

~~MSO~~-transducing tree-like graph decompositions

Rutger Campbell

Based on work with:

Bruno Guillon,
Mamadou Kanté,
Noleen Köhler
Eunjung Kim,
Sang-il Oum

Q: When is a property recognizable with a tree-automaton?

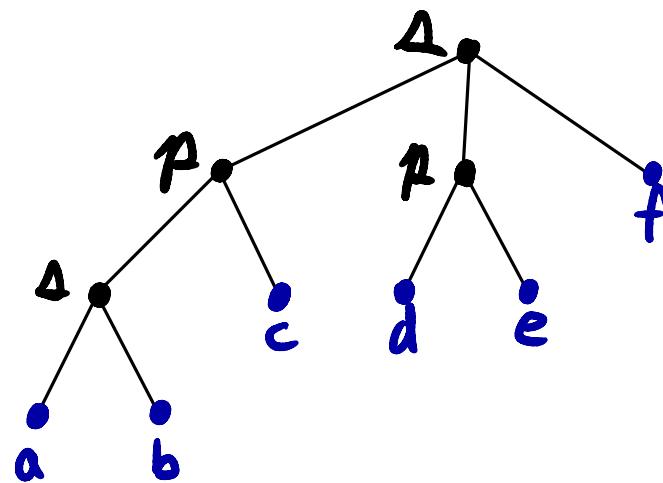
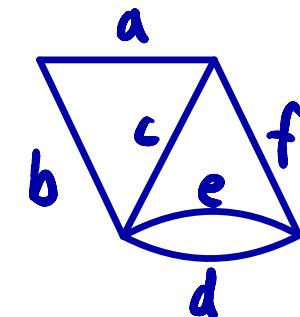
Recognizable with a tree-automaton.

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:

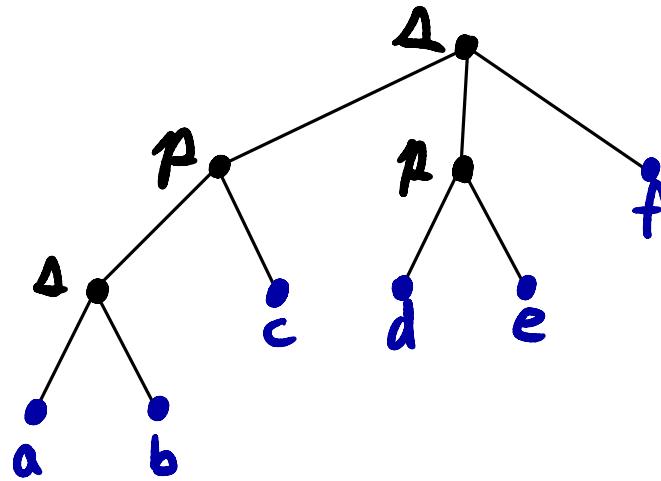
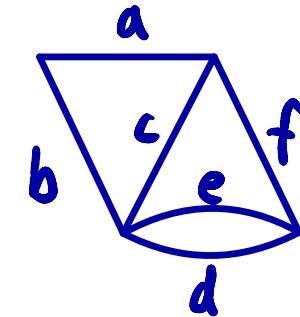
Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automaton:

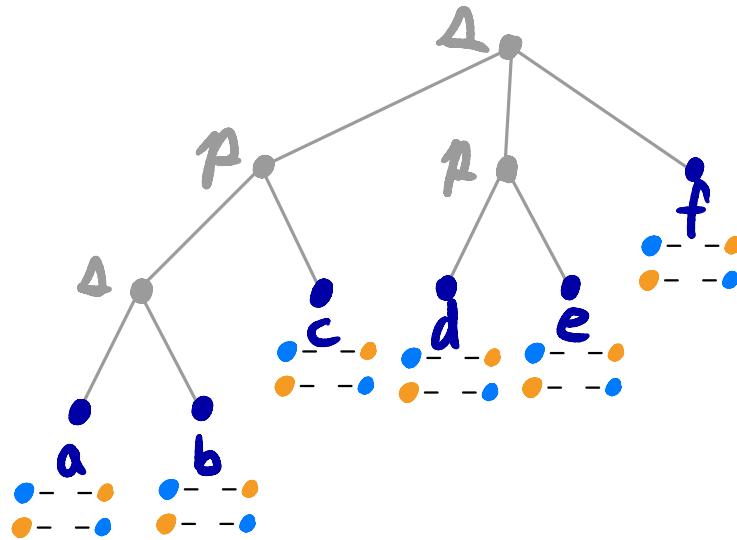
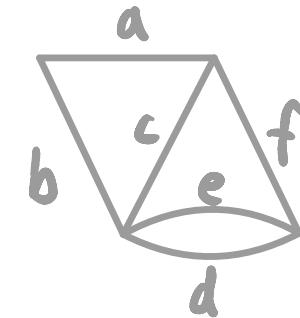
Leaves: take set of colourings as states

Parallel nodes (P): $c_1 \dots c_1, c_1 \dots c_2 \mapsto c_1 \dots c_2$
otherwise $\mapsto \perp$

Series nodes (Δ): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automaton:

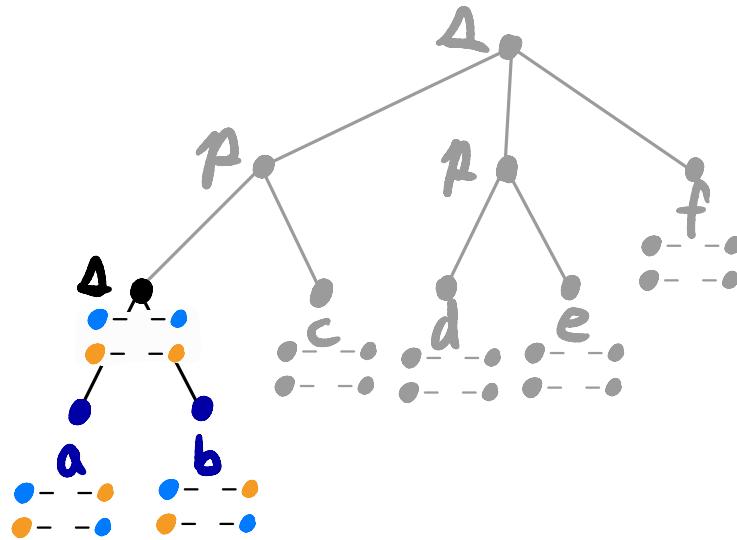
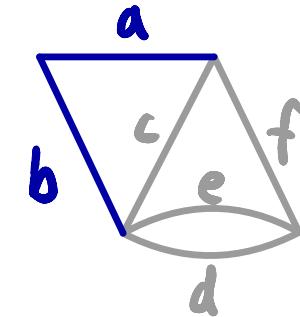
Leaves: take set of colourings as states

