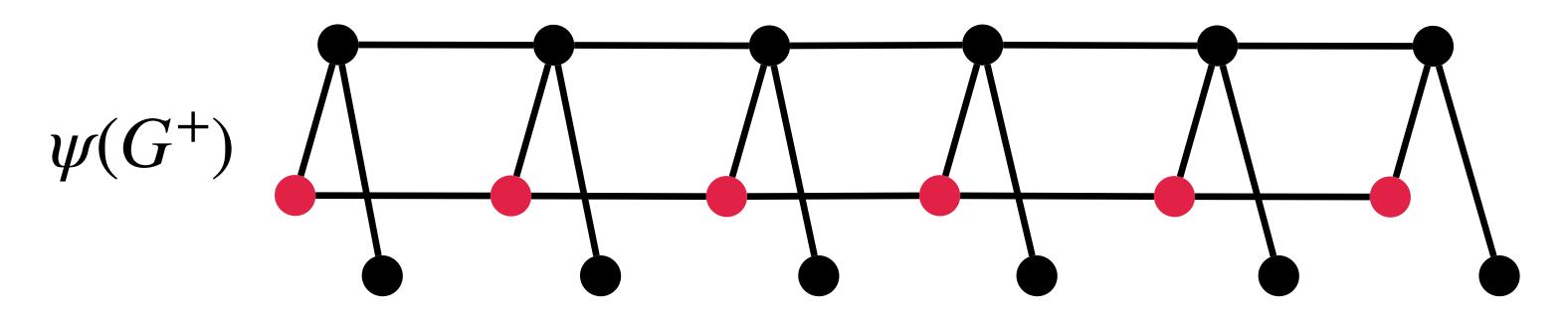
If u, v are vertices of G such that $dist_G(u, v) > b$, then u, v are not adjacent in $\mathsf{T}(G)$.



$$\psi(x,y) := E(x,y) \lor (dist(x,y) = 3 \land Red(x) \land Red(y))$$

We say that a transduction T has bounded range if there exists $b \in \mathbb{N}$ such that the following holds for any G:

If u, v are vertices of G such that $dist_G(u, v) > b$, then u, v are not adjacent in $\mathsf{T}(G)$.



$$\psi(x,y) := E(x,y) \lor (dist(x,y) = 3 \land Red(x) \land Red(y))$$

The range of T is 3.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first.
- Extend the result to full transductions.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

• Focus on transductions of **bounded range** first:

• Extend the result to full transductions.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has slice decompositions for every transduction T of bounded range.

• Extend the result to full transductions.

Theorem

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has **slice decompositions** for every transduction T of bounded range.
 - (ii) Show that 3D-grids do not have slice decompositions

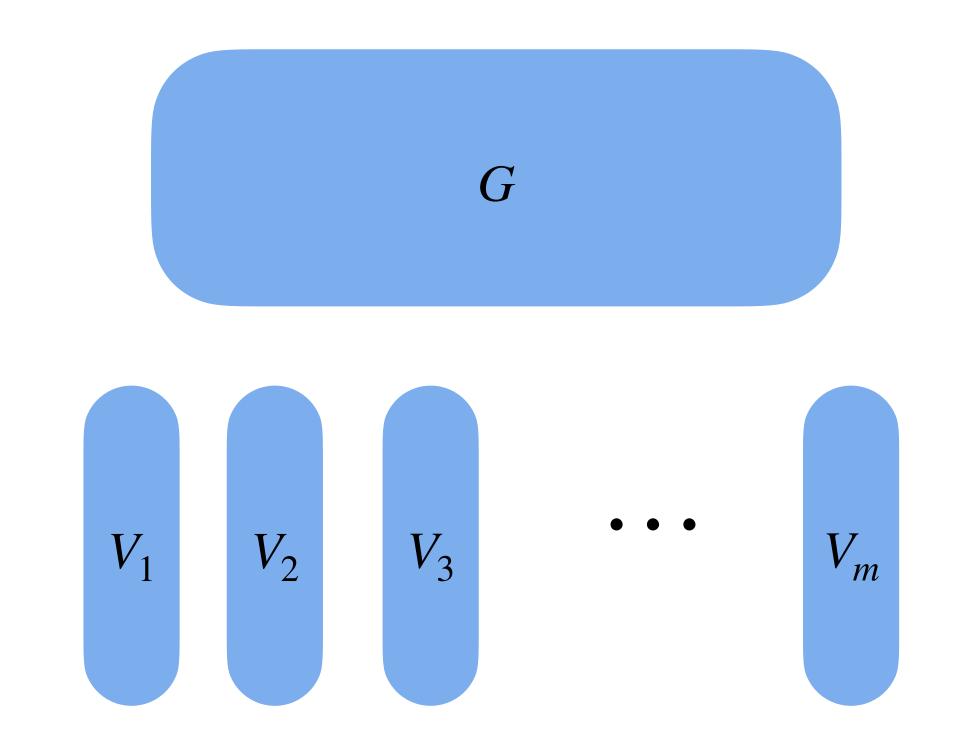
•Extend the result to full transductions.

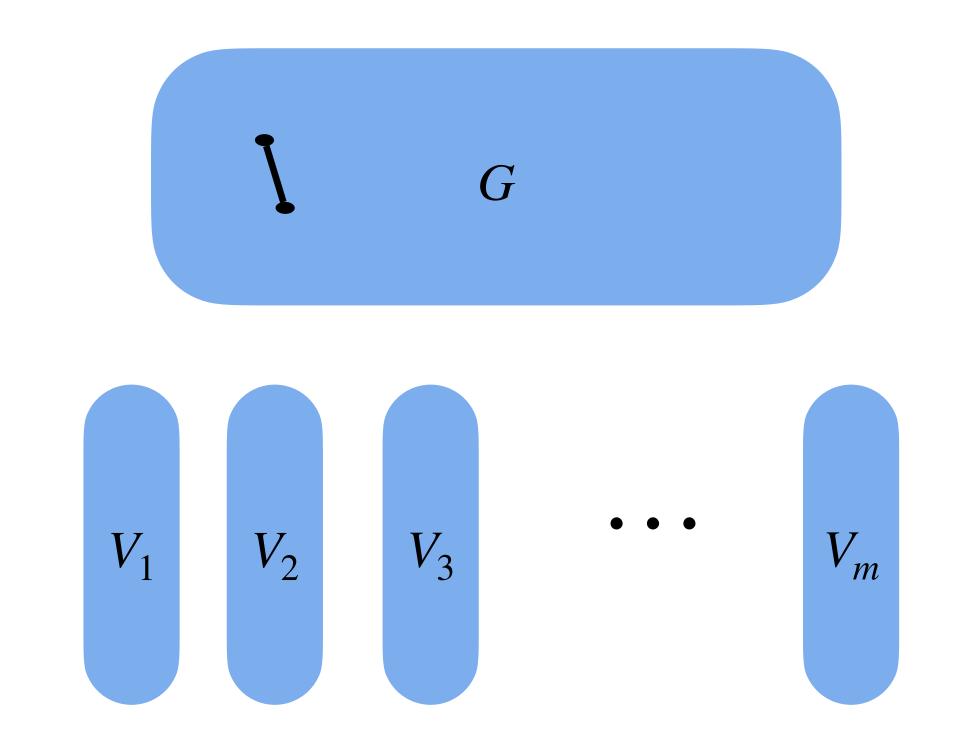
Theorem

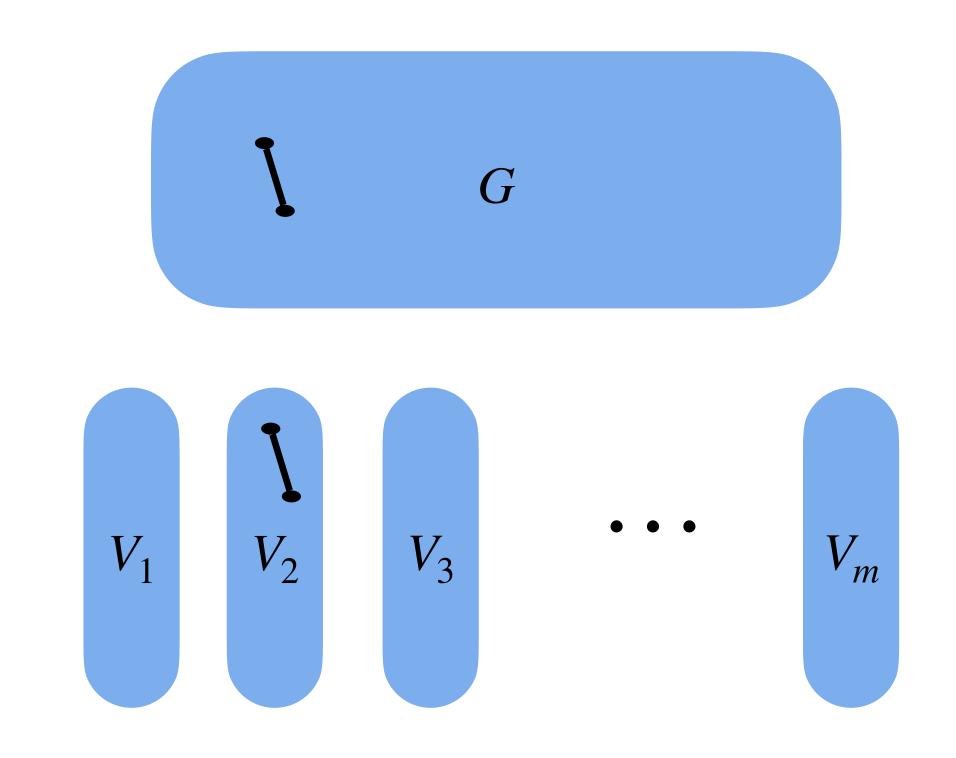
There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

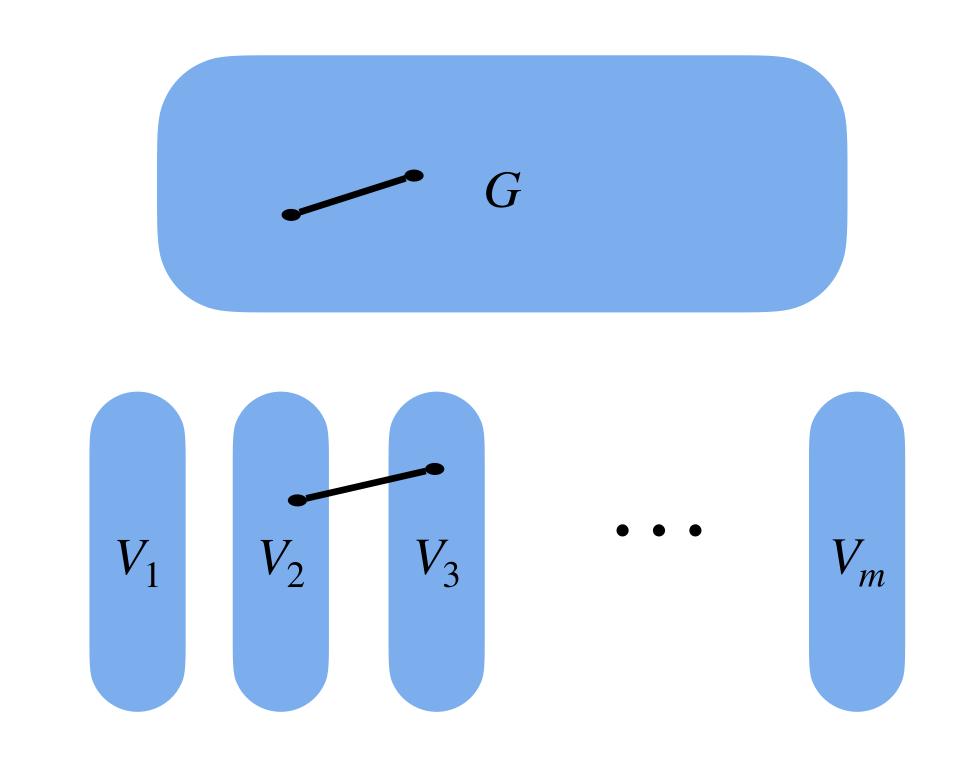
Proof plan:

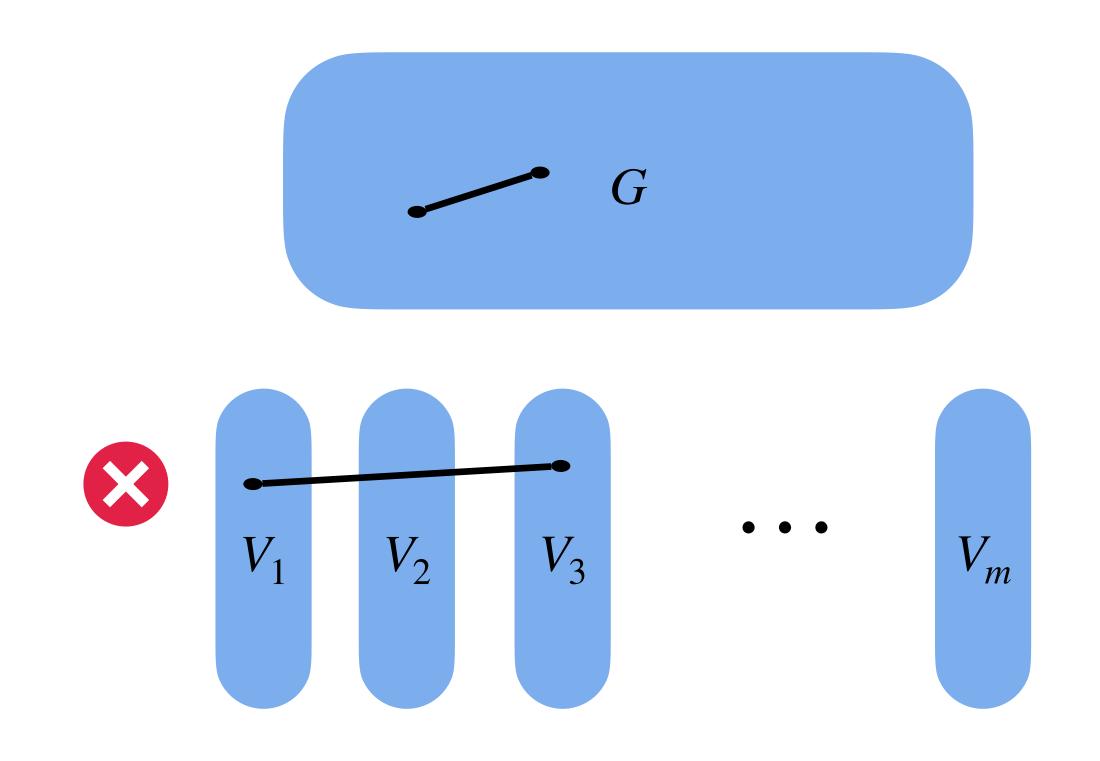
- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(*Planar*) has **slice decompositions** for every transduction T of bounded range.
 - (ii) Show that 3D-grids do not have slice decompositions
 - From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$
- •Extend the result to full transductions.



