Monadically Stable Graph Classes

LoGAlg 2023, Warsaw, November 15

Jan Dreier, TU Wien

1

First-Order Model Checking

Given a graph G and a first-order sentence φ , decide whether $G\models\varphi.$

First-Order Model Checking

Given a graph G and a first-order sentence φ , decide whether $G\models\varphi.$

 \bigcirc Example: G has dominating set of size k if

$$G \models \exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i E(y, x_i) \lor y = x_i.$$

First-Order Model Checking

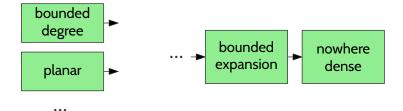
Given a graph G and a first-order sentence $\varphi,$ decide whether $G\models\varphi.$

 \bigcirc Example: G has dominating set of size k if

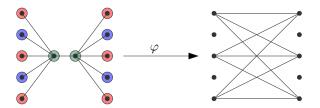
$$G \models \exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i E(y, x_i) \lor y = x_i.$$

- \bigcirc Can be decided in $O(|G|^{|\varphi|})$.
- Question: On what graph classes is the problem fpt, i.e., solvable in time $f(|\varphi|) \cdot poly(|G|)$?

Tractable Classes

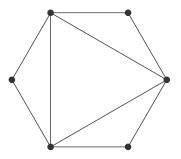


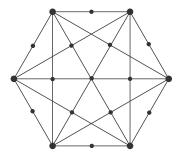
Bounded Degree Model Checking: Seese, 1996 Planar Model Checking: Flum, Grohe 2001 Bounded Expansion Model Checking: Dvořák, Král, Thomas, 2010 Nowhere Dense Model Checking: Grohe, Kreutzer, Siebertz, 2017 φ -transduction: color vertices + apply φ + take induced subgraph

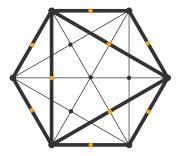


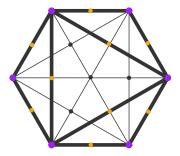
 $\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$

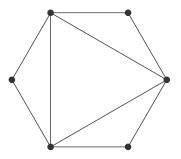
A class \mathcal{D} is a *transduction* of a class \mathcal{C} if there exists φ such that every graph in \mathcal{D} is a φ -transduction of some graph in \mathcal{C} .







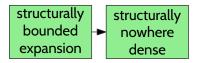




Tractable Classes

Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018. Něsetřil, Ossona de Mendez, 2016

A class is *structurally nowhere dense*, if it is a transduction of a nowhere dense graph class.



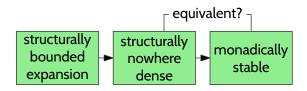
Baldwin, Shelah, 1985

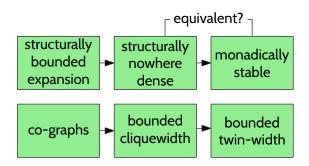
A class is *monadically stable*, if it does not transduce the class of all half-graphs.

Tractable Classes

Baldwin, Shelah, 1985

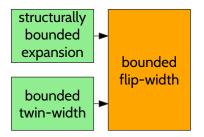
A class is *monadically stable*, if it does not transduce the class of all half-graphs.





Cliquewidth Model Checking: Courcelle, Makowsky, Rotics, 2000 Twin-Width Model Checking: Bonnet, Kim, Thomassé, Watrigant, 2021,

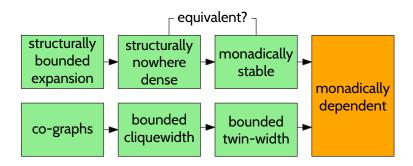
Tractable Classes



Tractable Classes

Baldwin, Shelah, 1985

A class is *monadically dependent*, if it does not transduce the class of all graphs.



Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

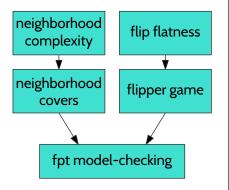
Let C be a hereditary graph class that does not contain arbitrarily large *semi-induced* half-graphs.