Parallel nodes (P): $c_1 \dots c_3, c_1 \dots c_2 \mapsto c_1 \dots c_2$
otherwise $\mapsto \perp$

Series nodes (Δ): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automaton:

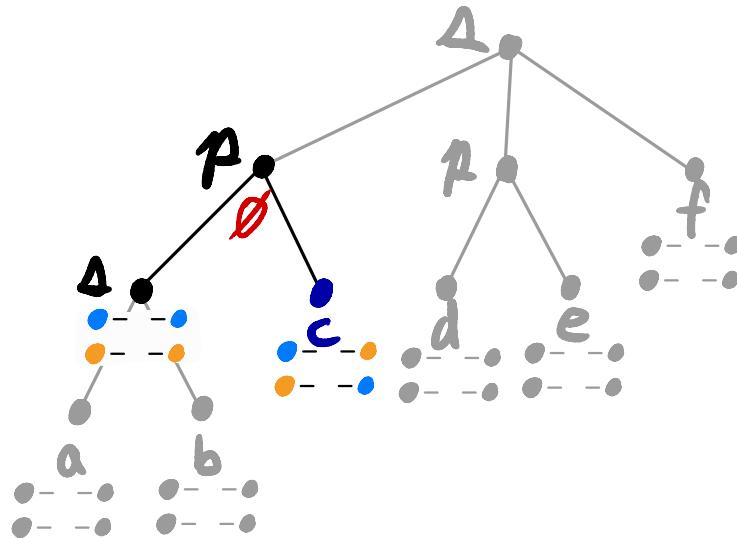
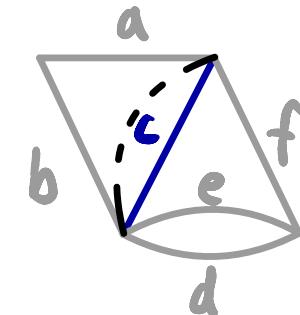
Leaves: take set of colourings as states

Parallel nodes (P): $c_1 \dots c_2, c_1 \dots c_2 \mapsto c_1 \dots c_2$
otherwise $\mapsto \perp$

Series nodes (S): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automaton:

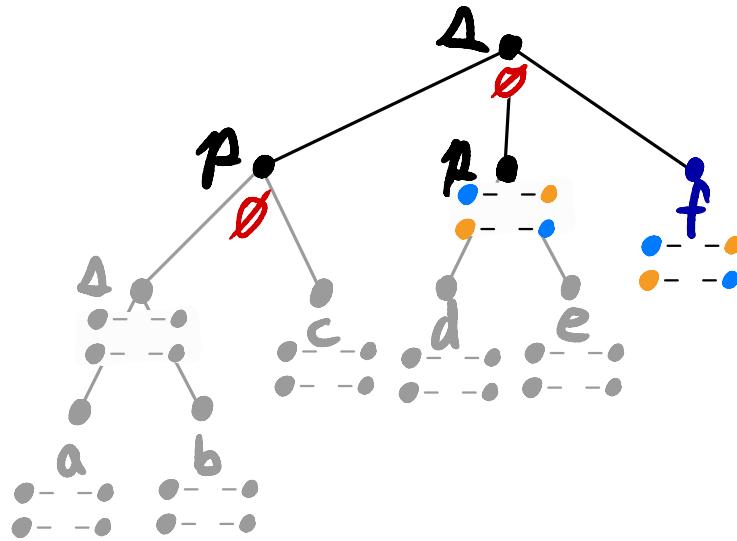
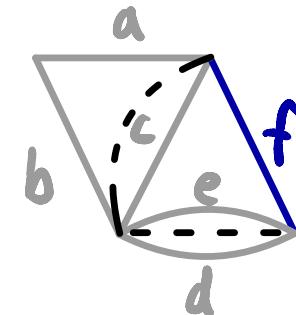
Leaves: take set of colourings as states

Parallel nodes (P): $c_1 \dots c_3, c_1 \dots c_2 \mapsto c_1 \dots c_2$
otherwise $\mapsto \perp$

Series nodes (S): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automation:

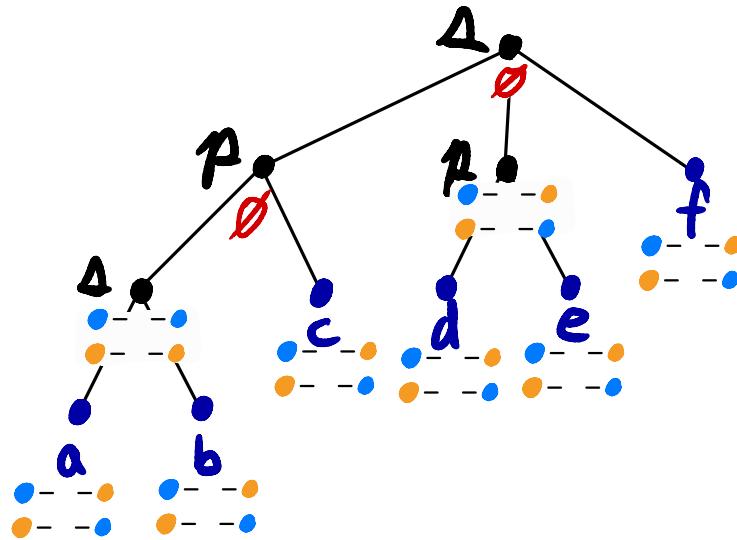
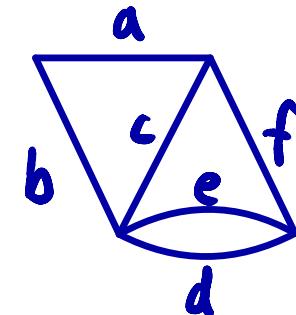
Leaves: take set of colourings as states

Parallel nodes (p): $c_1 \cdots c_3, c_1 \cdots c_2 \mapsto c_1 \cdots c_2$
otherwise $\mapsto \perp$

Series nodes (Δ): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Recognizable with a tree-automaton.