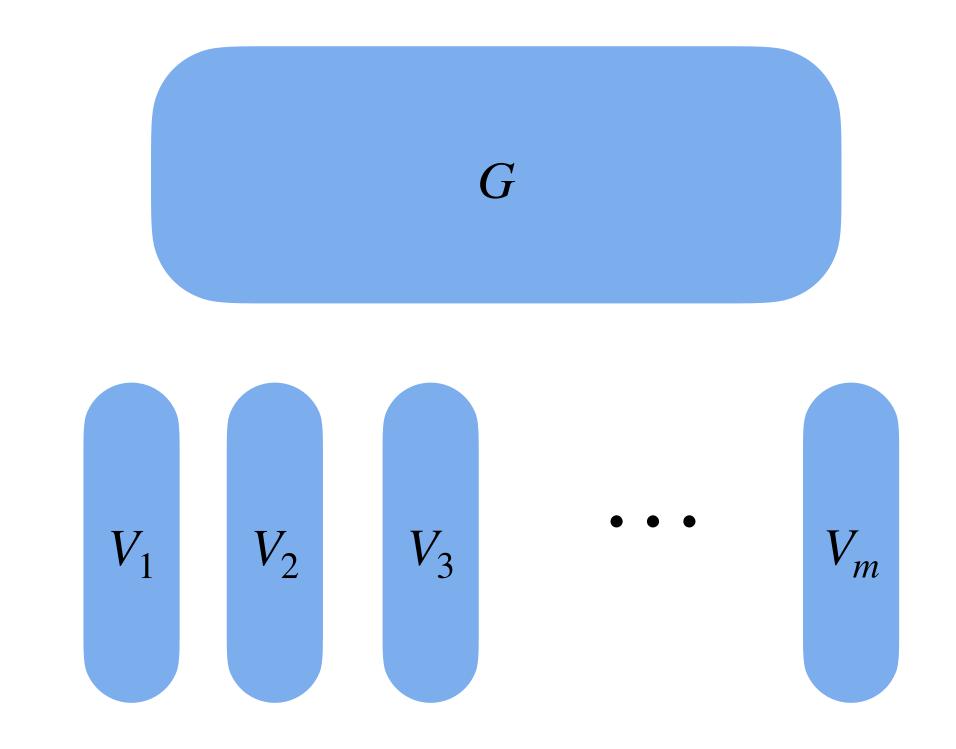




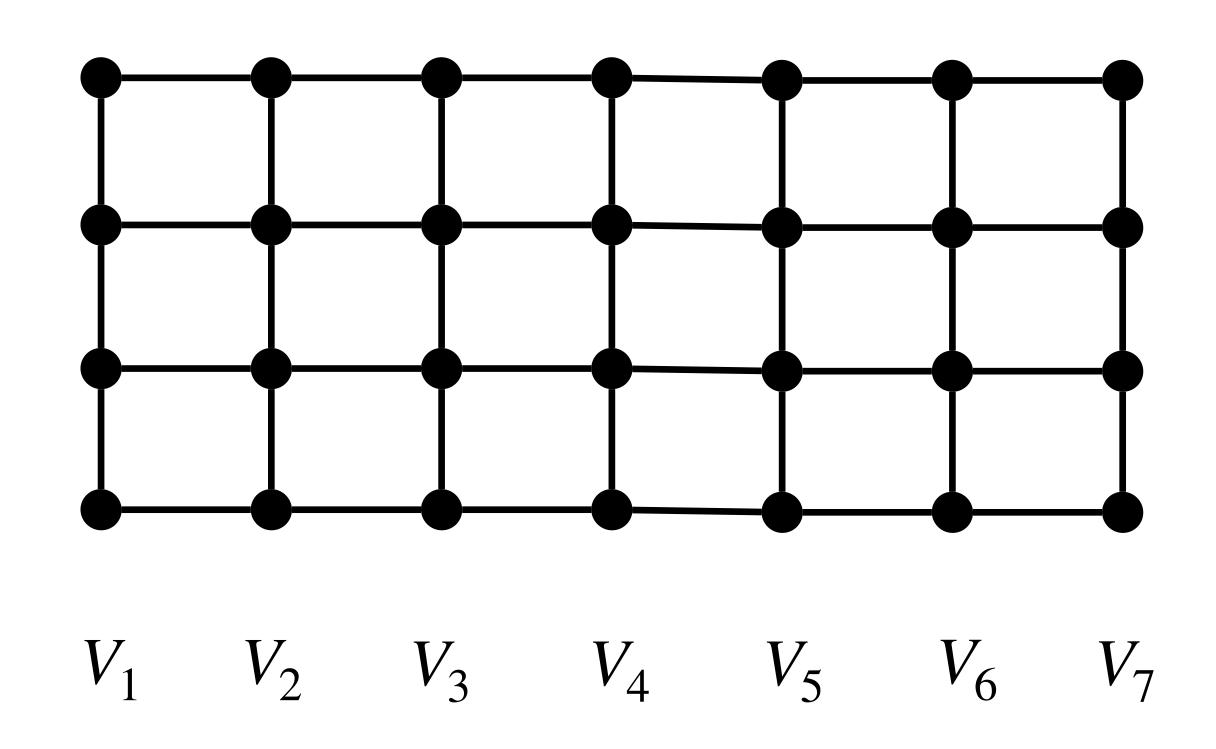


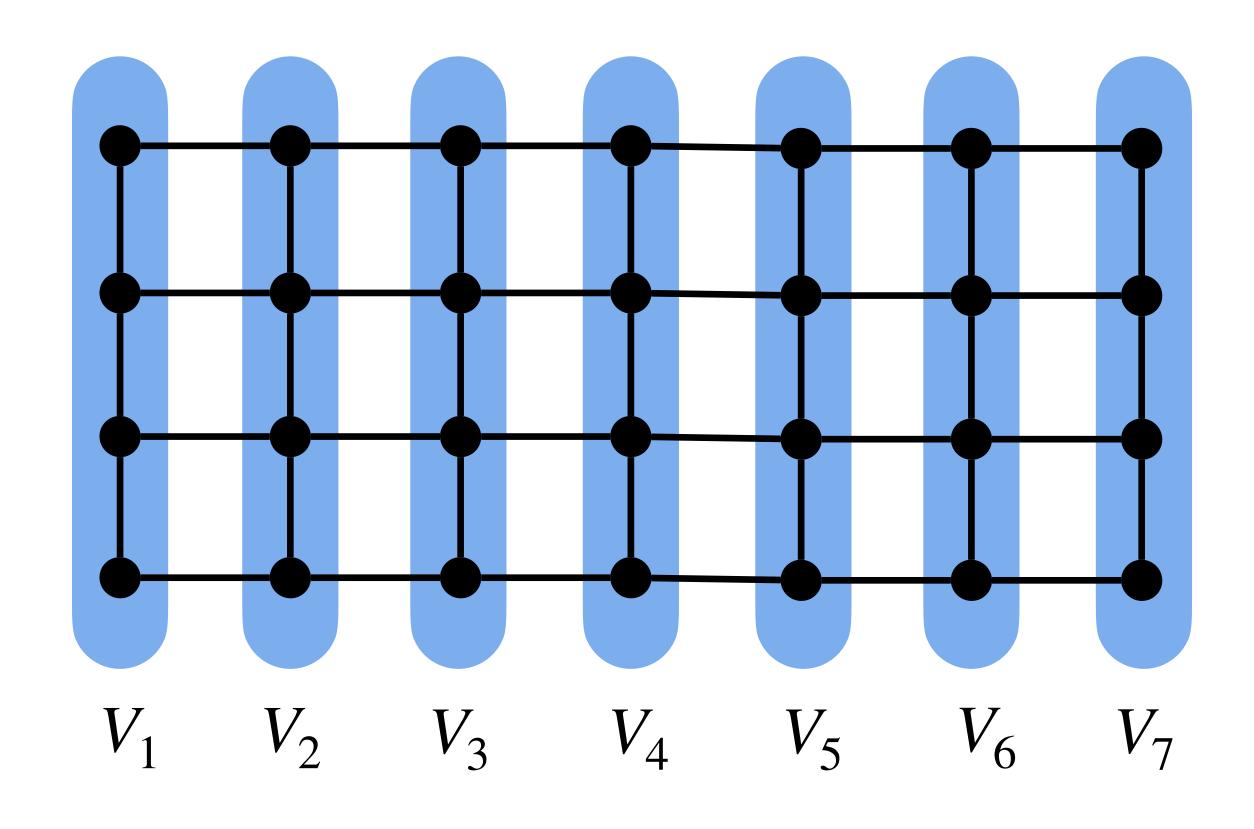


A slice partition of G is a partition $V_1, ..., V_m$ of V(G) such that:



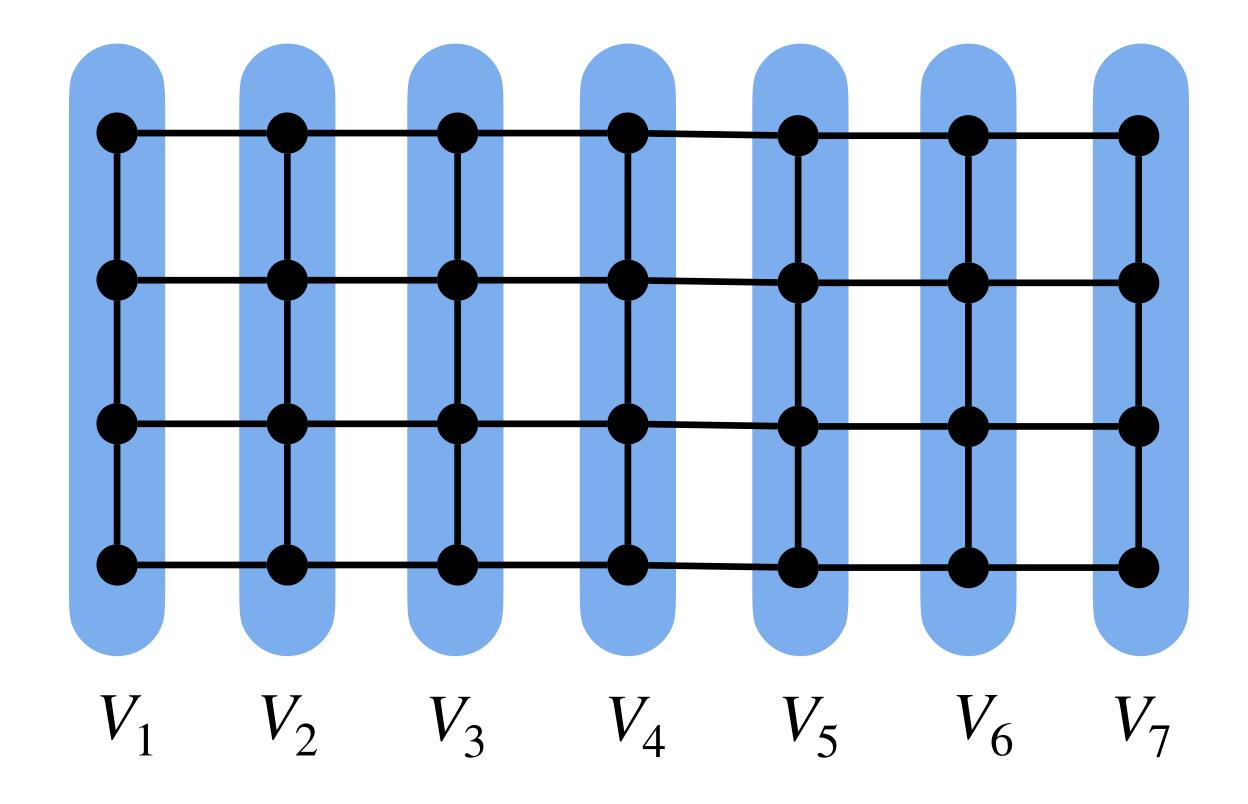
The sets $V_1, ..., V_m$ are called **slices**.



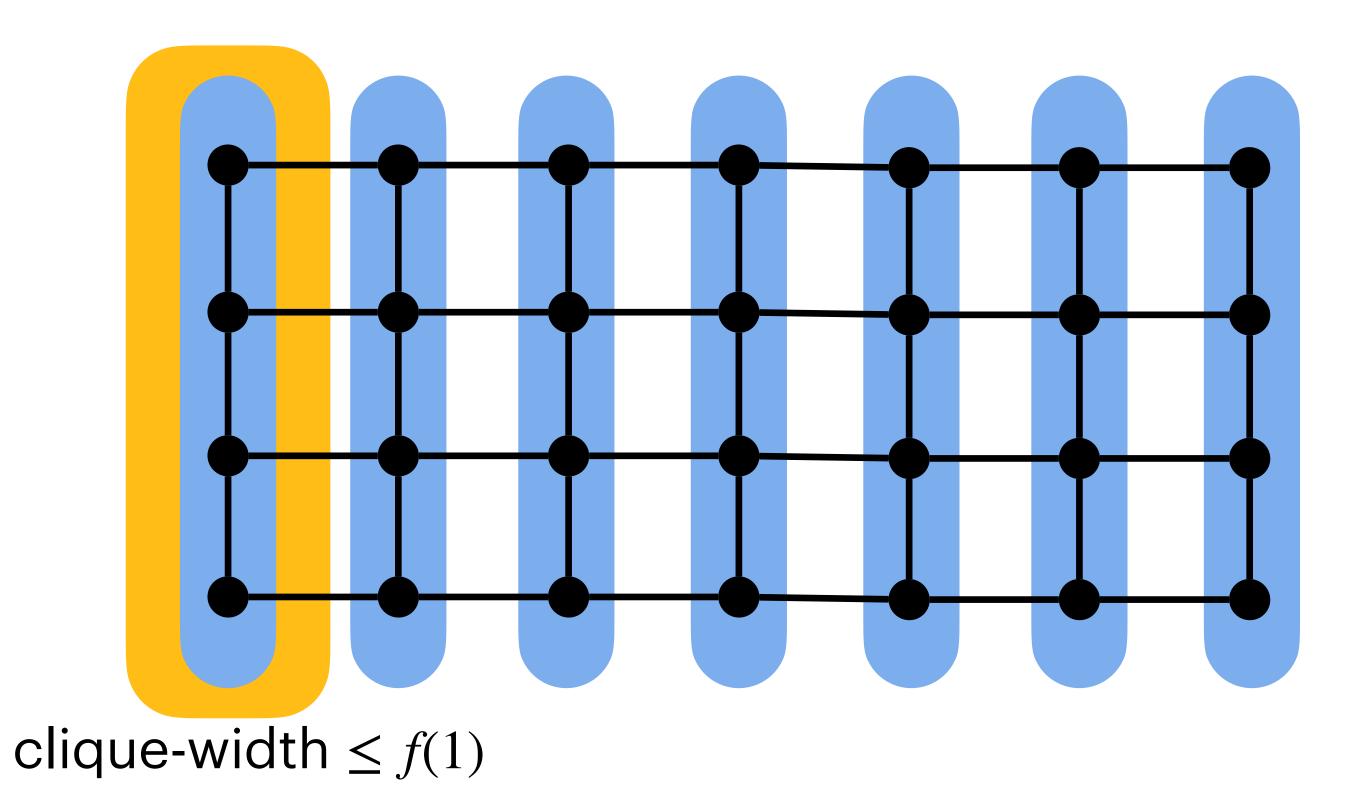


Fix $f: \mathbb{N} \to \mathbb{N}$.