Model checking is fpt on C \Leftrightarrow

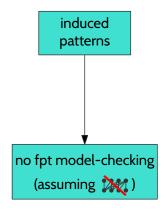
 $\ensuremath{\mathcal{C}}$ is monadically stable

Outline

$\ensuremath{\mathcal{C}}$ monadically stable

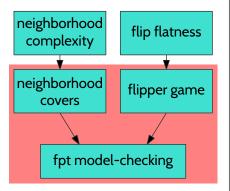


 $\ensuremath{\mathcal{C}}$ not monadically stable

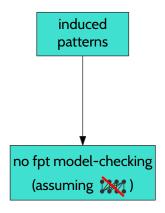


Outline

$\ensuremath{\mathcal{C}}$ monadically stable

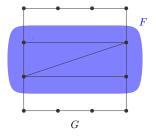


 $\ensuremath{\mathcal{C}}$ not monadically stable

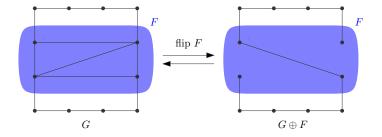


Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.



Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.



1. Flipper/Pursuer chooses a flip set F

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

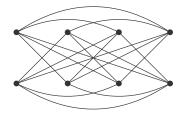
Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

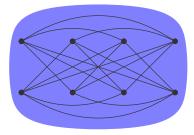
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



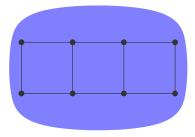
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



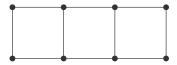
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



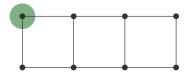
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



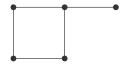
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



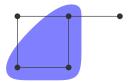
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



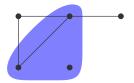
- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

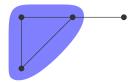


- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

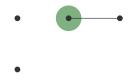


- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.



- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

- 1. Flipper/Pursuer chooses a flip set F
- 2. Evader chooses G_{i+1} as a radius-r ball in $G_i \oplus F$.

Flipper wins once G_i has size 1.

Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023

A class of graphs ${\mathcal C}$ is monadically stable \Leftrightarrow

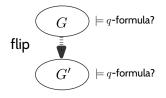
 $\forall r \exists \ell$ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

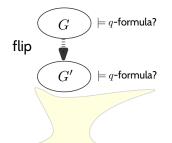
Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023

A class of graphs \mathcal{C} is monadically stable \Leftrightarrow

 $\forall r \exists \ell$ such that Flipper wins the radius-r game on all graphs from C in ℓ rounds.

Moreover, Flipper's moves can be computed in time $O(n^2)$.



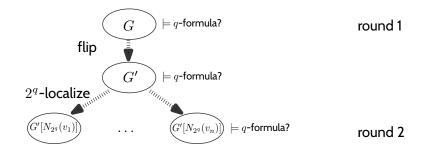


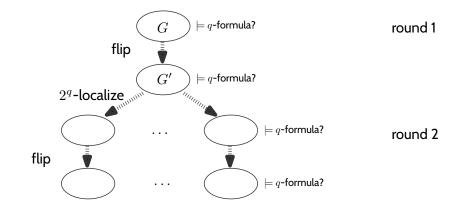
round 1

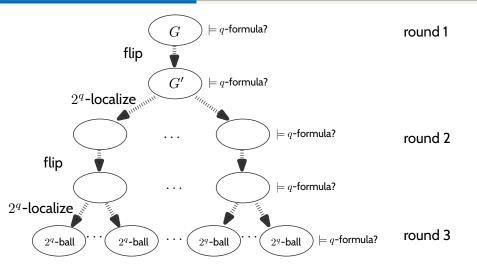
Update *q*-formula by replacing each edge relation:

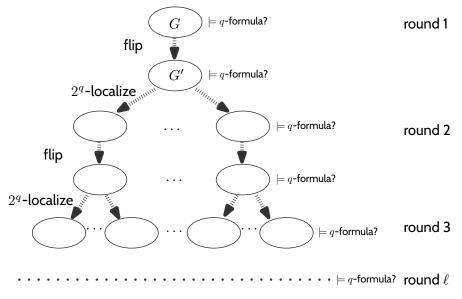
$$\bigcirc G \models E(x,y) \iff \bigcirc G' \models E(x,y) \oplus (x \in F \land y \in F)$$

