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Main Question

First-Order Model Checking

Given a graphG and a first-order sentenceφ, decide whether
G |= φ.

# Example: G has dominating set of size k if

G |= ∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi.

# Can be decided in O(|G||φ|).

# Question: On what graph classes is the problem fpt, i.e.,
solvable in time f(|φ|) · poly(|G|)?
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Tractable Classes

bounded
expansion

nowhere
dense

bounded
degree

planar

Bounded Degree Model Checking: Seese, 1996
Planar Model Checking: Flum, Grohe 2001
Bounded Expansion Model Checking: Dvořák, Král, Thomas, 2010
Nowhere Dense Model Checking: Grohe, Kreutzer, Siebertz, 2017 3



Transductions

φ-transduction: color vertices + apply φ + take induced subgraph

φ

φ(x, y) := Red(x) ∧ Red(y) ∧ dist(x, y) = 3

A class D is a transduction of a class C if there exists φ such
that every graph in D is a φ-transduction of some graph in C.
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Transductions

The class of subdivided cliques transduces the class of all graphs.
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Tractable Classes

structurally
bounded
expansion

structurally
nowhere
dense

Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018.
Něsetřil, Ossona de Mendez, 2016

A class is structurally nowhere dense, if it is a transduction of a
nowhere dense graph class.

Structurally Nowhere Dense Model Checking: Dreier, Mählmann, Siebertz, 2022 6



Monadic Stability

Baldwin, Shelah, 1985

A class ismonadically stable, if it does not transduce the class
of all half-graphs.
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Tractable Classes

structurally
bounded
expansion

equivalent?

structurally
nowhere
dense

monadically
stable

Baldwin, Shelah, 1985

A class ismonadically stable, if it does not transduce the class
of all half-graphs.

Monadically Stable Model Checking: Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023
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Tractable Classes

structurally
bounded
expansion

equivalent?

structurally
nowhere
dense

monadically
stable

bounded
cliquewidth

bounded
twin-width

co-graphs

Cliquewidth Model Checking: Courcelle, Makowsky, Rotics, 2000
Twin-Width Model Checking: Bonnet, Kim, Thomassé, Watrigant,2021, 9



Tractable Classes

structurally
bounded
expansion

bounded
flip-width

bounded
twin-width

Flip-Width: Toruńczyk, 2023
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Tractable Classes

structurally
bounded
expansion

equivalent?

structurally
nowhere
dense

monadically
stable

bounded
cliquewidth

bounded
twin-width

monadically
dependent

co-graphs

Baldwin, Shelah, 1985

A class is monadically dependent, if it does not transduce the
class of all graphs.
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Tractable Classes

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a hereditary graph class that does not contain arbi-
trariliy large semi-induced half-graphs.

Model checking is fpt on C
⇔

C is monadically stable
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Outline

flipper game

neighborhood
complexity

neighborhood
covers

fpt model-checking

induced
patterns

no fpt model-checking

flip flatness

C monadically stable C not monadically stable

(assuming )
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Flips

Denote by G⊕ F the graph obtained from G by complementing
edges between pairs of vertices from F .
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flip F

F

14



Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper/Pursuer chooses a flip set F

2. Evader chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:
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Flipper Game and Monadic Stability

Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023

A class of graphs C is monadically stable ⇔

∀r∃ℓ such that Flipper wins the radius-r game on all graphs
from C in ℓ rounds.

Moreover, Flipper’s moves can be computed in time O(n2).
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Guiding the Recursion with Flipper Games

Algorithm from: Dreier, Mählmann, Siebertz, 2022

round 1

G′ |= q-formula?

G

flip

|= q-formula?
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Algorithm from: Dreier, Mählmann, Siebertz, 2022

round 1

G′ |= q-formula?

G

flip

|= q-formula?

|= E(x, y) |=⇐⇒
(x ∈ F ∧ y ∈ F )
E(x, y)⊕

Update q-formula by replacing each edge relation:

G G′
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Guiding the Recursion with Flipper Games

Algorithm from: Dreier, Mählmann, Siebertz, 2022

. . .

2q-localize

round 1

round 2

G′

G′[N2q (v1)] G′[N2q (vn)]

|= q-formula?

|= q-formula?

G

flip

|= q-formula?
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Gaifman–Approach

|= q-formula?G

|=G

reduces to

∃x1, . . . , xsdist(xi, xj) ≥ 2r ∧ ω(xi)?
basic local sentence
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Local Types

Reduce model checking to the problem of deciding whether two
vertices have the same q-type.