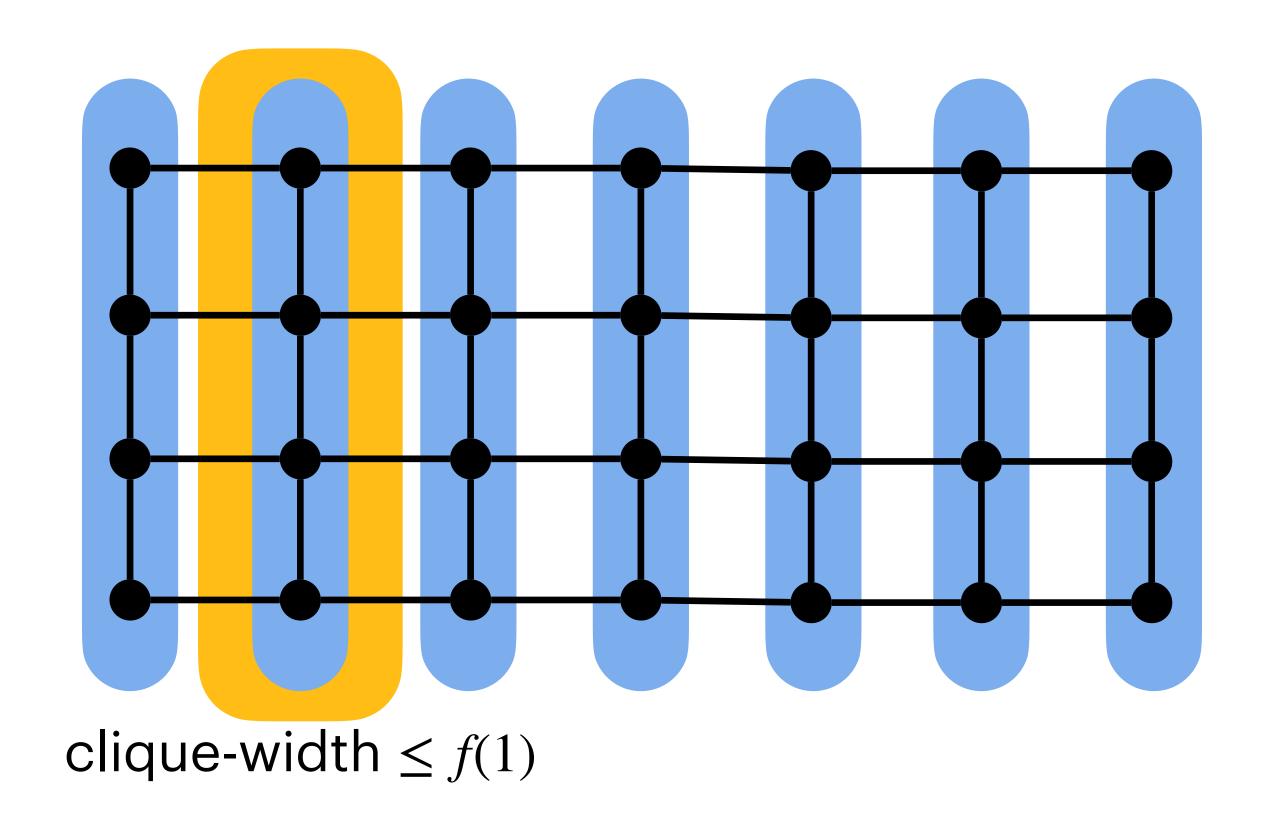
Fix $f: \mathbb{N} \to \mathbb{N}$.



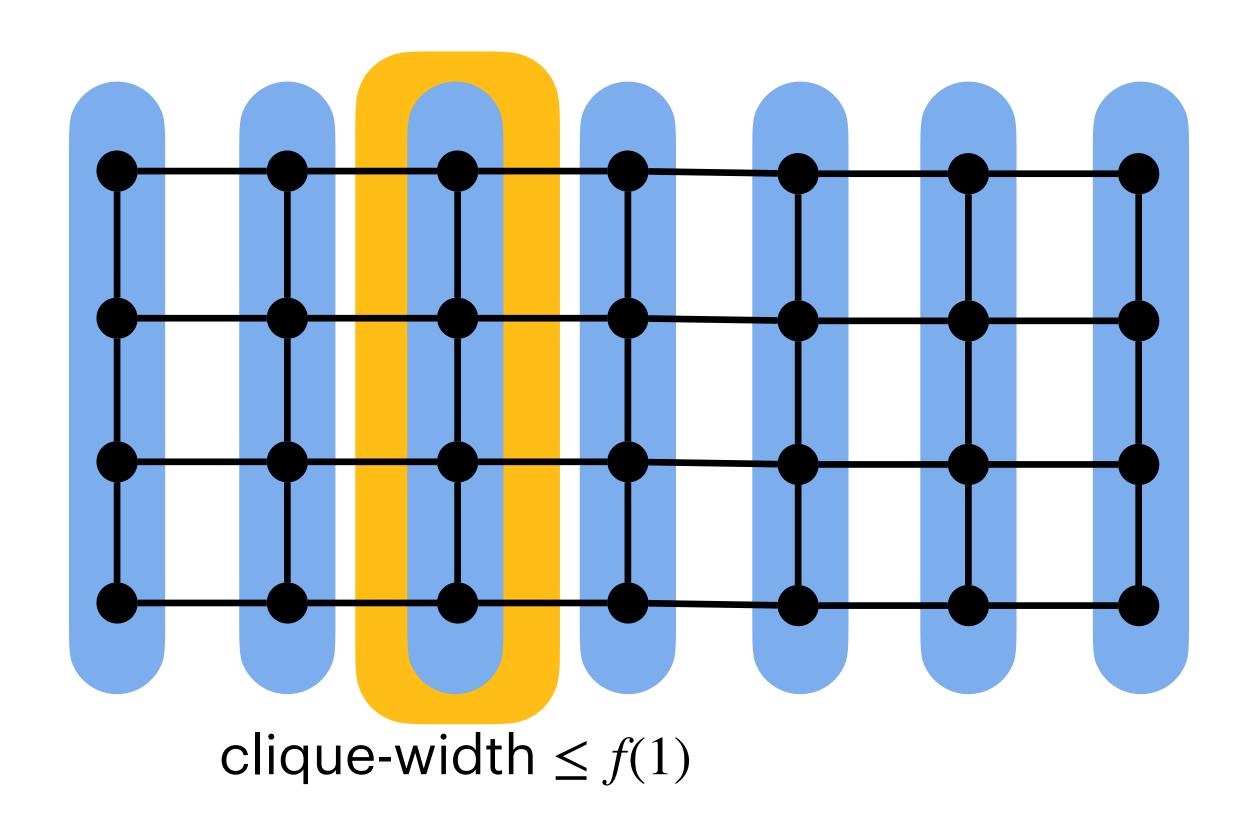
Fix $f: \mathbb{N} \to \mathbb{N}$.



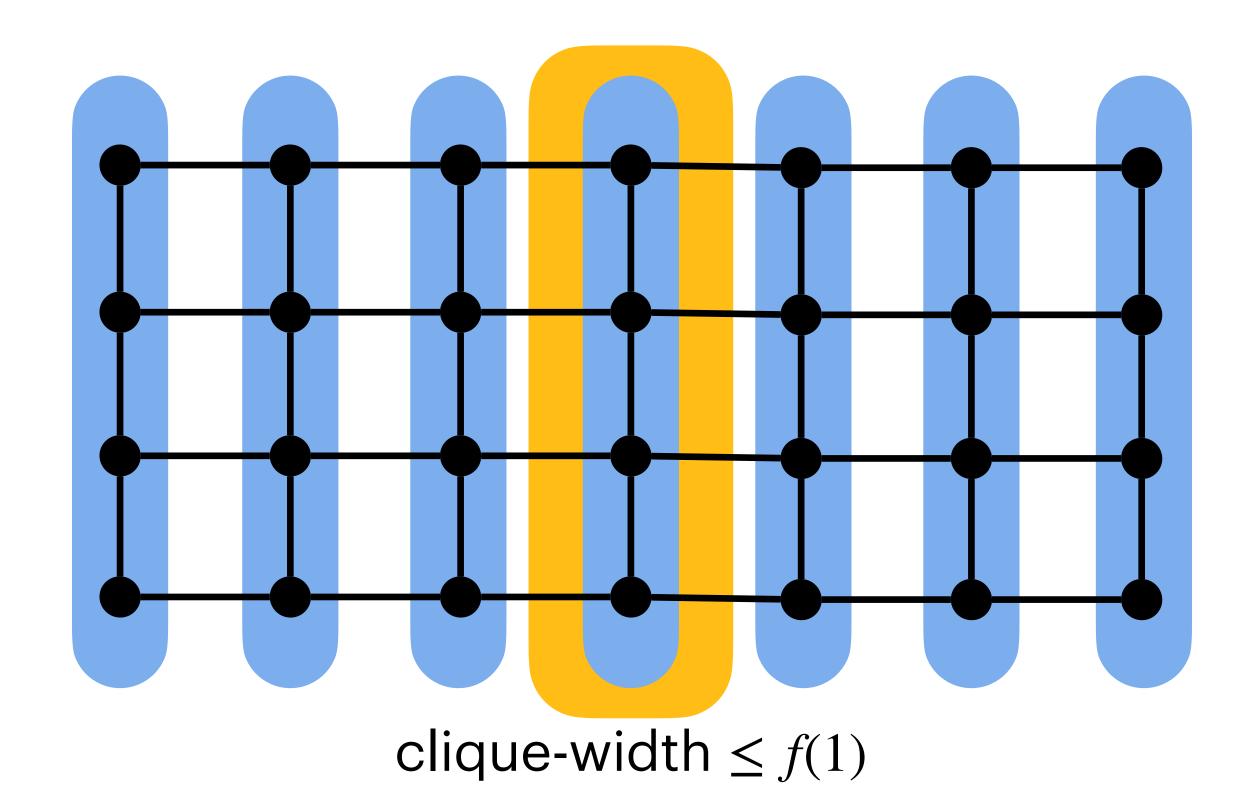
Fix $f: \mathbb{N} \to \mathbb{N}$.



Fix $f: \mathbb{N} \to \mathbb{N}$.

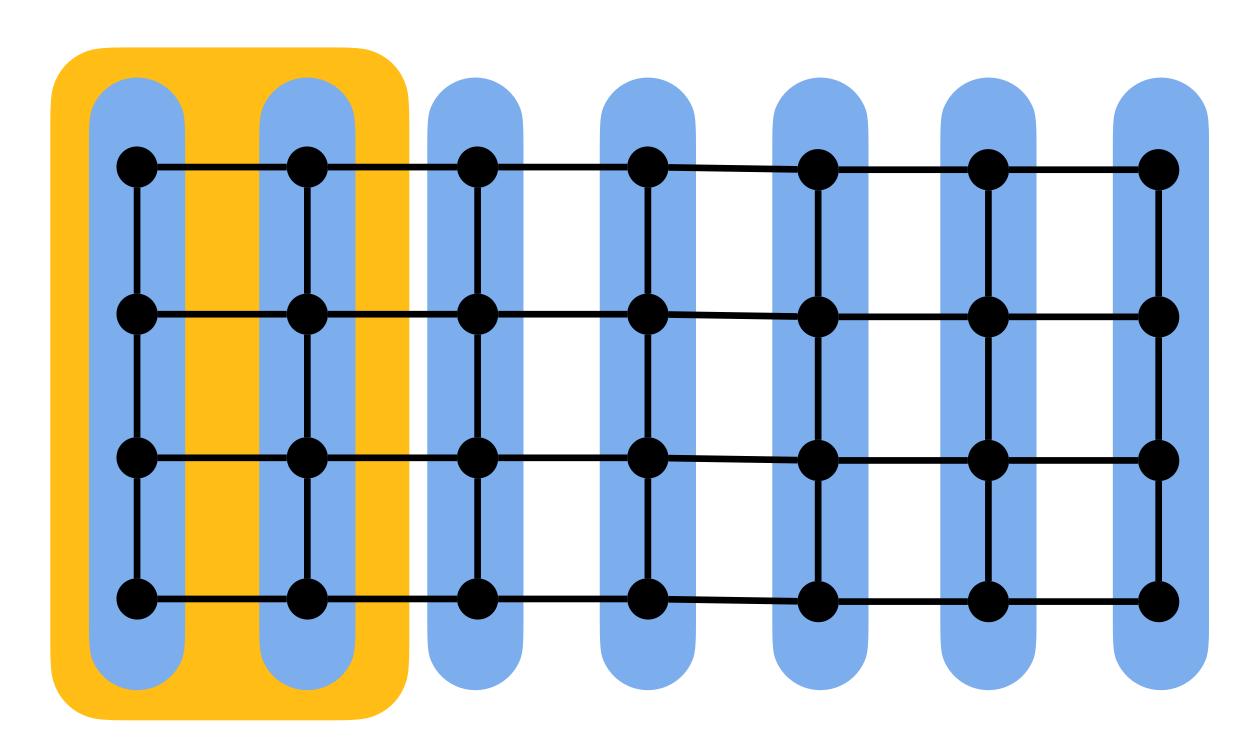


Fix $f: \mathbb{N} \to \mathbb{N}$.



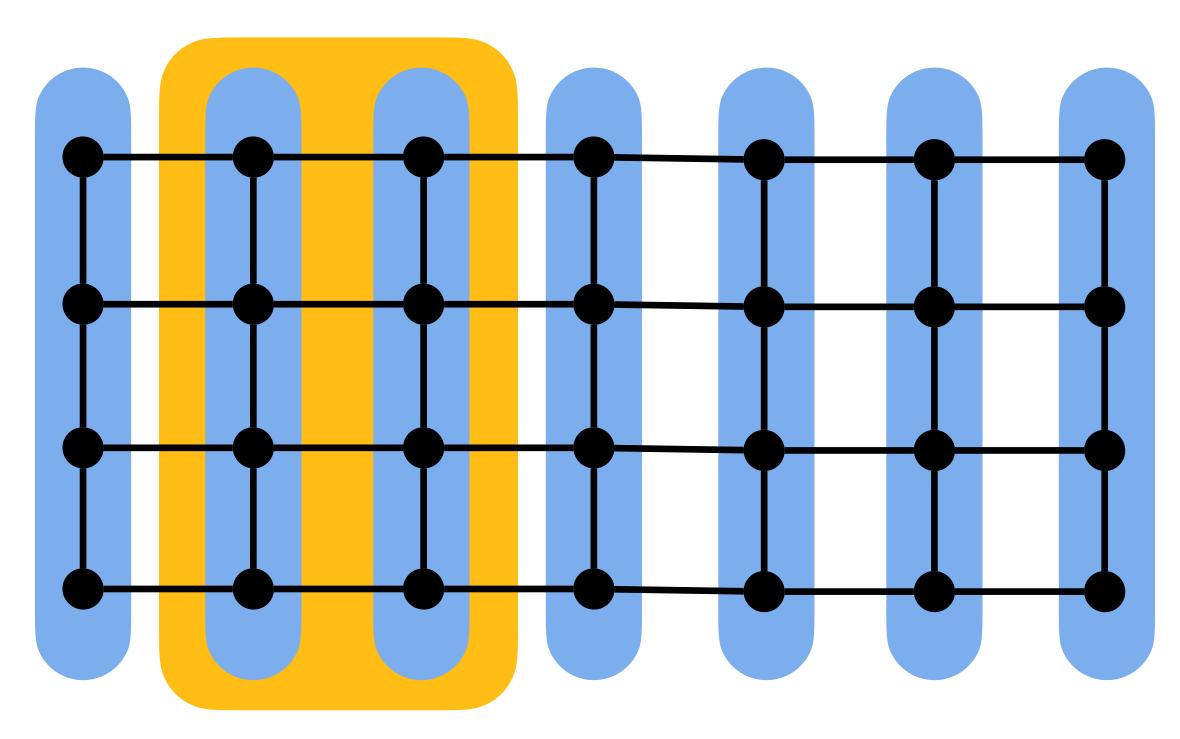
Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:



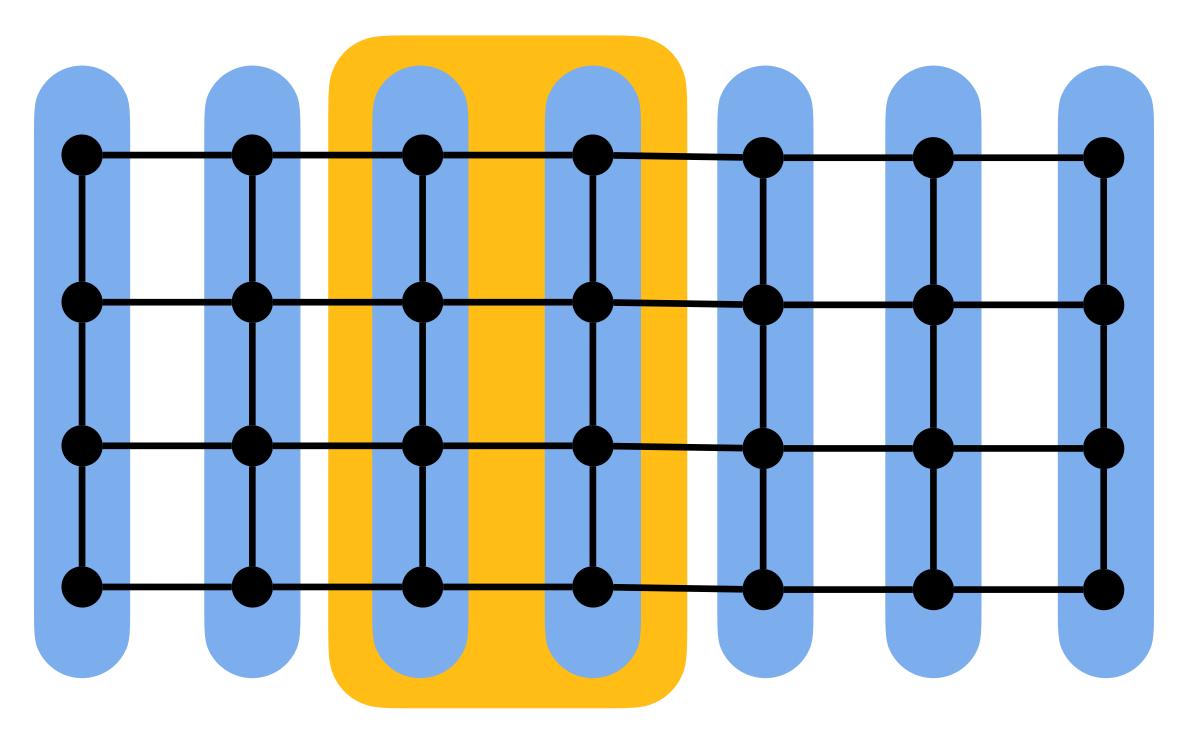
Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:



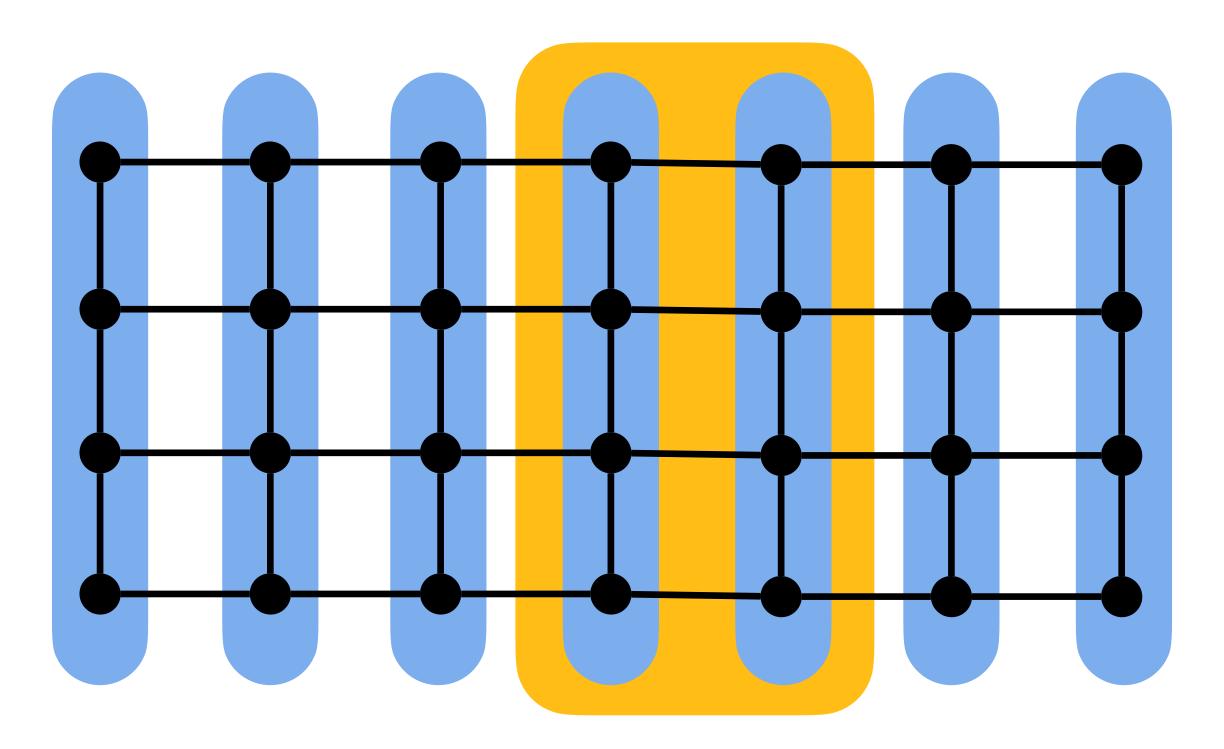
Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:



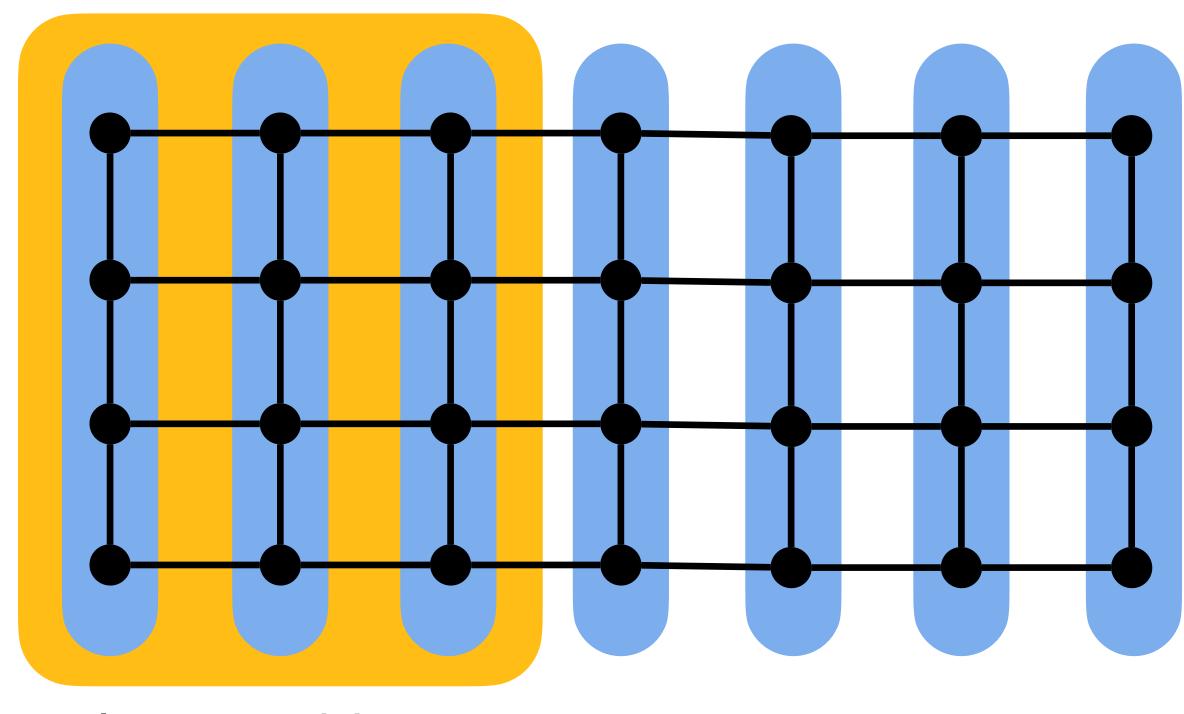
Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:

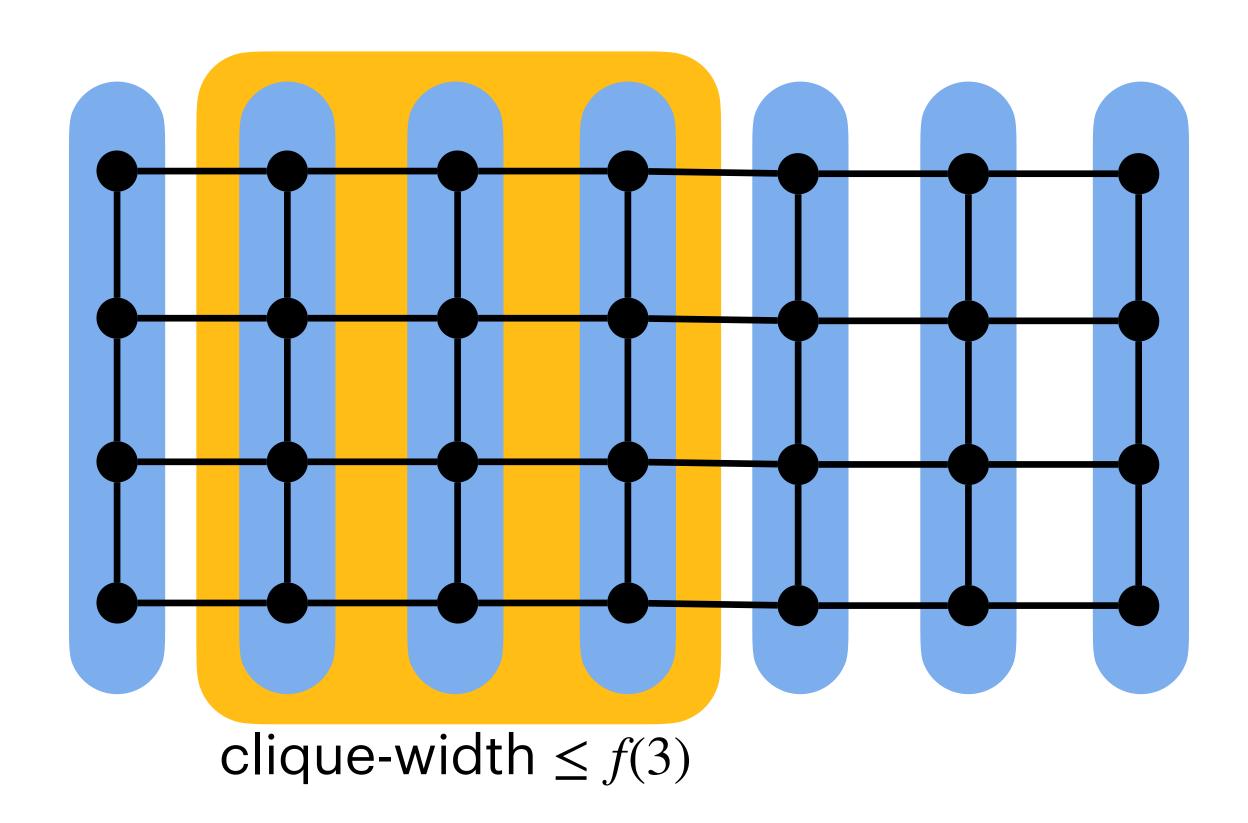


Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:

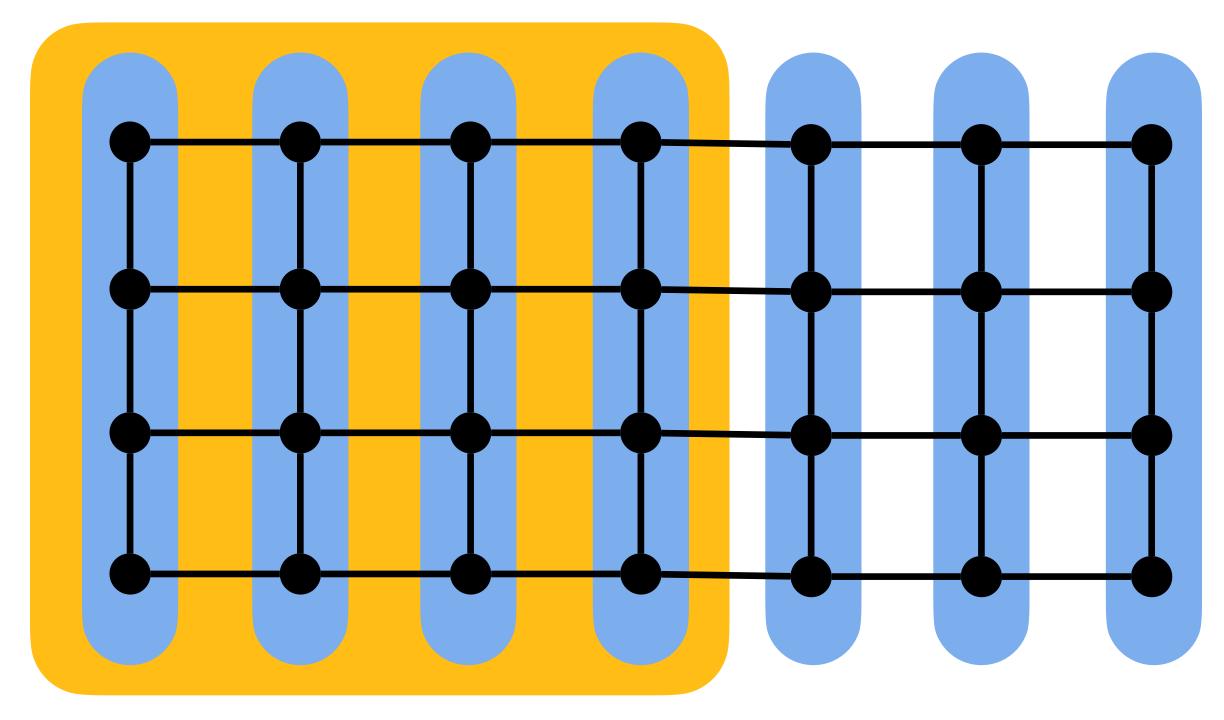


Fix $f: \mathbb{N} \to \mathbb{N}$.



Fix $f: \mathbb{N} \to \mathbb{N}$.

A slice decomposition of G with respect to f:



Definition

We say that a **graph class** C **admits slice decompositions** if there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that every $G \in C$ has a slice decomposition with respect to f.

Theorem

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(*Planar*) has **slice decompositions** for every transduction T of bounded range.
 - (ii) Show that 3D-grids do not have slice decompositions
 - From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$
- •Extend the result to full transductions.

Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Proof idea:

- (I) Show that the class of planar graphs admits slice decompositions.
- (II) Show that if a class C admits slice decompositions, then $\mathsf{T}(C)$ admits slice decompositions for any transduction T of bounded range.

Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Proof idea:

(I) Show that the class of planar graphs admits slice decompositions:

Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Proof idea:

(I) Show that the class of planar graphs admits slice decompositions:

Product structure theorem: Every planar graph is a subgraph of $H \boxtimes P$ where $tw(H) \leq 8$.