E.g. 2-colourability for series-parallel graphs:



Automation:

Leaves: take set of colourings as states

Parallel nodes (p): $c_1 \cdots c_3, c_1 \cdots c_2 \mapsto c_1 \cdots c_2$
otherwise $\mapsto \perp$

Series nodes (Δ): $c_1 \dots c_2, c_2 \dots c_3 \mapsto c_1 \dots c_3$
otherwise $\mapsto \perp$

Q: When is a property definable in MSO?

Definable with Monadic Second-Order (MSO) logic.

$\forall, \exists, \neg, \&, \vee, \Rightarrow, =, \subseteq, \epsilon$, [other relations]

Definable with Monadic Second-Order (MSO) logic.

$\forall, \exists, \neg, \&, \vee, \Rightarrow, =, \subseteq, \epsilon$, [other relations]

Graphs: $(V, E) :$... , $u \sim v$, $inc(v, e)$
 $(V, \sim) :$... , $u \sim v$

Definable with Monadic Second-Order (MSO) logic.

$\forall, \exists, \neg, \&, \vee, \Rightarrow, =, \subseteq, \in, [\text{other relations}]$

Graphs: $(V, E) : \dots , u \sim v, \text{inc}(v, e)$
 $(V, \sim) : \dots , u \sim v$

Set system: $(S, \mathcal{F}) : \dots , \text{set}(X)$
 $\mathcal{F} \in \binom{2^S}{2^S}$

Definable with Monadic Second-Order (MSO) logic.

$\forall, \exists, \neg, \&, \vee, \Rightarrow, =, \subseteq, \in, [\text{other relations}]$

Graphs: $(V, E) : \dots , u \sim v, \text{inc}(v, e)$
 $(V, \sim) : \dots , u \sim v$

Set system: $(S, \mathcal{F}) : \dots , \text{set}(X)$
 $\mathcal{F} \in \binom{2^S}{2^S}$

E.g. $\exists X \forall u \forall v [u \sim v \Rightarrow (u \in X \& v \notin X) \vee (u \notin X \& v \in X)]$

Theorem (Büchi):

A property of strings is **recognizable** by a string automata if and only if it is **MSO-definable**.

Theorem (Büchi):

A property of strings is **recognizable** by a string automata if and only if it is **MSO-definable**.

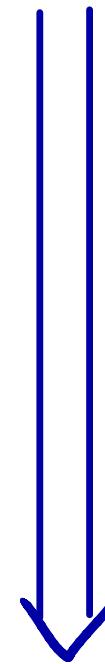
Theorem (Thatcher-Wright):

A property of labelled binary trees is **recognizable** by a tree-automata if and only if it is **MSO-definable**.

Graphs with $u \sim v$ and $\text{inc}(v, e)$:

On bounded tree-width:

Definable with a MSO sentence.



Courcelle

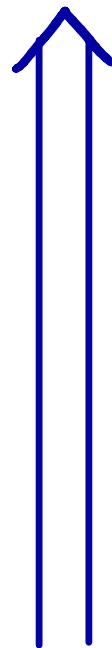
Recognizable with a tree-automata.

Graphs with $u \sim v$ and $\text{inc}(v, e)$:

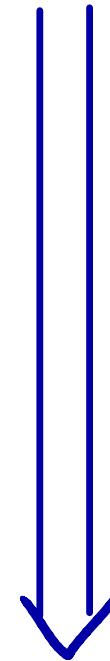
On bounded tree-width:

Definable with a MSO sentence.

Bojańczyk, Pilipczyk



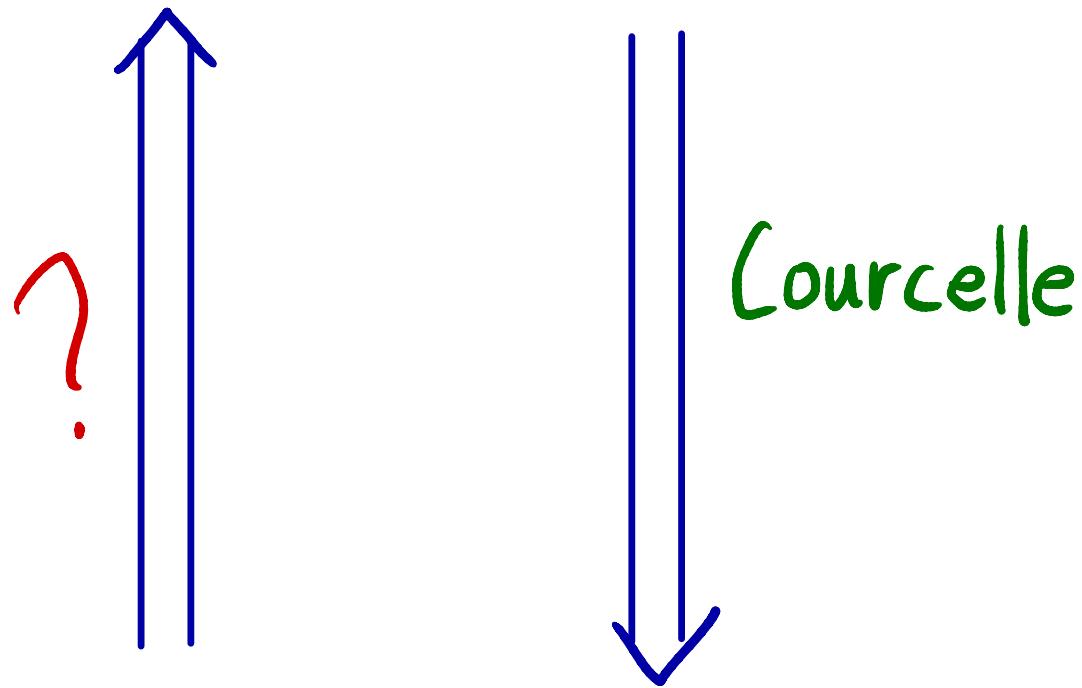
Courcelle



Recognizable with a tree-automata.

