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Theorem ( Thatcher-Wright):
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by & tree-automato if and only if it is MSO- definable.
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Theorem(C., (zui“on, Kan+é, Kim, Kohler):
There 15 O\ C;MSO‘ﬁMsa\ud‘ion from

laminar set systems to their laminar trees.

Theorem(C., Kohler):

There is o MSO-transduction from
laminar set systems to their laminar trees.



weakly bi parfitive sysltem s a pair (U,6)
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T}\eorem((. (mn“on Kanté, Kim, Qum):

For GFlg)-re resemLaHe ma+ronds of linear branch-
width <k, Hf\ere is & MSO-transduction

to o linear branch- decomposition of order <1(y,k).

Corollary (Bojaiczyk, Grohe, Pilipezyk):

For graphs of hneor rank-width <K,

there is o MSO-+ransduction fo o linear
rank- decomposition of order =F(k).
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WIP:
For GRl9)-representable matroids of branch-

width ‘k H\ere is o MSO-transduction
10 a branch decomposition of order <1(y, k).

Corollary

For graphs of rank-width <k,

ﬂ\ere 15 & MSO +ranso\ud‘wn to a
rank- decomposition of order = (k).



Coo\}ecfure:

For stactures where the relctions are given by
tree~automata with k states , recogn ubilify

P eq,uliva)eml to definabi "nly.



Thank You!