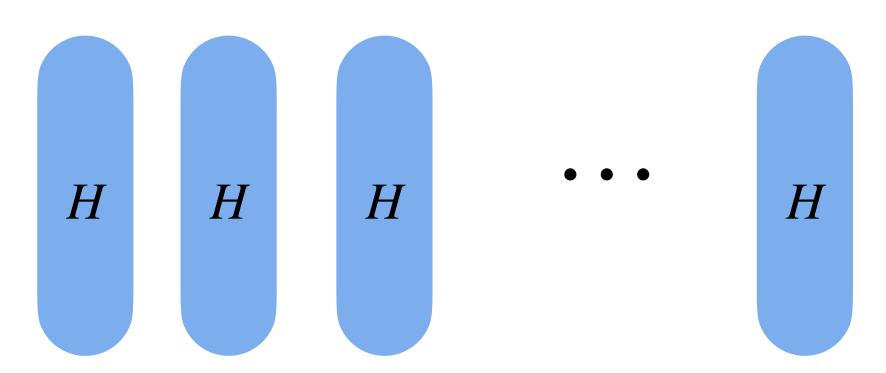
Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Proof idea:

(I) Show that the class of planar graphs admits slice decompositions:

Product structure theorem: Every planar graph is a subgraph of $H \boxtimes P$ where $tw(H) \leq 8$.

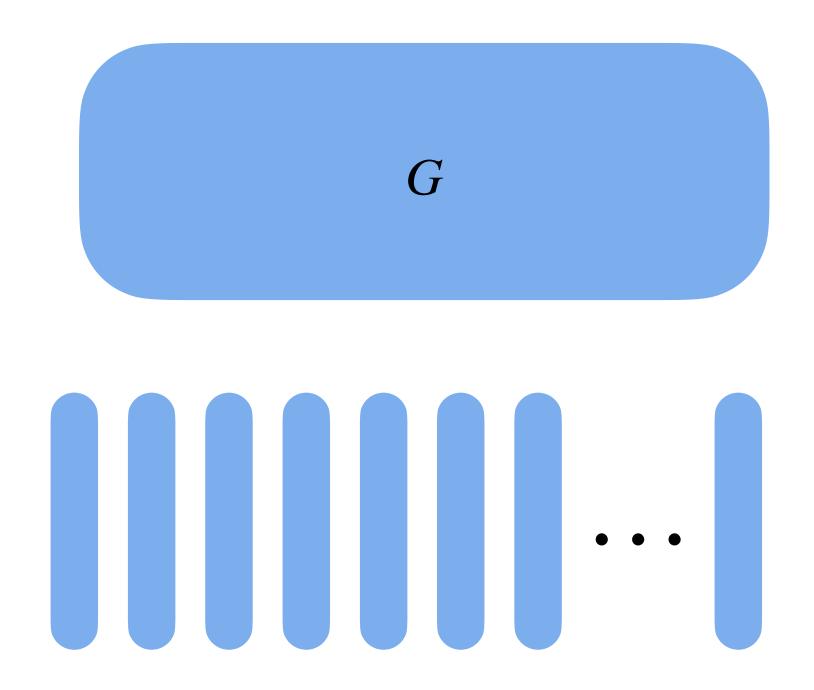


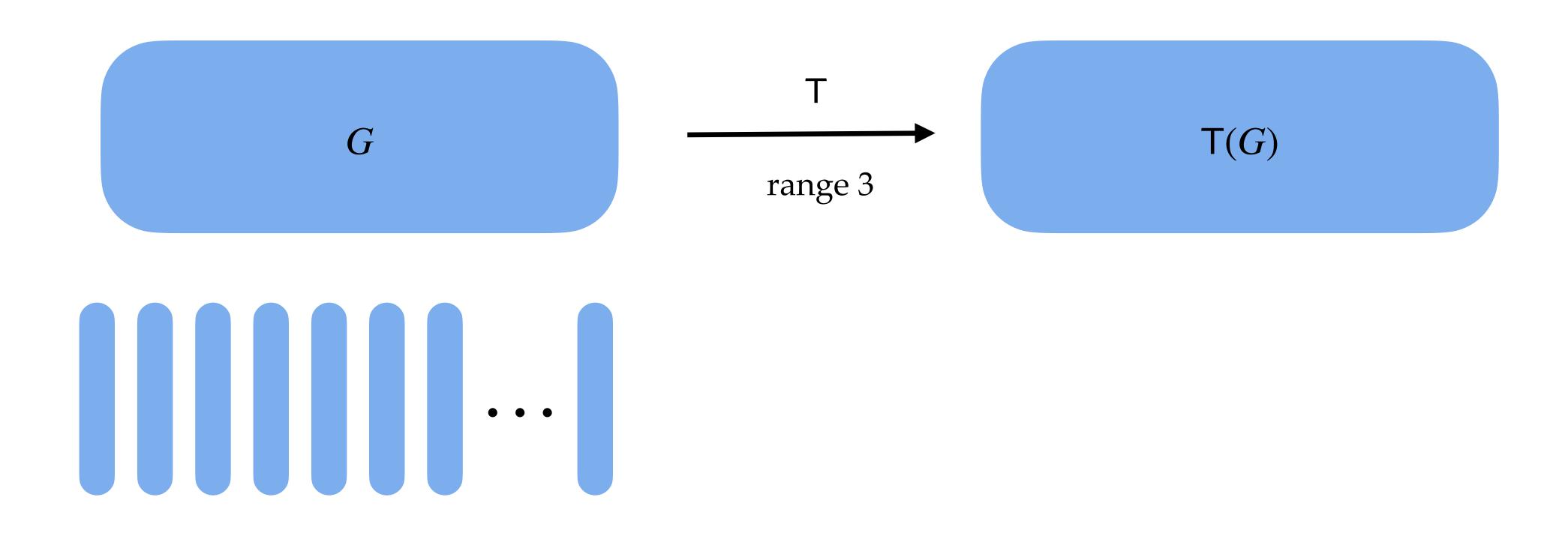
Theorem

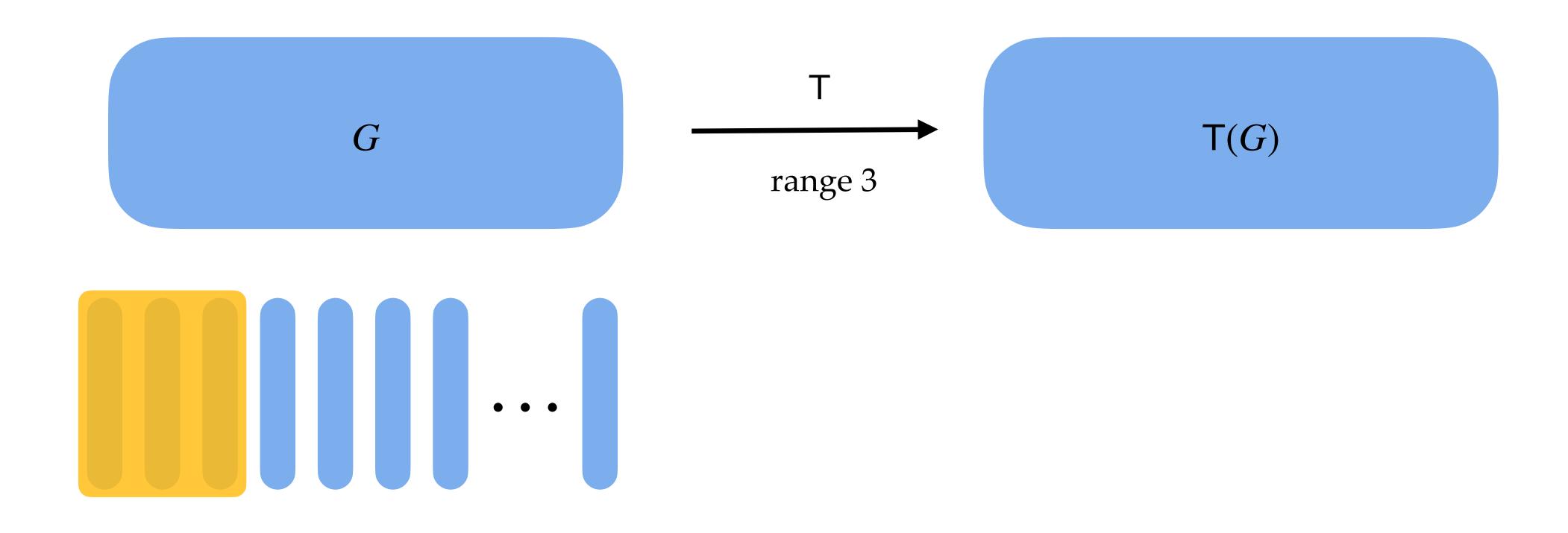
Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

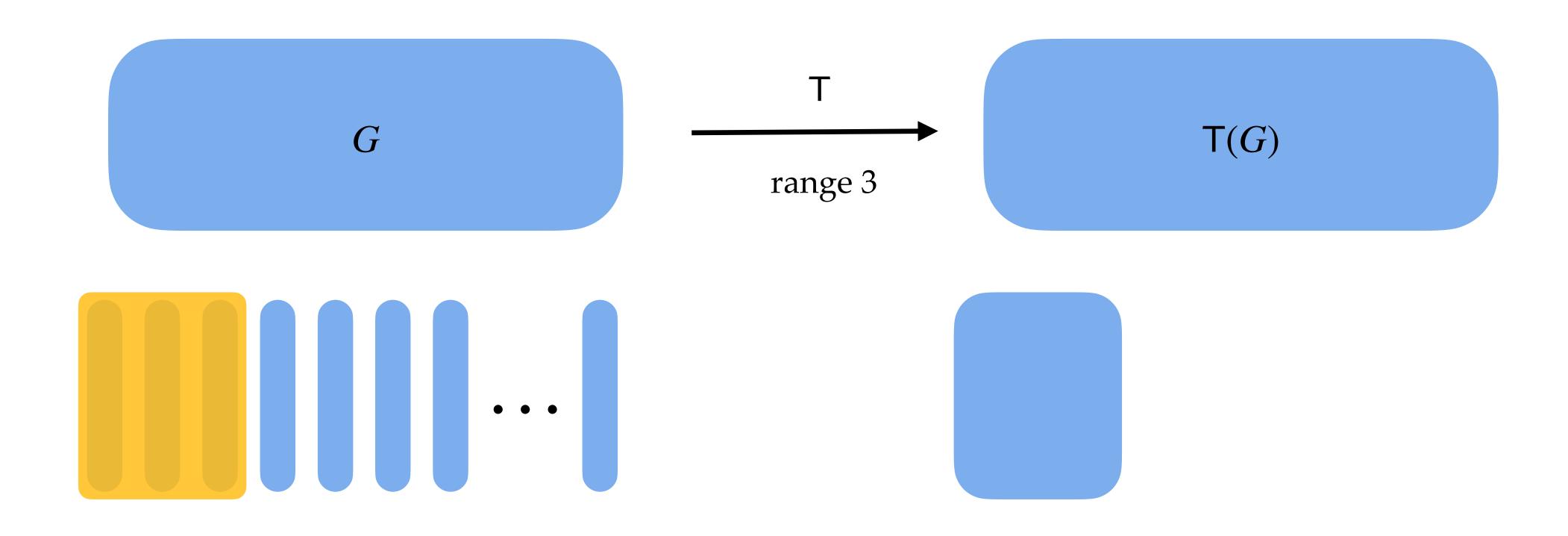
Proof idea:

(I) Show that the class of planar graphs admits slice decompositions.