Graphs with $u \sim v$:
On bounded rank-width:

Definable with a MSO sentence.

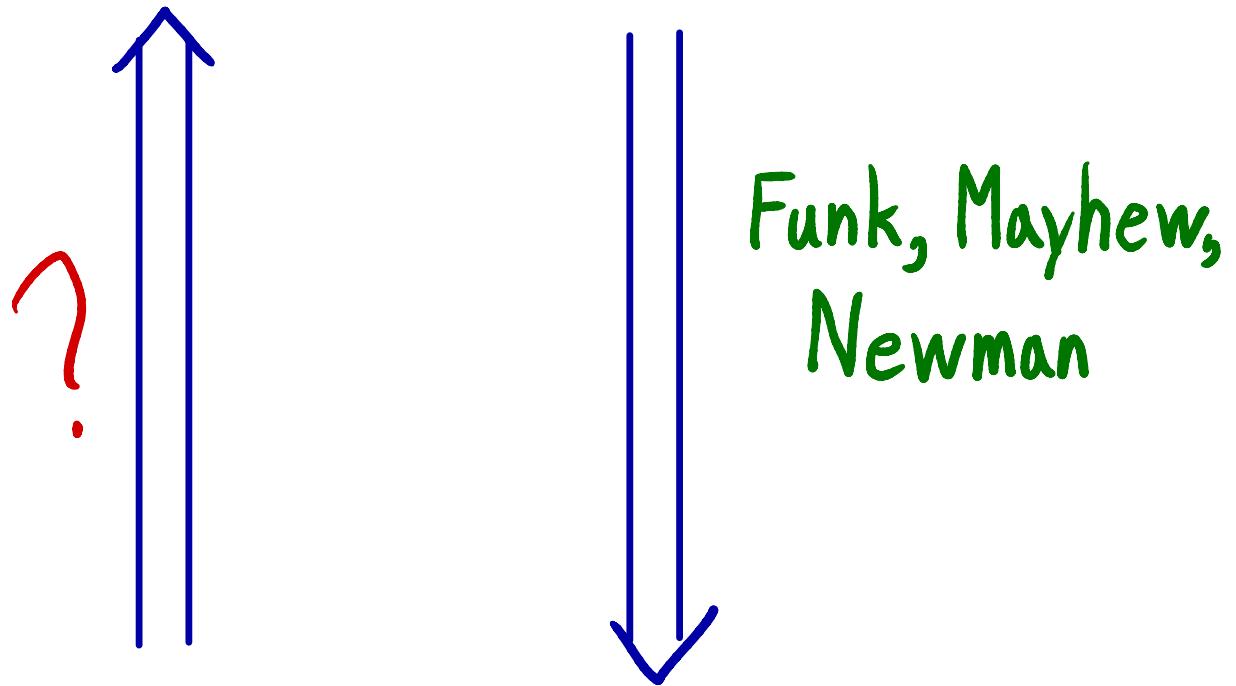


Recognizable with a tree-automata.

Set systems with $\text{set}(X)$:

On bounded decomposition-width:

Definable with a MSO sentence.



Recognizable with a tree-automata.

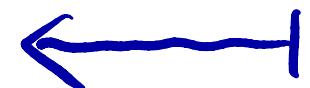
General strategy:

tree-automata

Recognizable

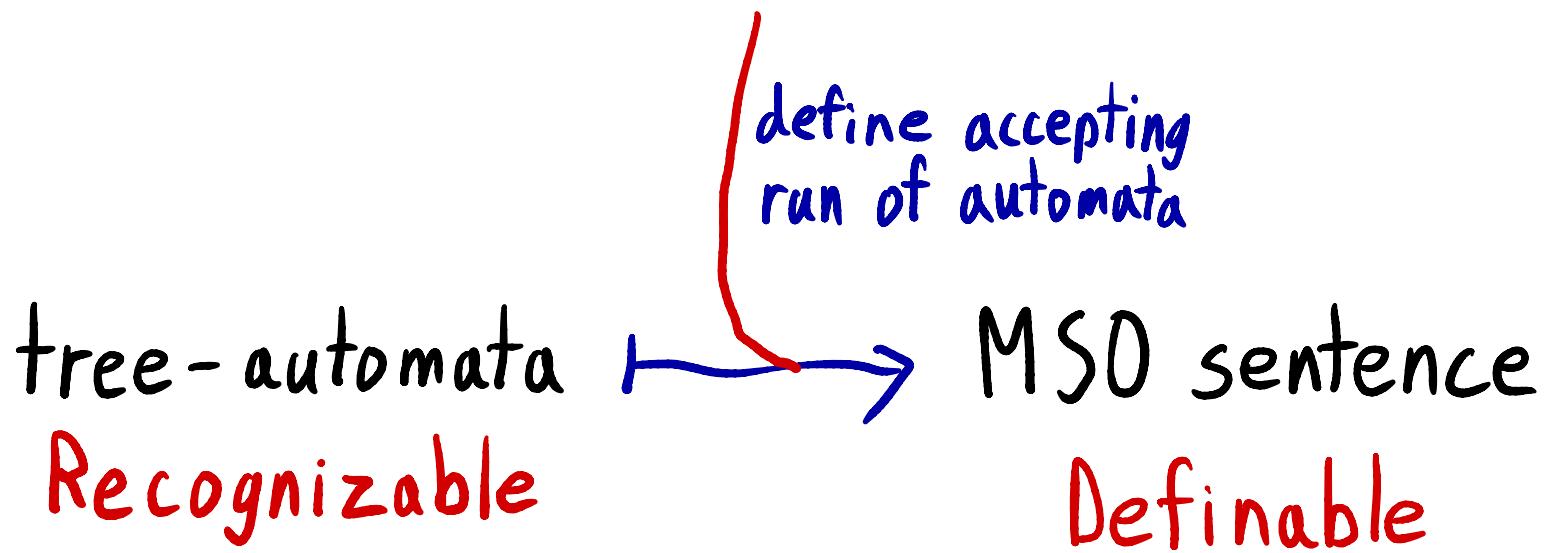
MSO sentence

Definable

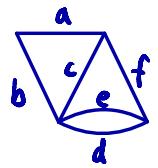


encode
truth tables/types
as states

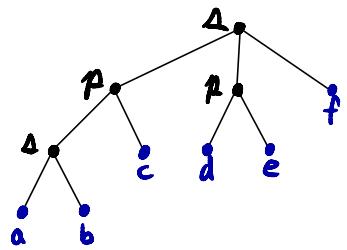
General strategy:



General strategy:



Objects with width $\leq k$



labelled decompositions of width $\leq k$

define accepting run of automata

tree-automata

MSO sentence

Recognizable

Definable

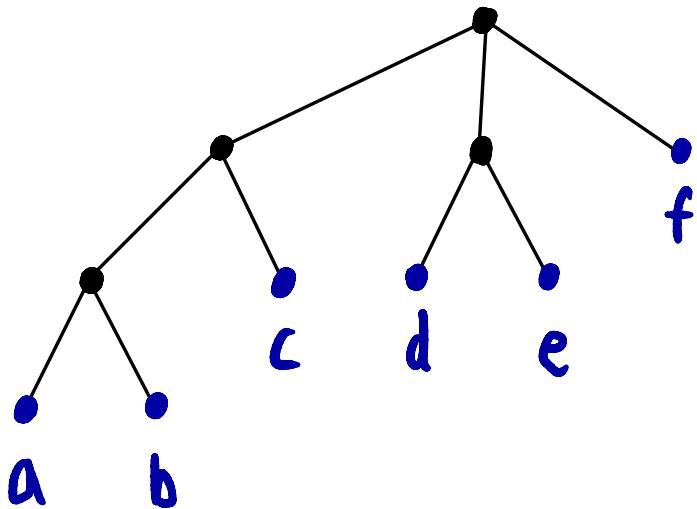
Leaves: take set of colourings as states
Parallel nodes (\sqcap): $c_1 \cdots c_k, c_1 \cdots c_k \mapsto c_1 \cdots c_k$
otherwise $\mapsto \perp$
Series nodes (\sqcap): $c_1 \cdots c_k, c_1 \cdots c_k \mapsto c_1 \cdots c_k$
otherwise $\mapsto \perp$

Transductions

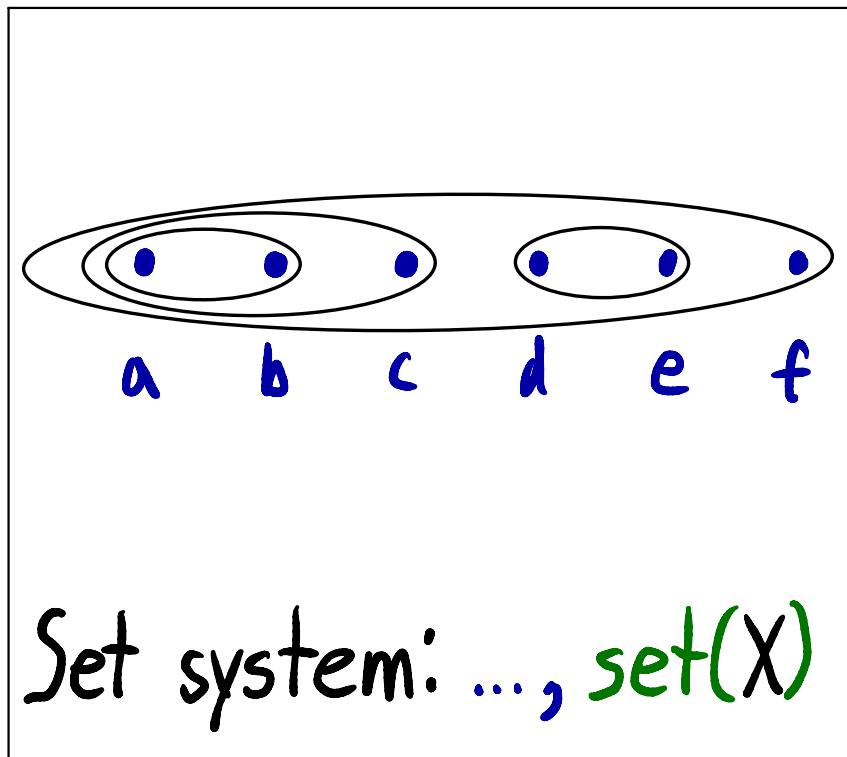
Defining a derived relational structure.

Transductions

Defining a derived relational structure.



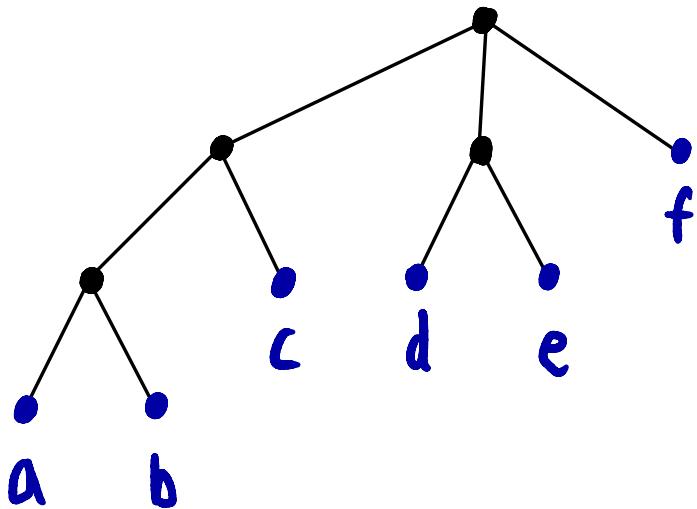
Rooted trees: ..., $\text{desc}(u, v)$



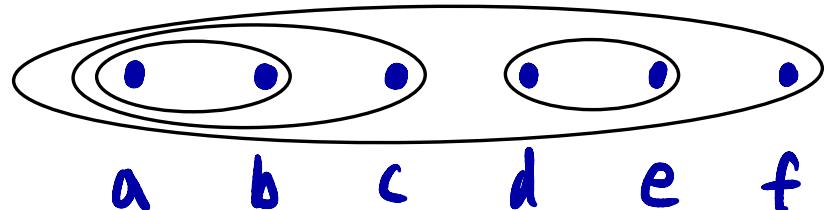
Set system: ..., $\text{set}(X)$

Transductions

Defining a derived relational structure.