Gajarský, Gorsky, Kreutzer, 2020 Toruńczyk, 2022 Dreier, Mählmann, Siebertz, 2022

Let G be a graph and a, b be two vertices with distance more
than 2q and

q-type(G[N2q(a)], a) = q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).
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Guiding the Recursion with Flipper Games

There is just one more problem...
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Guiding the Recursion with Flipper Games

. . .

2q-localize

flip
. . .

. . .

2q-localize

. . . . . .

round 1

round 2

round 3

round ℓ
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|= q-formula?
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|= q-formula?

|= q-formula?

G

flip
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Neighborhood Covers

1-neigbhorhood cover with degree 2

Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an r-ball is a subgraph with radius r. An r-neighborhood
cover with degree ∆ in a graph G is a collection of sets
C1, . . . , Cl ⊆ V (G) such that

# every r-ball of G is contained in some Ci,
# every Ci is contained in some 4r-ball of G,
# every vertex of G is contained in at most ∆ many Ci.

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a monadically stable graph class. Every G ∈ C has
an r-neighborhood cover with degree OC,ε,r(|G|ε)
for all ε > 0, r ∈ N.

Then in particular,
∑l

i=1 |Ci| ≤ n ·OC,ε,r(|G|ε).
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Bounding the Size using Neighborhood Covers

. . .

2q-localize

flip
. . .

. . .

2q-localize

. . . . . .

round 1

round 2

round 3

round ℓ

G′ |= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

G

flip

|= q-formula?

G′[C1] G′[Cm]
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Model Checking Summary

In summary, we used three ingredients.

# A quantifier-rank preserving localization procedure.

# The Flipper game bounds the depth of the recursion tree.

# The neighborhood covers bound the size of the recursion tree.
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Neighborhood Complexity

S

≤ 2|S|distinct neighbors
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Neighborhood Complexity

S

≤ OC,ε(|S|1+ε)
distinct neighbors

Eickmeyer, Giannopoulou, Kreutzer, Kwon, Pilipczuk, Rabinovich, Siebertz, 2016

Let C be a nowhere dense graph class. For all ε > 0, G ∈ C,
S ⊆ V (G),

|{N(v) ∩ S | v ∈ V (G)}| ≤ OC,ε(|S|1+ε).
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Neighborhood Complexity

S

≤ OC,ε(|S|1+ε)
distinct neighbors

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023
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Welzl Orders

v
Welzl-order where v has 5 alternations

Corollary, Welzl, 1988

If a graph class C is monadically stable, then for all ε > 0

exists c ∈ N such that all G ∈ C admit Welzl orders where
each vertex has c · |G|1+ε alternations.
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Building 1-Neighborhood Covers

I1

Let N(I1), N(I2), . . . be the clusters of the 1-neighborhood cover.

Every vertex in N(Ii) has alternation point in Ii.

⇒ Every vertex is in O(nε) clusters.
Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a monadically stable graph class. Every G ∈ C has a
1-neighborhood cover with degree Oε,C(|G|ε)
for all ε > 0.
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Forbidden Patterns

r-subdivided edges

or or

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

A class C is monadically stable if and only if for every r, these
three types of induced subgraphs appear only up to a certain
size.
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Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

A class C is monadically stable if and only if for every r, these
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Transductions

The right two patterns can be used to show hardness of model
checking.
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Ramsey

G

Ramsey’s Theorem

In every graph G

we can find S ⊆ V (G), |S| = U(|G|)
such that S forms an independent set or clique.
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Ramsey

G

Can we force even more structure onto S?
Fix q ∈ N and order the vertices of G.

Question

Can we use monadic stability to force structure not only onto
S, but also its neighbors?

Motivation: Uniform Quasi-Wideness
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Flip Flatness

Dreier, Mählmann, Toruńczyk, Siebertz 2023

Let C be monadically stable, r ∈ N. There exists c ∈ N with
following property.

In every G ∈ C we find S ⊆ V (G), |S| = Ur(|G|), such that
S forms an independent set of clique

after performing c flips, ∀s1, s2 ∈ S Nr(s1) ∩Nr(s2) = ∅.
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Goal

Let C be any graph class.

Either patterns of arbitrary size appear (not monadically stable),
or there is no half-graph, 1-subdivided clique, or its complement of
size t ∈ N.

Use this to show radius-1 flip-flatness of C.
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Summary

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a hereditary graph class that does not contain arbi-
trariliy large semi-induced half-graphs.

Model checking is fpt on C
⇔

C is monadically stable
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The End
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