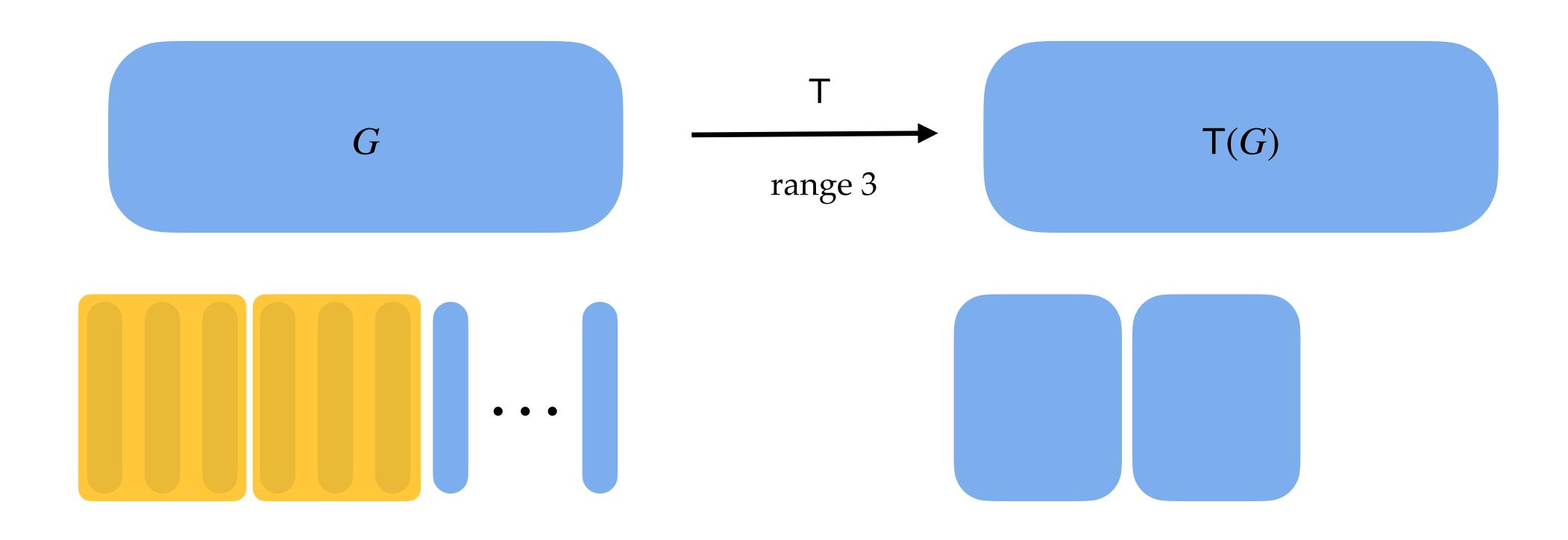




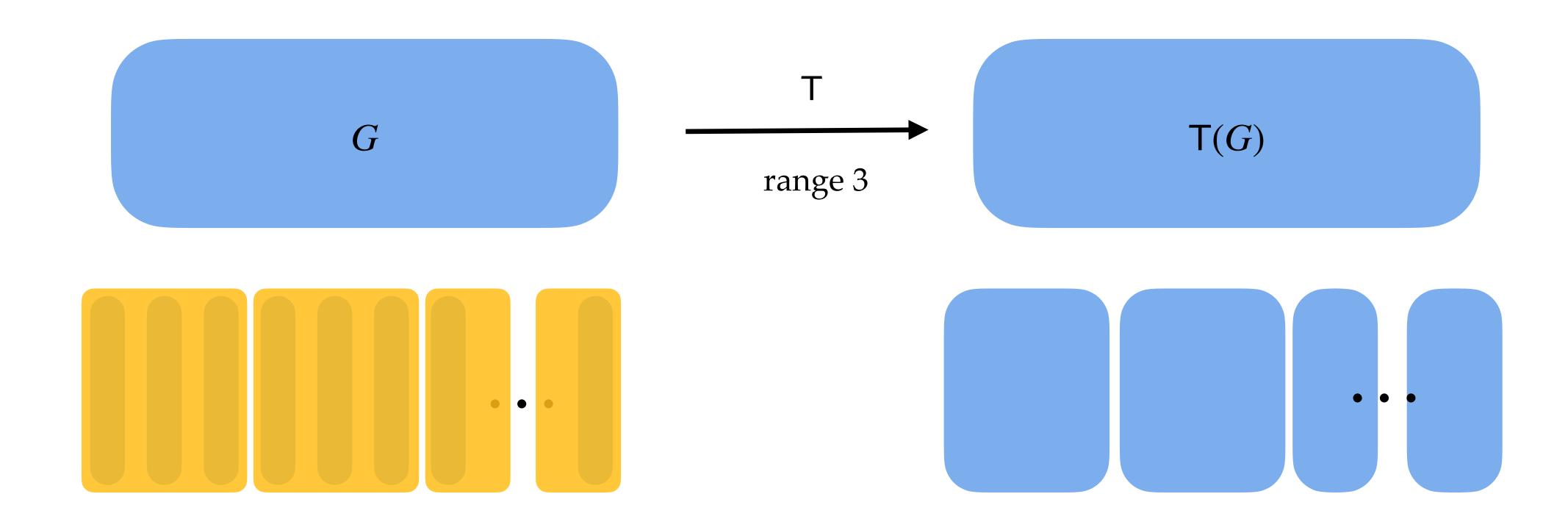




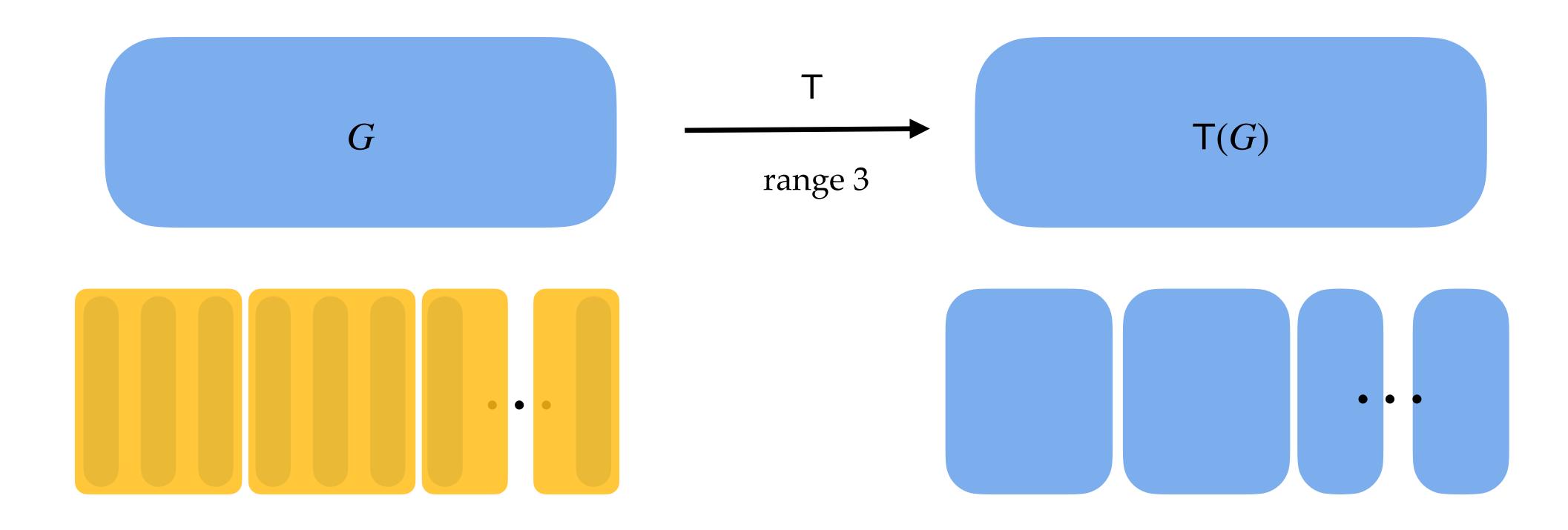
(II) Show that if a class C admits slice decompositions, then $\mathsf{T}(C)$ admits slice decompositions for any transduction T of bounded range.



(II) Show that if a class C admits slice decompositions, then $\mathsf{T}(C)$ admits slice decompositions for any transduction T of bounded range.



(II) Show that if a class C admits slice decompositions, then $\mathsf{T}(C)$ admits slice decompositions for any transduction T of bounded range.



Need to also argue that each slice has small clique-width.

Theorem

Let T be a transduction of bounded range. Then T(*Planar*) admits slice decompositions.

Proof idea:

(I) Show that the class of planar graphs admits slice decompositions.

(II) Show that if a class C admits slice decompositions, then $\mathsf{T}(C)$ admits slice decompositions for any transduction T of bounded range.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has slice decompositions for every transduction T of bounded range.

(ii) Show that 3D-grids do not have slice decompositions

From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$

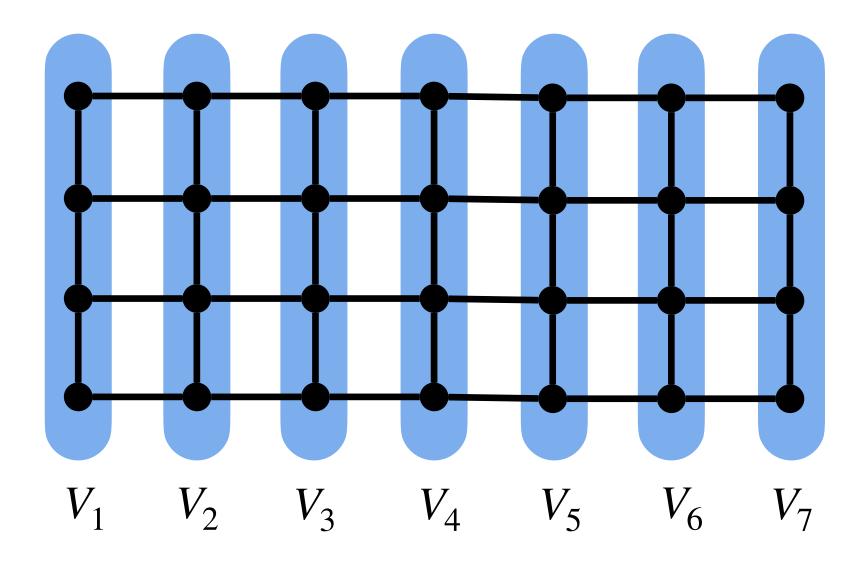
•Extend the result to full transductions.

Lemma

The class of 3D-grids does not admit slice decompositions.

Lemma

The class of 3D-grids does not admit slice decompositions.



Will not work for 3D-grids.

Lemma

The class of 3D-grids does not admit slice decompositions.

Proof: Easy consequence of a result of Berger, Dvořák and Norine.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has **slice decompositions** for every transduction T of bounded range.

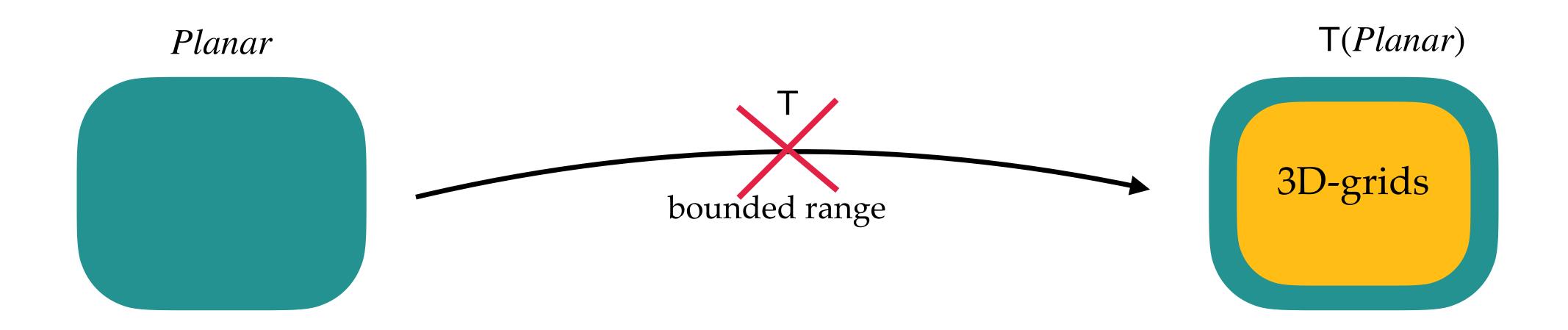
(ii) Show that 3D-grids do not have slice decompositions

From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$

•Extend the result to full transductions.

Theorem

There is no first-order transduction of bounded range that produces the class of all 3-dimensional grids from the class of planar graphs.



There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

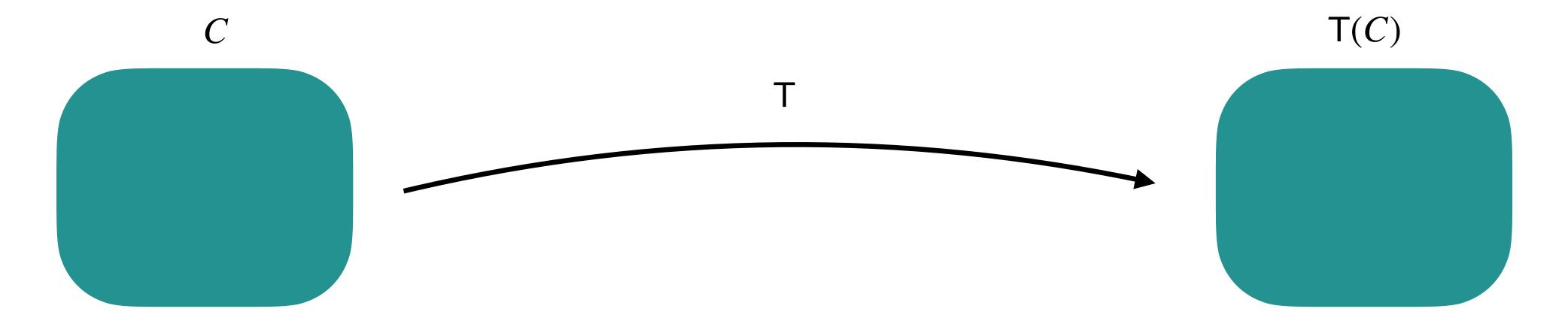
Proof plan:

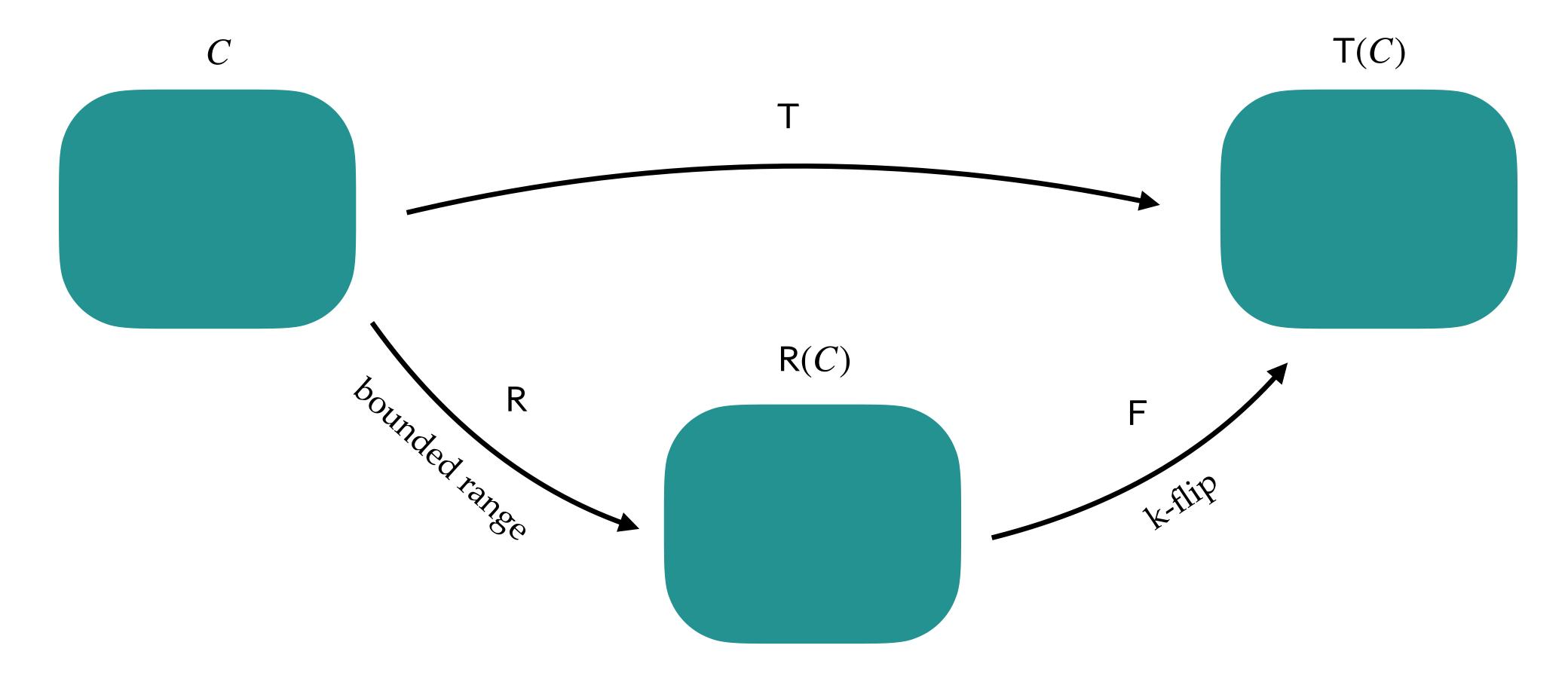
- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has **slice decompositions** for every transduction T of bounded range.

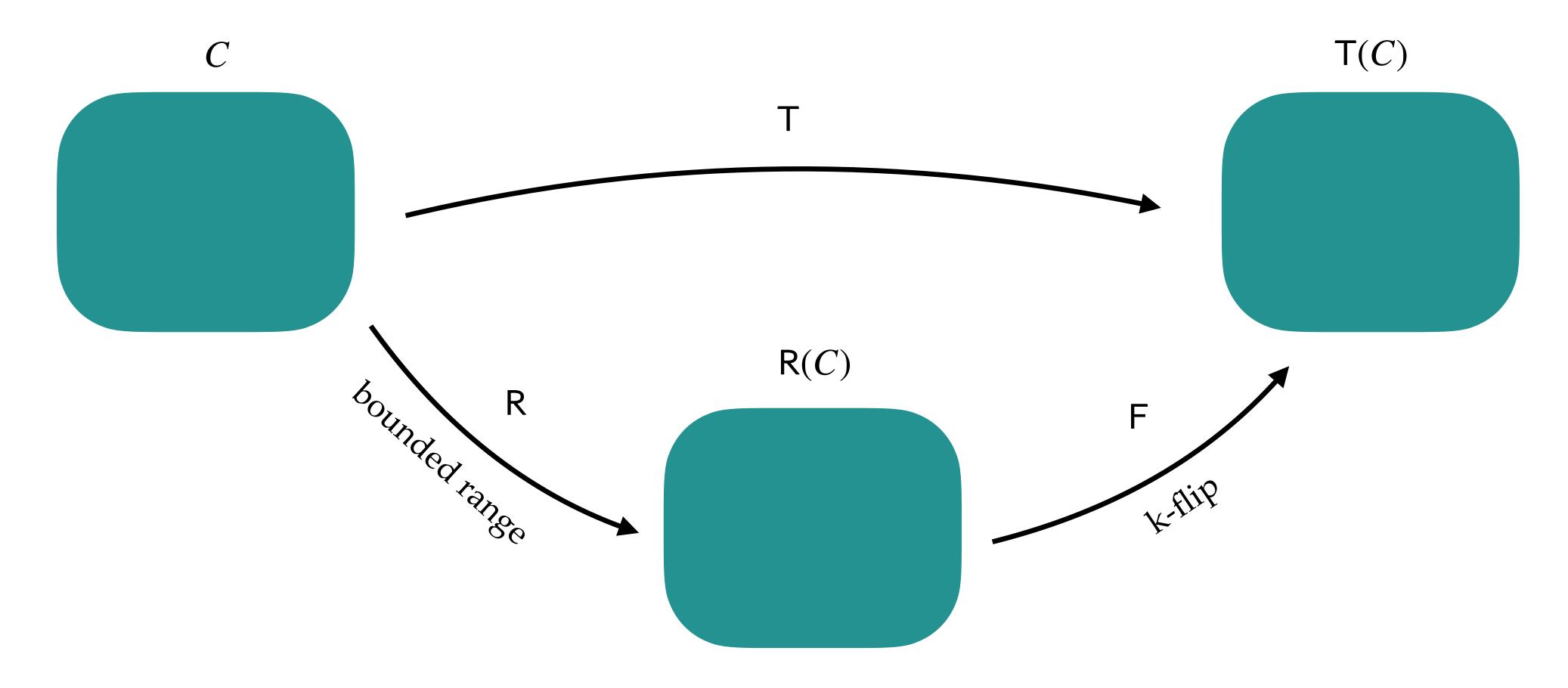
(ii) Show that 3D-grids do not have slice decompositions