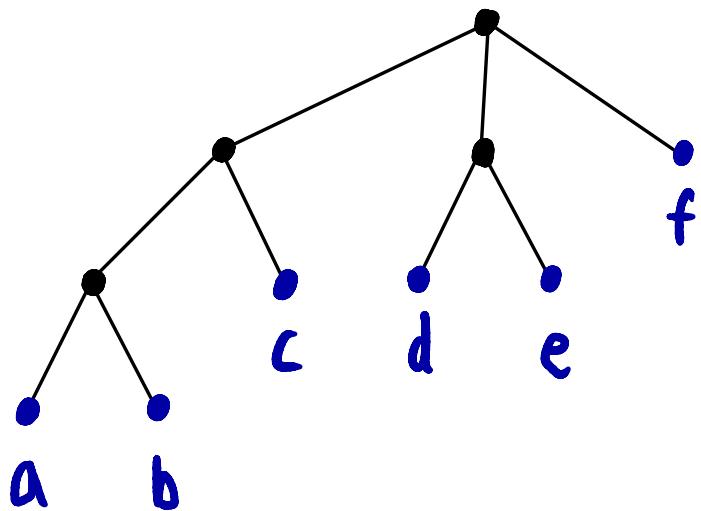
Rooted trees: ..., $\text{desc}(u, v)$



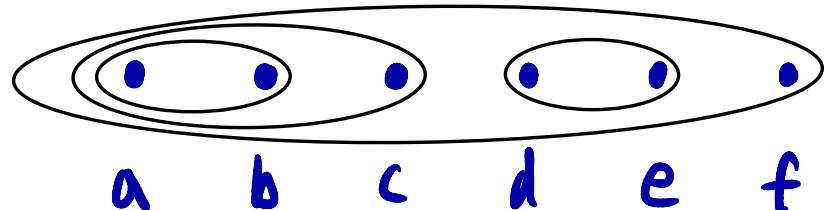
Set system: ..., $\text{set}(X)$

Transductions

Defining a derived relational structure.



Rooted trees: ..., $\text{desc}(u, v)$

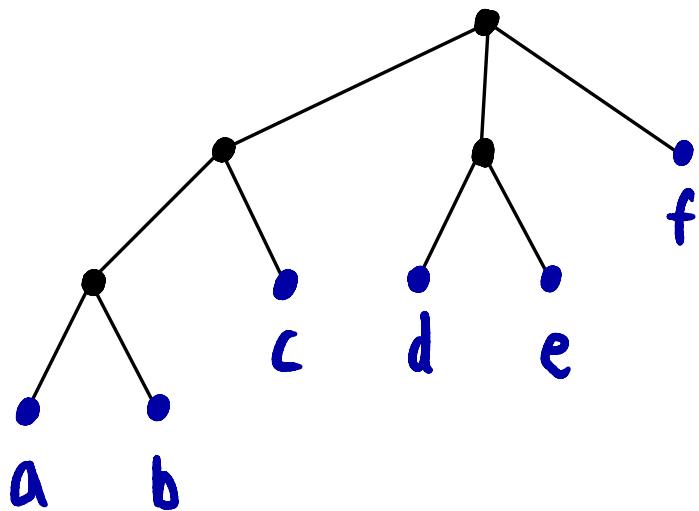


Set system: ..., $\text{set}(X)$

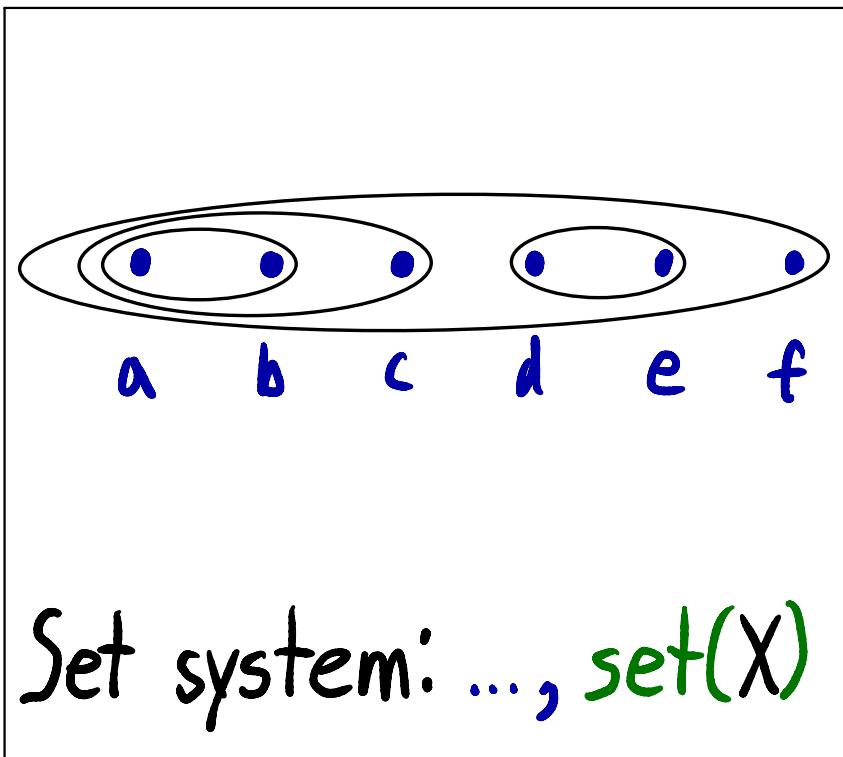
$$\text{set}(X) \coloneqq \exists a \forall x (x \in X \Leftrightarrow \text{desc}(x, a))$$

Transductions

Defining a derived relational structure.