17



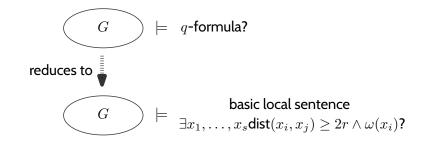




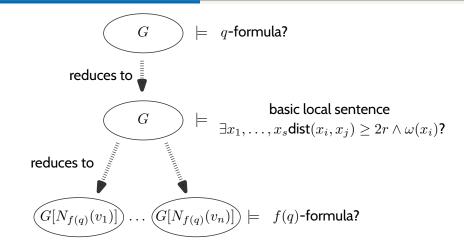


Algorithm from: Dreier, Mählmann, Siebertz, 2022

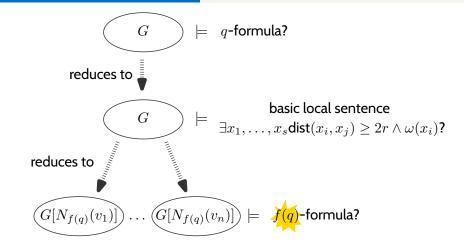
Gaifman–Approach



Gaifman–Approach



Gaifman–Approach

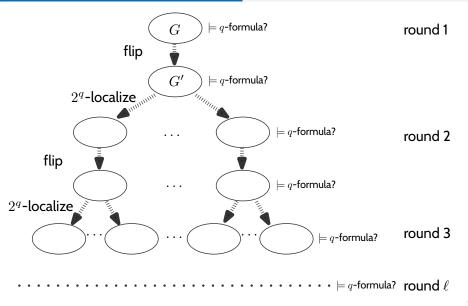


Reduce model checking to the problem of deciding whether two vertices have the same q-type.

Reduce model checking to the problem of deciding whether two vertices have the same *q*-type.

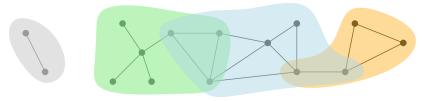
Gajarský, Gorsky, Kreutzer, 2020Toruńczyk, 2022Dreier, Mählmann, Siebertz, 2022Let G be a graph and a, b be two vertices with distance more
than 2^q and
q-type $(G[N_{2^q}(a)], a) = q$ -type $(G[N_{2^q}(b)], b)$.Then
q-type(G, a) = q-type(G, b).

There is just one more problem...



Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

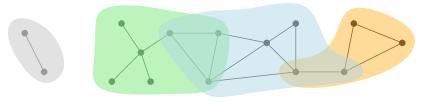
We say an r-ball is a subgraph with radius r. An r-neighborhood cover with degree Δ in a graph G is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that



Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an r-ball is a subgraph with radius r. An r-neighborhood cover with degree Δ in a graph G is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that

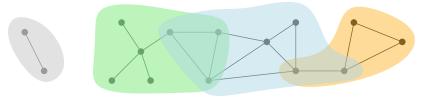
 \bigcirc every *r*-ball of *G* is contained in some C_i ,



Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an r-ball is a subgraph with radius r. An r-neighborhood cover with degree Δ in a graph G is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that

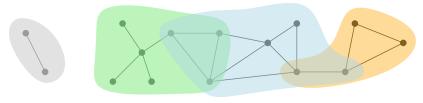
- \bigcirc every *r*-ball of *G* is contained in some C_i ,
- \bigcirc every C_i is contained in some 4r-ball of G,



Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an *r*-ball is a subgraph with radius *r*. An *r*-neighborhood cover with degree Δ in a graph *G* is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that

- \bigcirc every *r*-ball of *G* is contained in some C_i ,
- \bigcirc every C_i is contained in some 4r-ball of G,
- \bigcirc every vertex of G is contained in at most \triangle many C_i .



Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an r-ball is a subgraph with radius r. An r-neighborhood cover with degree Δ in a graph G is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that

- \bigcirc every *r*-ball of *G* is contained in some C_i ,
- \bigcirc every C_i is contained in some 4r-ball of G,
- \bigcirc every vertex of G is contained in at most \triangle many C_i .

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a monadically stable graph class. Every $G \in C$ has an r-neighborhood cover with degree $O_{\mathcal{C},\varepsilon,r}(|G|^{\varepsilon})$ for all $\varepsilon > 0, r \in \mathbb{N}$.

Technique introduced by: Grohe, Kreutzer, Siebertz, 2017

We say an r-ball is a subgraph with radius r. An r-neighborhood cover with degree Δ in a graph G is a collection of sets $C_1, \ldots, C_l \subseteq V(G)$ such that

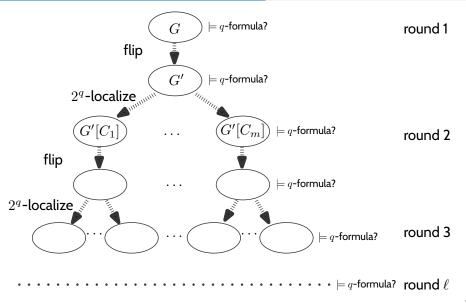
- \bigcirc every *r*-ball of *G* is contained in some C_i ,
- \bigcirc every C_i is contained in some 4r-ball of G,
- \bigcirc every vertex of G is contained in at most \triangle many C_i .

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let C be a monadically stable graph class. Every $G \in C$ has an r-neighborhood cover with degree $O_{\mathcal{C},\varepsilon,r}(|G|^{\varepsilon})$ for all $\varepsilon > 0, r \in \mathbb{N}$.

Then in particular, $\sum_{i=1}^{l} |C_i| \leq n \cdot O_{\mathcal{C},\varepsilon,r}(|G|^{\varepsilon}).$

Bounding the Size using Neighborhood Covers



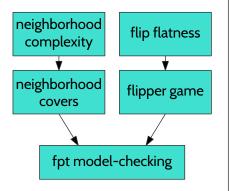
○ A quantifier-rank preserving localization procedure.

- A quantifier-rank preserving localization procedure.
- The Flipper game bounds the depth of the recursion tree.

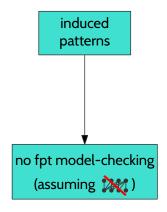
- A quantifier-rank preserving localization procedure.
- The Flipper game bounds the depth of the recursion tree.
- The neighborhood covers bound the size of the recursion tree.

Outline

$\ensuremath{\mathcal{C}}$ monadically stable

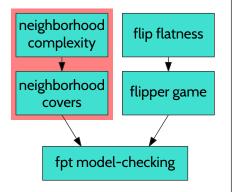


 $\ensuremath{\mathcal{C}}$ not monadically stable

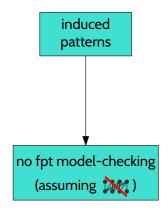


Outline

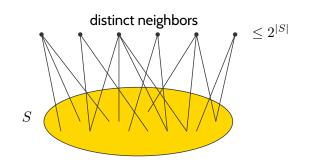
$\ensuremath{\mathcal{C}}$ monadically stable



 ${\mathcal C}$ not monadically stable



Neighborhood Complexity

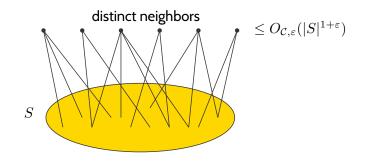


Neighborhood Complexity

Eickmeyer, Giannopoulou, Kreutzer, Kwon, Pilipczuk, Rabinovich, Siebertz, 2016

Let ${\mathcal C}$ be a nowhere dense graph class. For all $\varepsilon>0,$ $G\in {\mathcal C},$ $S\subseteq V(G),$

 $|\{N(v) \cap S \mid v \in V(G)\}| \le O_{\mathcal{C},\varepsilon}(|S|^{1+\varepsilon}).$

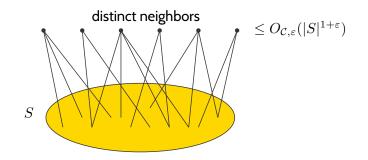


Neighborhood Complexity

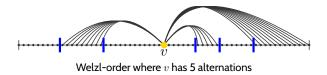
Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