From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$

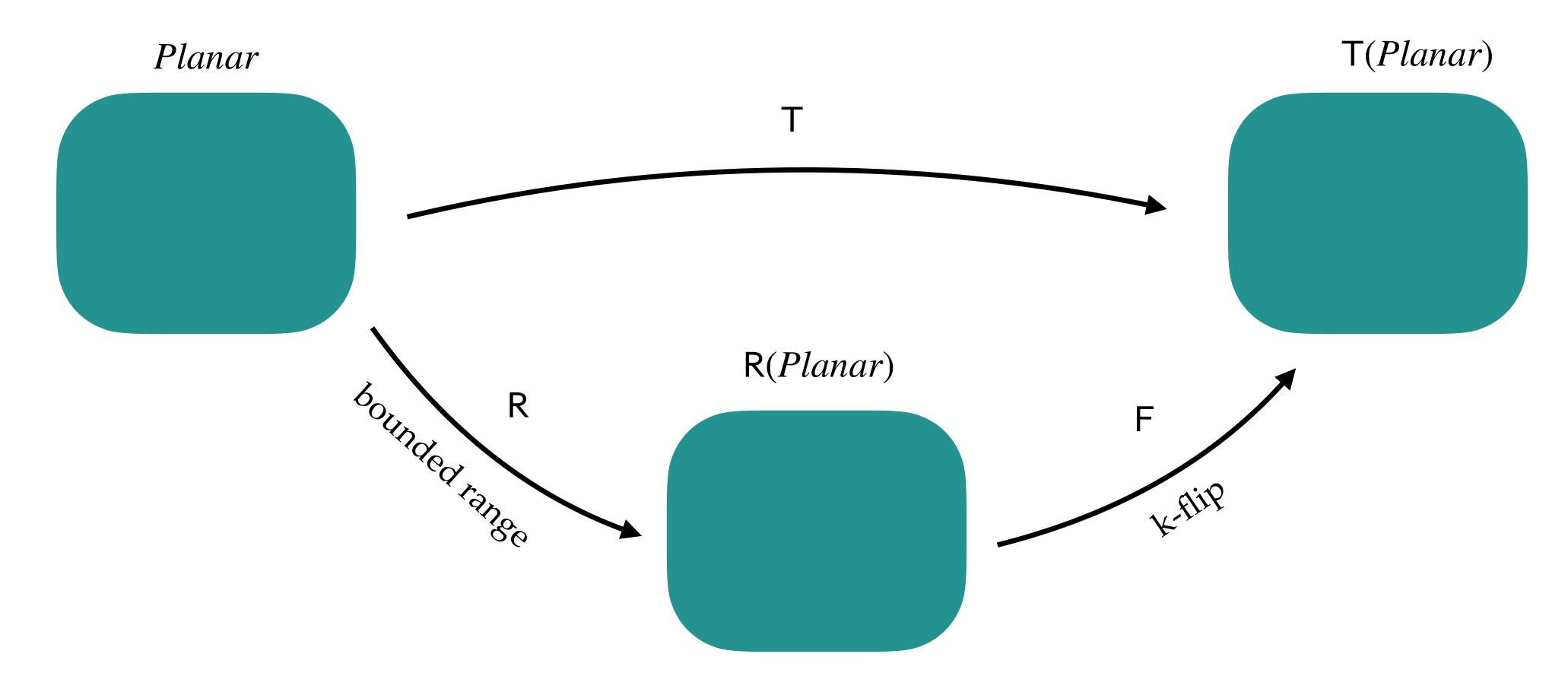
•Extend the result to full transductions.



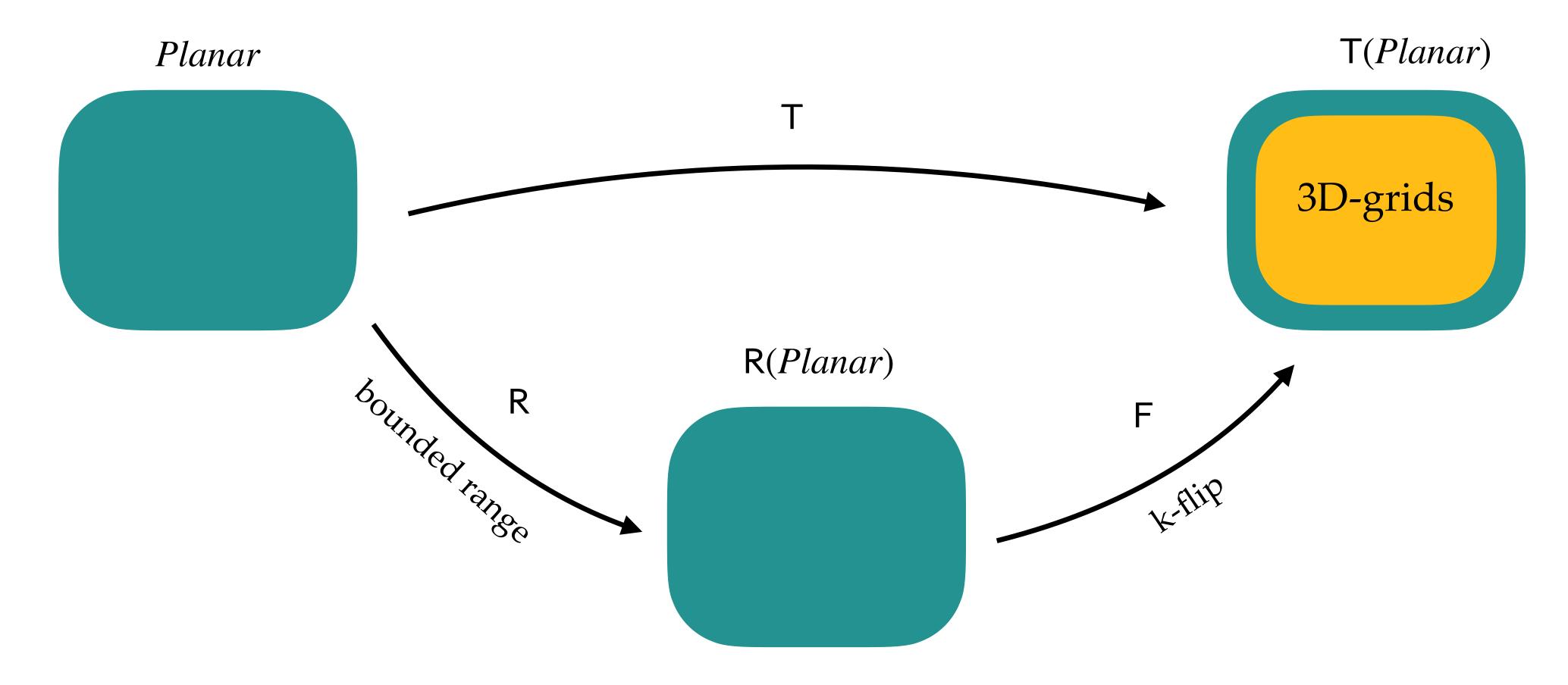




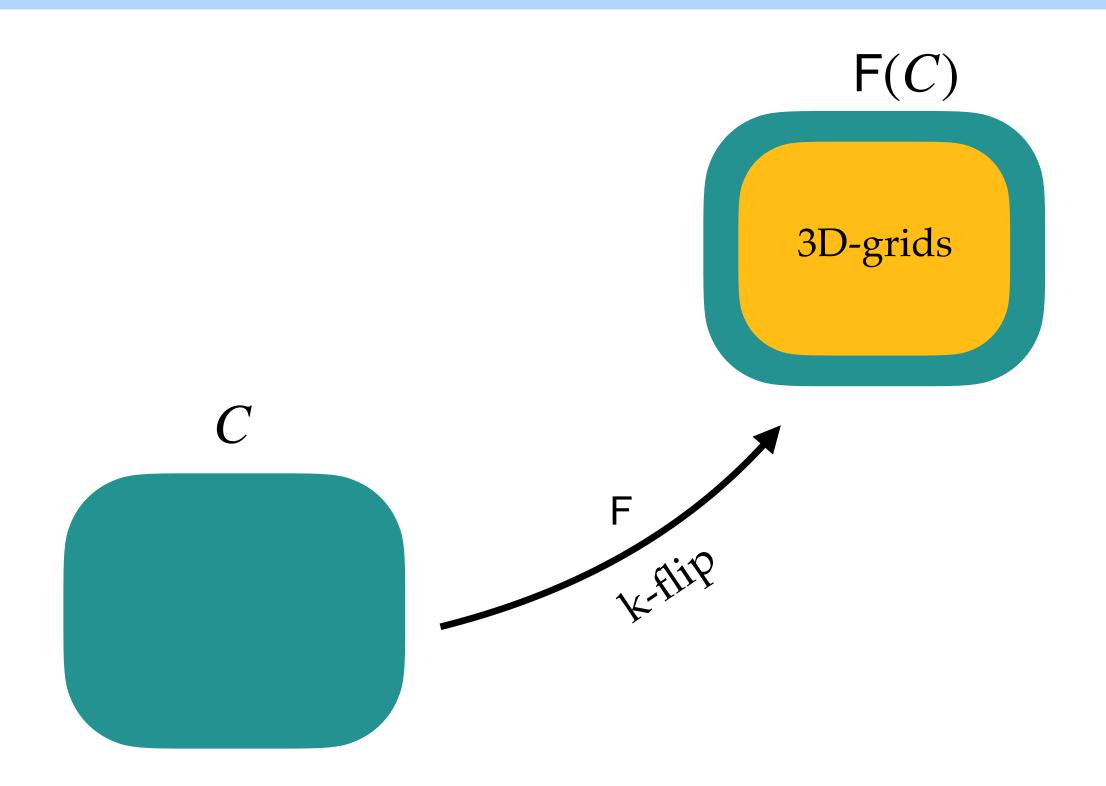
k-flip: special transduction — at most k subset complementations

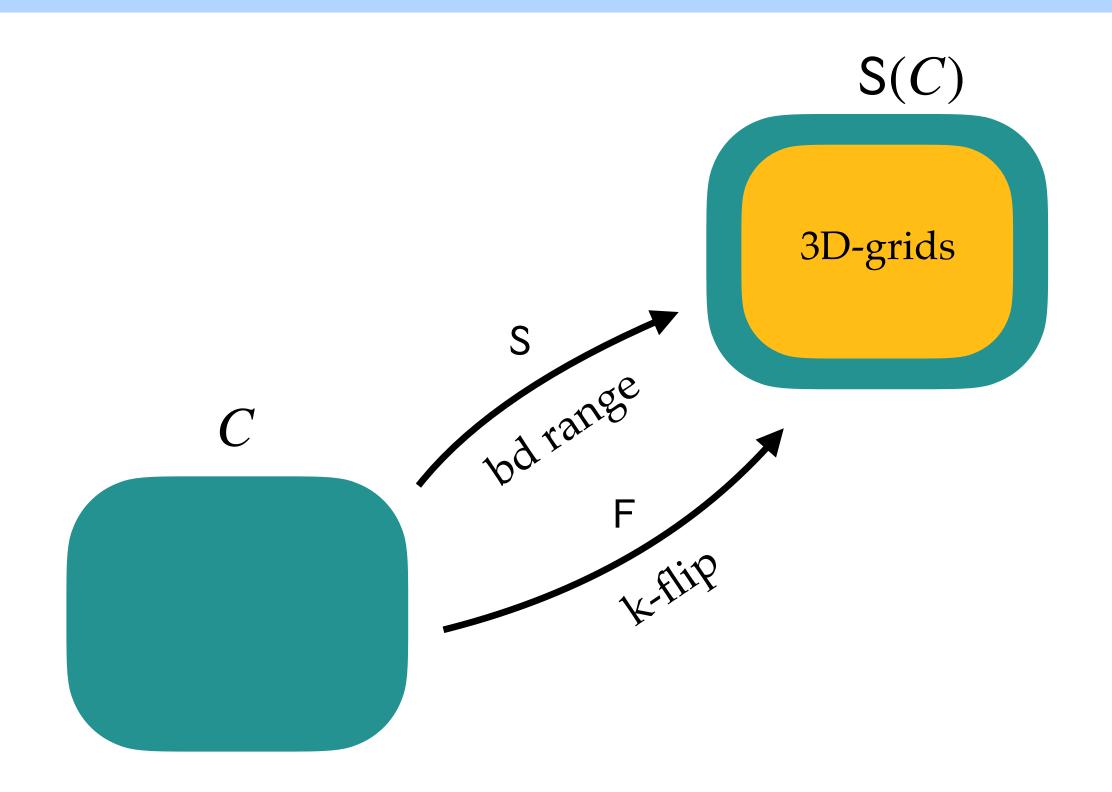


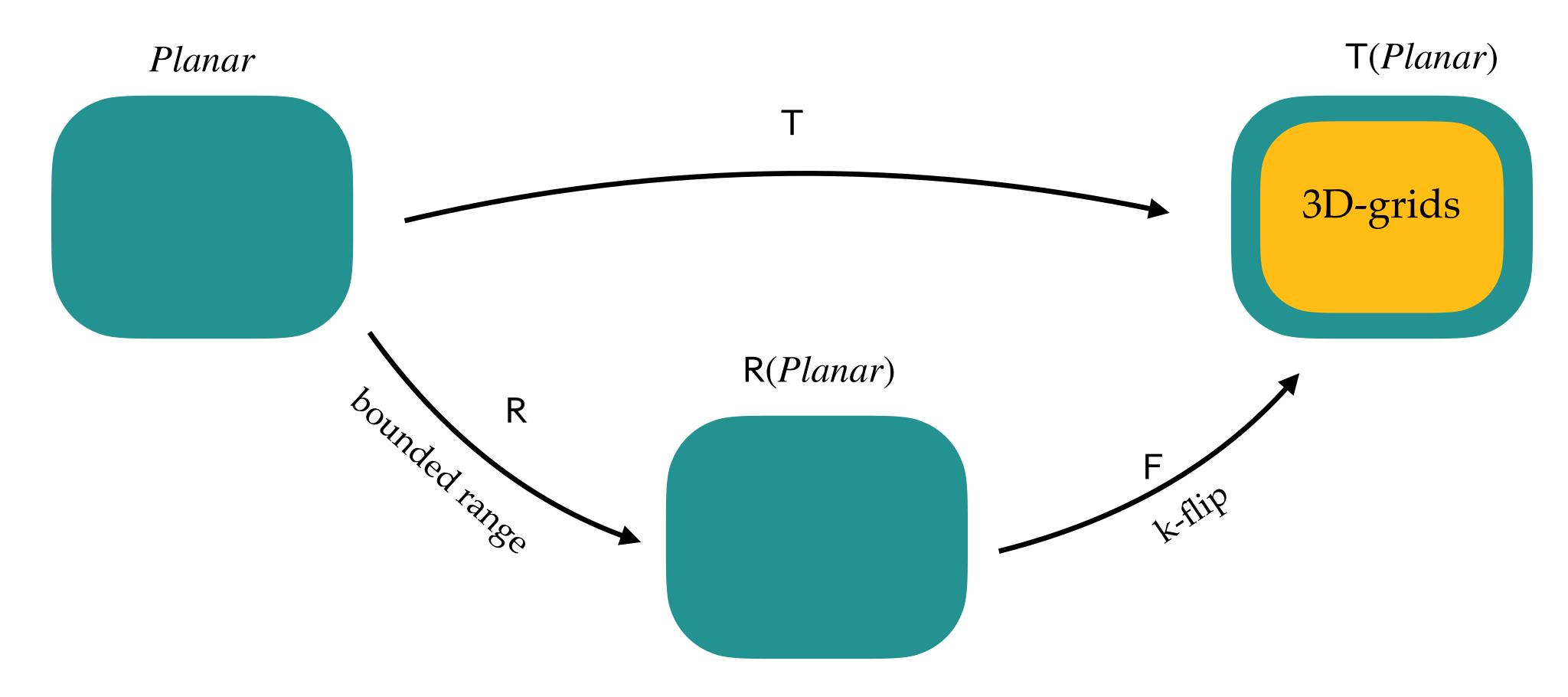
k-flip: special transduction — at most k subset complementations