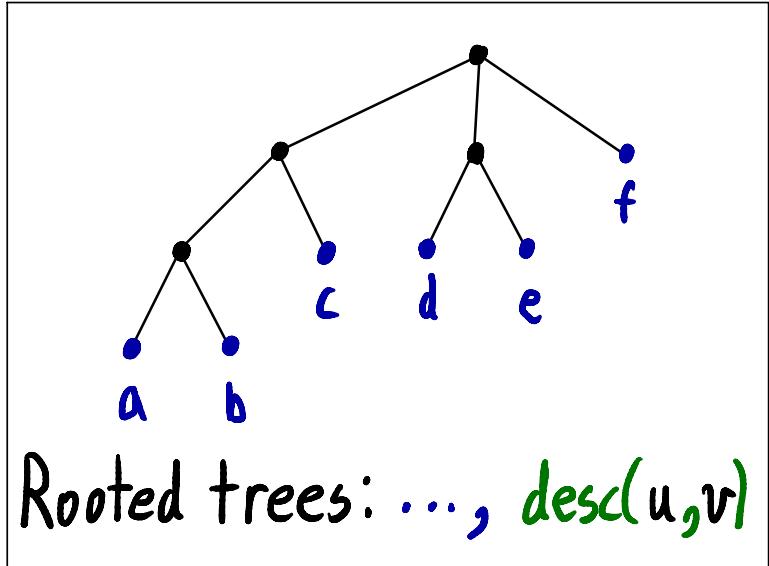
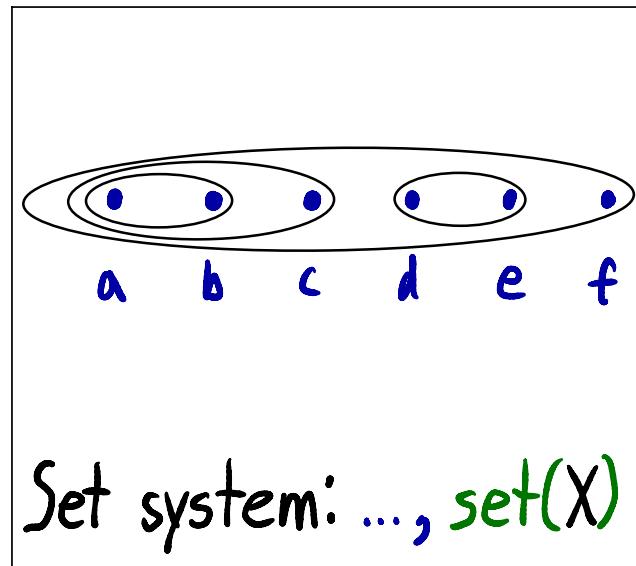


Rooted trees: ..., $\text{desc}(u, v)$

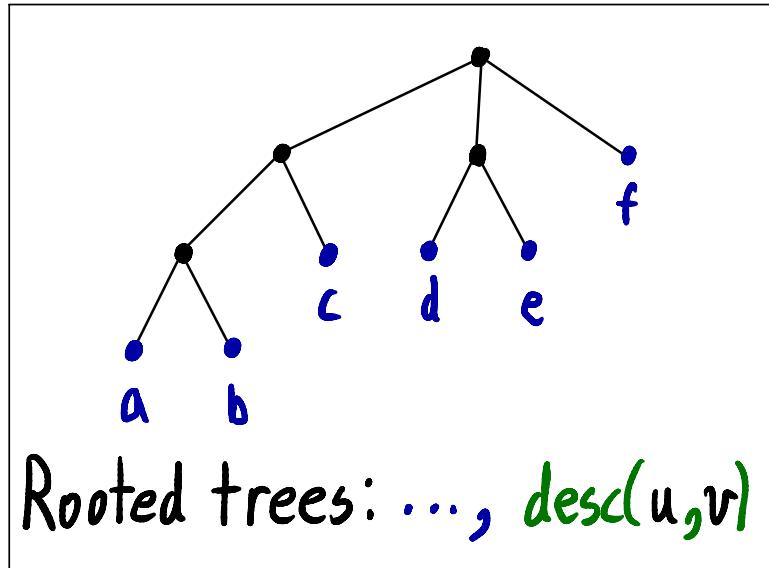


Set system: ..., $\text{set}(X)$

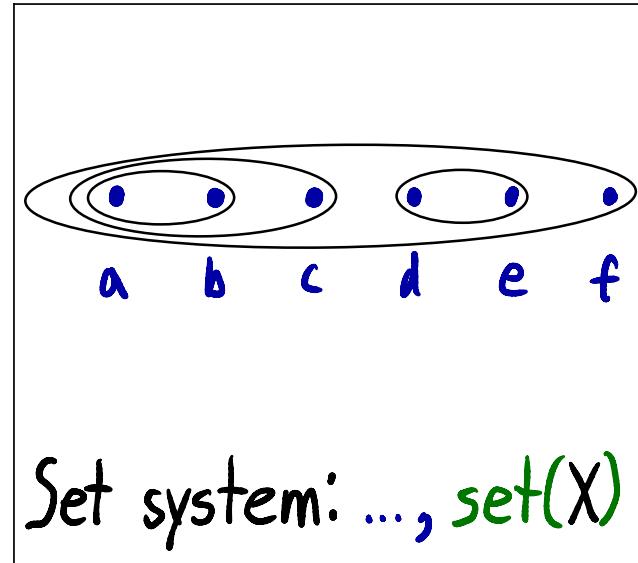
$$\text{set}(X) \coloneqq \exists a \forall x (x \in X \Leftrightarrow \text{desc}(x, a))$$



Theorem (C., Guillon, Kanté, Kim, Köhler):
 There is a $\mathcal{L}_2\text{MSO}$ -transduction from
 laminar set systems to their laminar trees.



Rooted trees: $\dots, \text{desc}(u, v)$



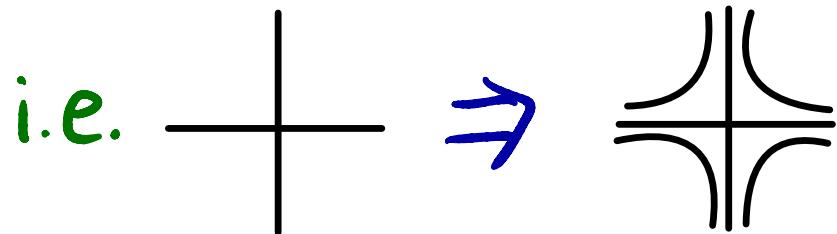
Set system: $\dots, \text{set}(X)$

Theorem(C., Guillou, Kanté, Kim, Köhler):
 There is a $\mathcal{L}_2\text{MSO}$ -transduction from
 laminar set systems to their laminar trees.