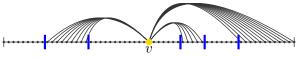
Let ${\mathcal C}$ be a monadically stable graph class. For all $\varepsilon>0, G\in {\mathcal C}$, $S\subseteq V(G)$,

 $|\{N(v) \cap S \mid v \in V(G)\}| \le O_{\mathcal{C},\varepsilon}(|S|^{1+\varepsilon}).$



Welzl Orders

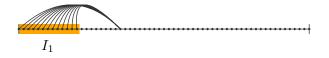


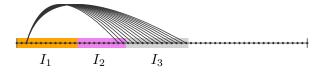


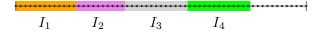
Welzl-order where v has 5 alternations

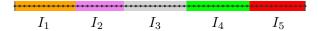
Corollary, Welzl, 1988

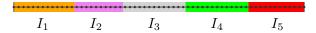
If a graph class C is monadically stable, then for all $\varepsilon > 0$ exists $c \in \mathbb{N}$ such that all $G \in C$ admit Welzl orders where each vertex has $c \cdot |G|^{1+\varepsilon}$ alternations.



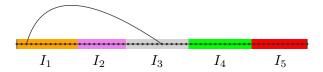




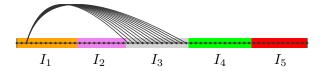




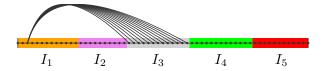
Let $N(I_1), N(I_2), \ldots$ be the clusters of the 1-neighborhood cover.



Let $N(I_1), N(I_2), \ldots$ be the clusters of the 1-neighborhood cover. Every vertex in $N(I_i)$ has alternation point in I_i .

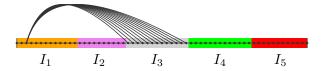


Let $N(I_1), N(I_2), \ldots$ be the clusters of the 1-neighborhood cover. Every vertex in $N(I_i)$ has alternation point in I_i .



Let $N(I_1), N(I_2), \ldots$ be the clusters of the 1-neighborhood cover. Every vertex in $N(I_i)$ has alternation point in I_i .

 \Rightarrow Every vertex is in $O(n^{\varepsilon})$ clusters.



Let $N(I_1), N(I_2), \ldots$ be the clusters of the 1-neighborhood cover. Every vertex in $N(I_i)$ has alternation point in I_i .

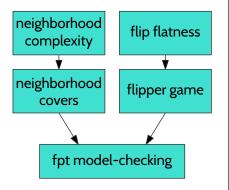
$$\Rightarrow$$
 Every vertex is in $O(n^{\varepsilon})$ clusters.

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

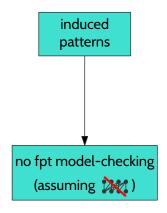
Let C be a monadically stable graph class. Every $G \in C$ has a 1-neighborhood cover with degree $O_{\varepsilon,C}(|G|^{\varepsilon})$ for all $\varepsilon > 0$.

Outline

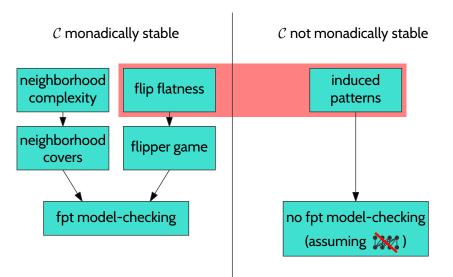
$\ensuremath{\mathcal{C}}$ monadically stable



 $\ensuremath{\mathcal{C}}$ not monadically stable



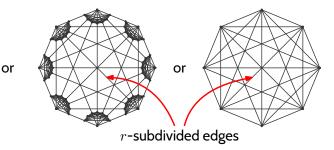
Outline



Forbidden Patterns

Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

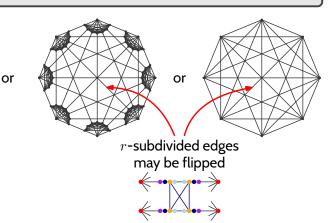
A class C is monadically stable if and only if for every r, these three types of induced subgraphs appear only up to a certain size.