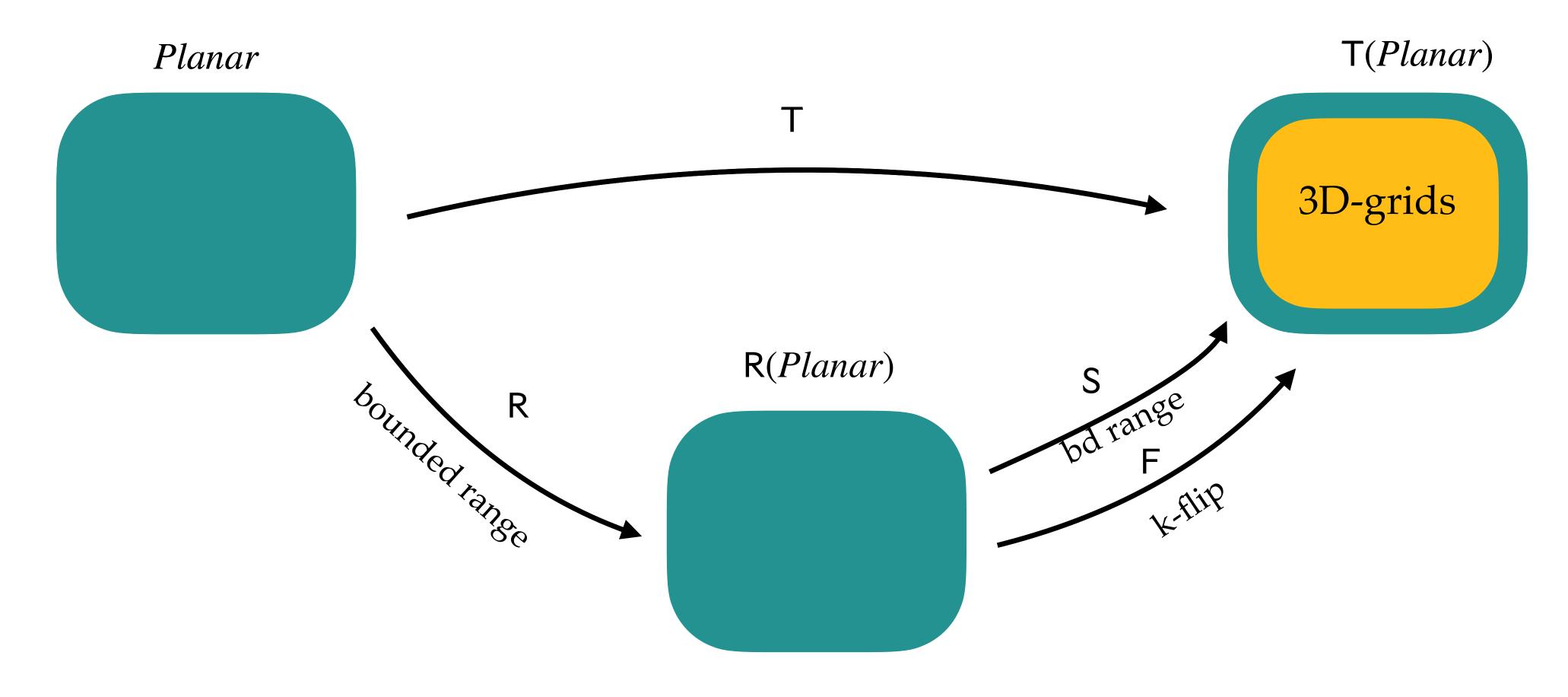


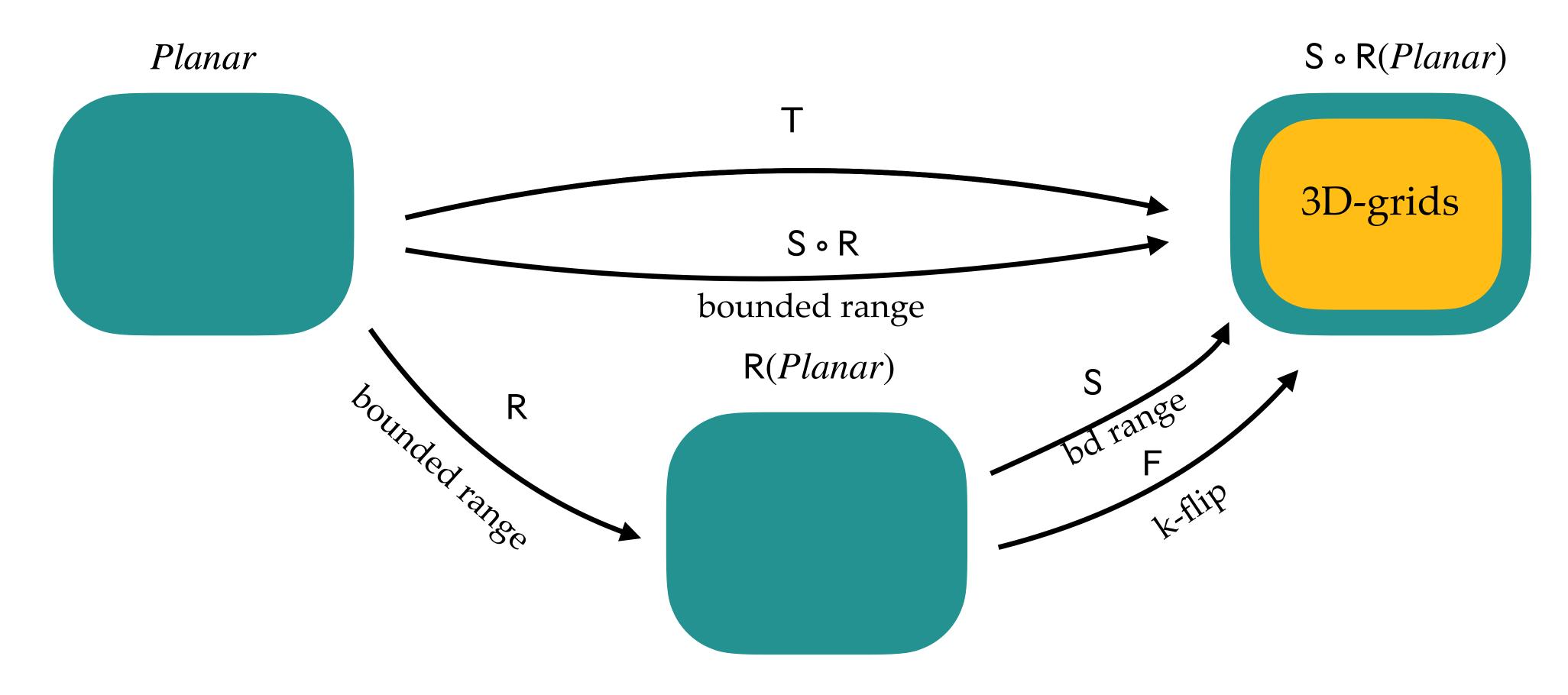
k-flip: special transduction — at most k subset complementations

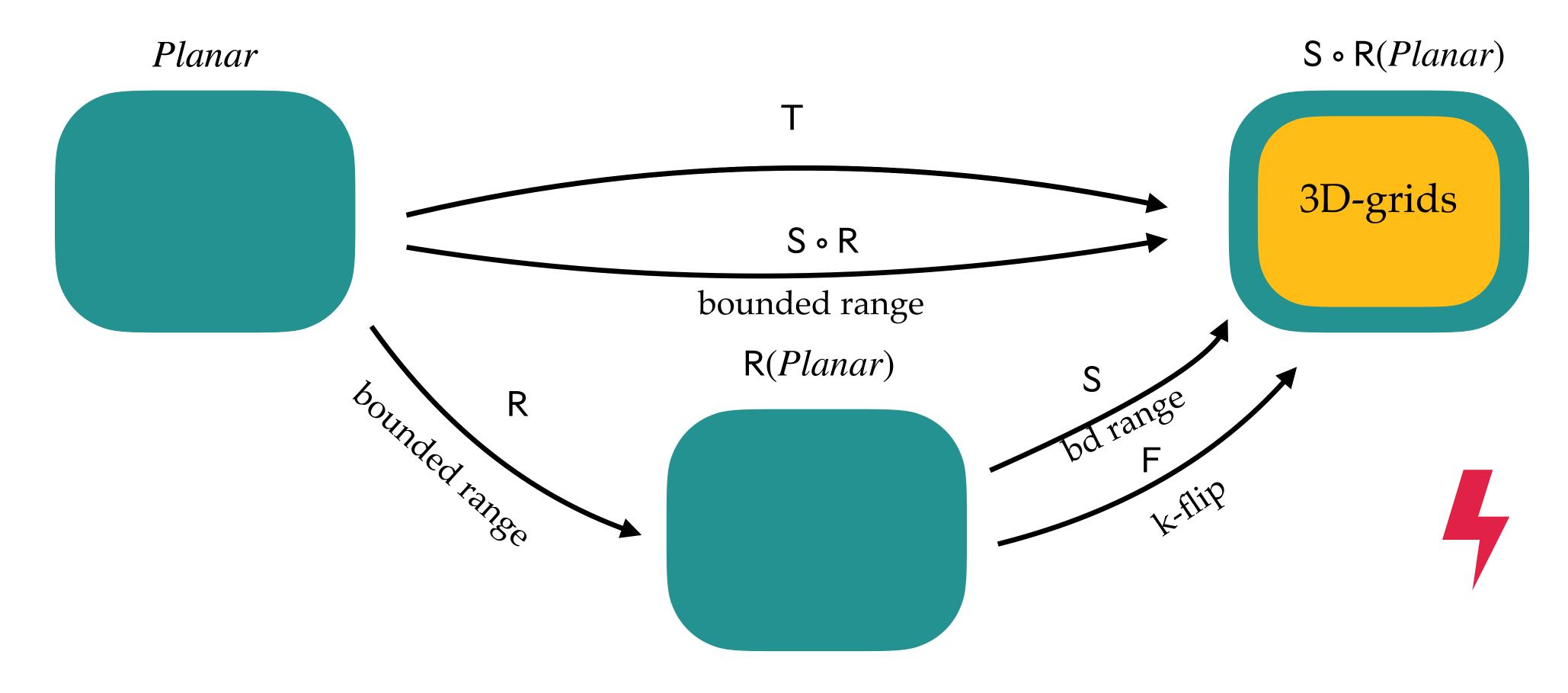


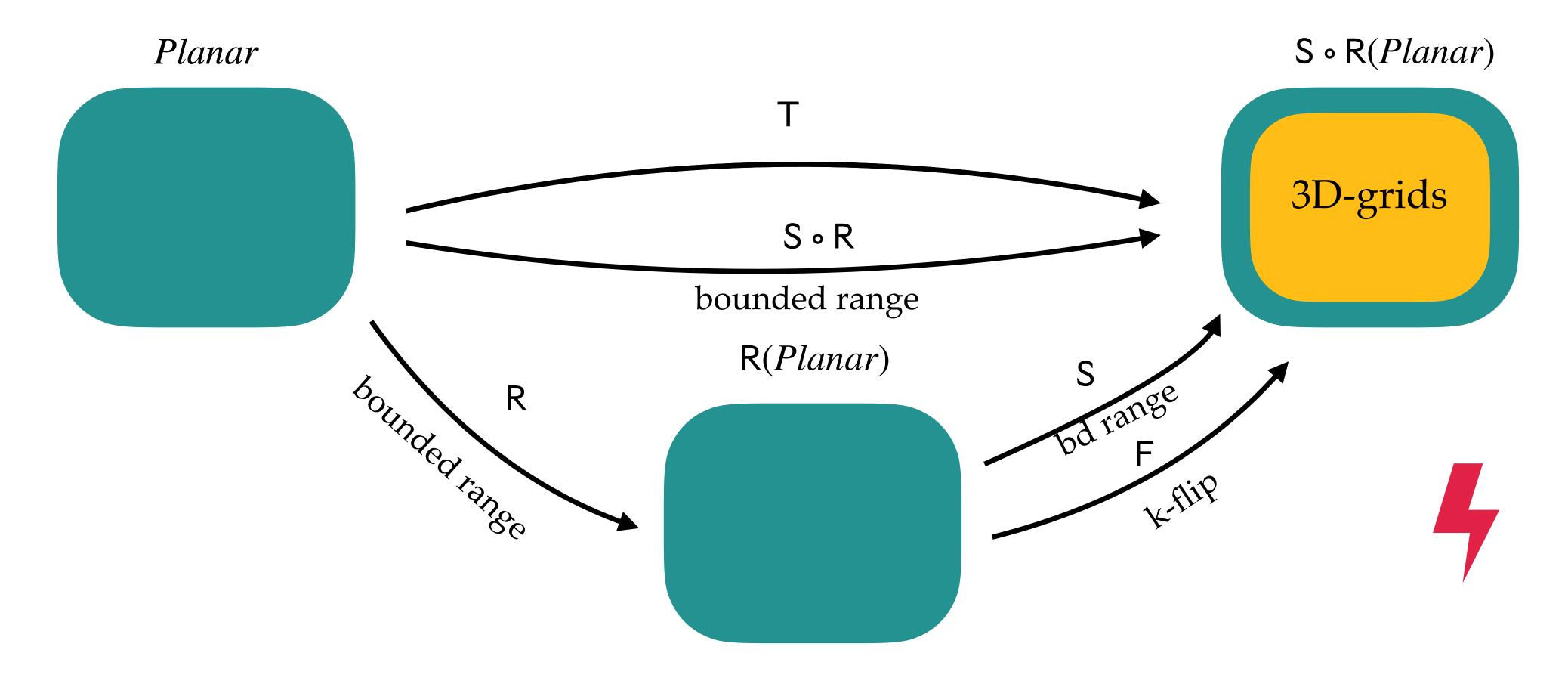


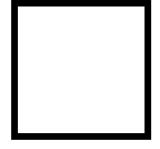












There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(*Planar*) has **slice decompositions** for every transduction T of bounded range.

(ii) Show that 3D-grids do not have slice decompositions

From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$

Extend the result to full transductions.

There is no first-order transduction that produces the class of all 3-dimensional grids from the class of planar graphs.

Proof plan:

- Focus on transductions of **bounded range** first:
 - (i) Show that the class T(Planar) has slice decompositions for every transduction T of bounded range.

(ii) Show that 3D-grids do not have slice decompositions

From (i) and (ii) we have that: 3D-grids $\subseteq T(Planar)$

Extend the result to full transductions.

Thank you!