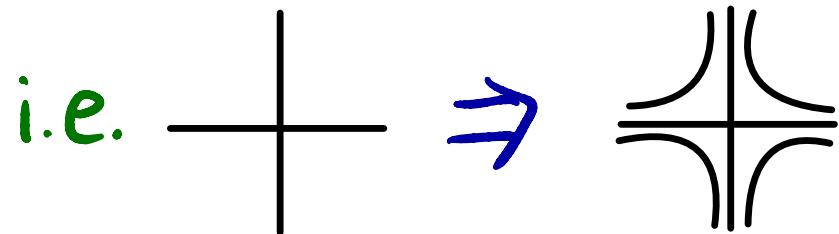
Theorem(C., Köhler):
 There is a MSO -transduction from
 laminar set systems to their laminar trees.

weakly bipartitive system is a pair (U, B) , where B is a collection of bipartitions of U with $\{\emptyset, U\} \notin B$; $\{\{a\}, U - \{a\}\} \in B$ for all $a \in U$; and if $\{X_1, X_2\}, \{Y_1, Y_2\} \in B$, then $\{X_1 \cap Y_1, X_2 \cup Y_2\}, \{X_1 \cup Y_1, X_2 \cap Y_2\}, \{X_1 \cap Y_2, X_2 \cup Y_1\}, \{X_1 \cup Y_2, X_2 \cap Y_1\} \in B$.

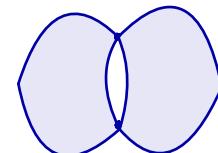
weakly bipartitive system is a pair (U, B) , where B is a collection of bipartitions of U with $\{\emptyset, U\} \notin B$; $\{\{a\}, U - \{a\}\} \in B$ for all $a \in U$; and if $\{X_1, X_2\}, \{Y_1, Y_2\} \in B$, then $\{X_1 \cap Y_1, X_2 \cup Y_2\}, \{X_1 \cup Y_1, X_2 \cap Y_2\}, \{X_1 \cap Y_2, X_2 \cup Y_1\}, \{X_1 \cup Y_2, X_2 \cap Y_1\} \in B$.



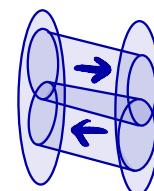
weakly bipartitive system is a pair (U, B) , where B is a collection of bipartitions of U with $\{\emptyset, U\} \notin B$; $\{\{a\}, U - \{a\}\} \in B$ for all $a \in U$; and if $\{X_1, X_2\}, \{Y_1, Y_2\} \in B$, then $\{X_1 \cap Y_1, X_2 \cup Y_2\}, \{X_1 \cup Y_1, X_2 \cap Y_2\}, \{X_1 \cap Y_2, X_2 \cup Y_1\}, \{X_1 \cup Y_2, X_2 \cap Y_1\} \in B$.



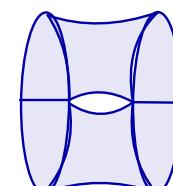
2-vertex separation (partitioning $E(G)$):



split (partitioning $V(G)$):



bi-join (partitioning $V(G)$):



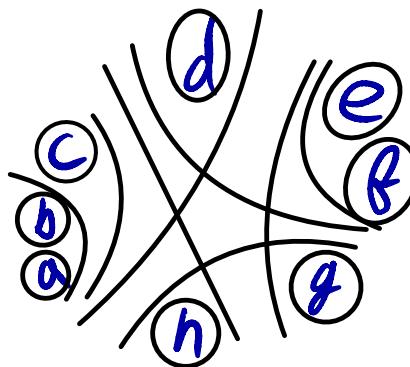
Theorem (de Montgolfier):

There is a MSO-transduction from
weakly bipartitive systems to laminar set systems.

Theorem (de Montgolfier):

There is a MSO-transduction from weakly bipartitive systems to laminar set systems.

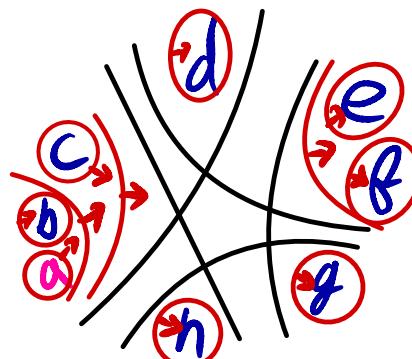
idea:



Theorem (de Montgolfier):

There is a MSO-transduction from weakly bipartitive systems to laminar set systems.

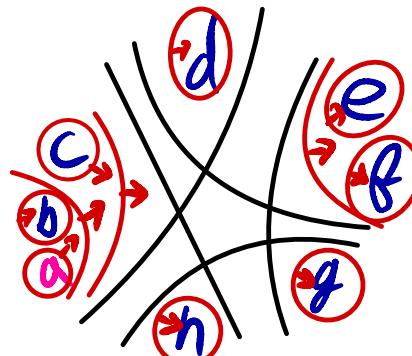
idea:



Theorem (de Montgolfier):

There is a MSO-transduction from weakly bipartitive systems to laminar set systems.

idea:



Corollary (C., Guillon, Kanté, Kim, Köhler):
Recognizability equals definability for:

- cographs (rankwidth 1)
- series-parallel graphs (branchwidth 2)
- bounded split-width

Theorem (C., Guillou, Kanté, Kim, Oum):

For $GF(q)$ -representable matroids of linear branch-width $\leq k$, there is a MSO-transduction to a linear branch-decomposition of order $\leq f(q, k)$.

Theorem (C., Guillou, Kanté, Kim, Oum):

For $GF(q)$ -representable matroids of linear branch-width $\leq k$, there is a MSO-transduction to a linear branch-decomposition of order $\leq f(q, k)$.

Corollary (Bojańczyk, Grohe, Pilipczyk):

For graphs of linear rank-width $\leq k$, there is a MSO-transduction to a linear rank-decomposition of order $\leq f(k)$.

WIP:

For $GF(q)$ -representable matroids of branch-width $\leq k$, there is a MSO -transduction to a branch-decomposition of order $\leq f(q, k)$.

WIP:

For $GF(q)$ -representable matroids of branch-width $\leq k$, there is a MSO-transduction to a branch-decomposition of order $\leq f(q, k)$.

Corollary:

For graphs of rank-width $\leq k$, there is a MSO-transduction to a rank-decomposition of order $\leq f(k)$.

Conjecture:

For structures where the relations are given by tree-automata with k states, recognizability is equivalent to definability.

Thank You!