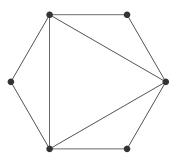


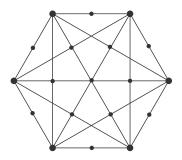
Forbidden Patterns

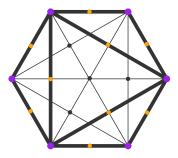
Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

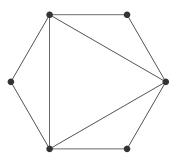
A class C is monadically stable if and only if for every r, these three types of induced subgraphs appear only up to a certain size.



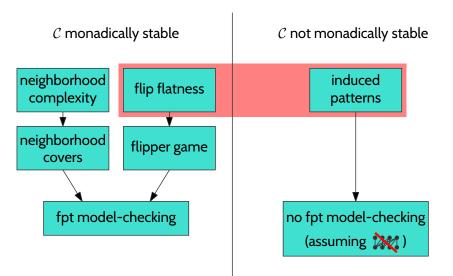






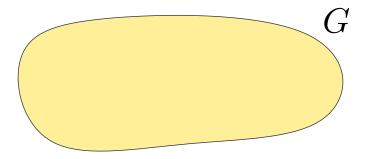


Outline



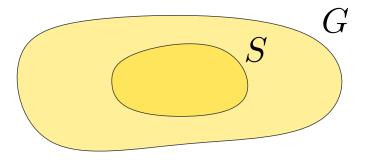
Ramsey's Theorem

In every graph ${\cal G}$



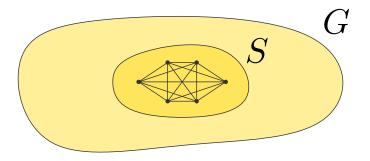
Ramsey's Theorem

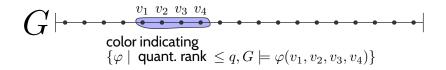
In every graph
$$G$$
 we can find $S \subseteq V(G), |S| = U(|G|)$

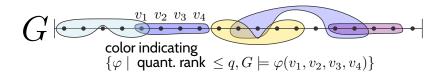


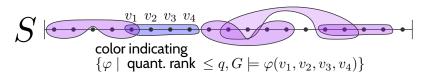
Ramsey's Theorem

In every graph G we can find $S \subseteq V(G)$, |S| = U(|G|) such that S forms an independent set or clique.

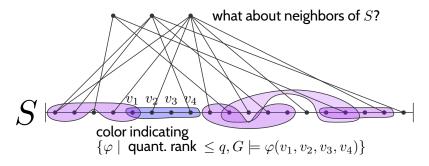




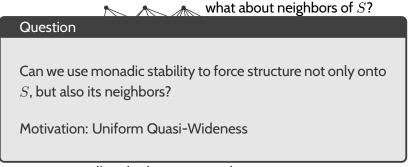




all tuples have same color



all tuples have same color



all tuples have same color

Flip Flatness

Dreier, Mählmann, Toruńczyk, Siebertz 2023

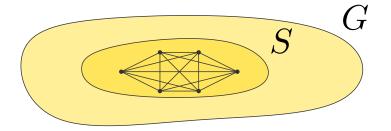
```
Let C be monadically stable, r \in \mathbb{N}. There exists c \in \mathbb{N} with following property.
```

Flip Flatness

Dreier, Mählmann, Toruńczyk, Siebertz 2023

Let C be monadically stable, $r \in \mathbb{N}$. There exists $c \in \mathbb{N}$ with following property.

In every $G \in C$ we find $S \subseteq V(G)$, $|S| = U_r(|G|)$, such that S forms an independent set of clique



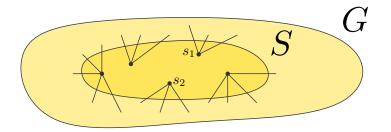
Flip Flatness

Dreier, Mählmann, Toruńczyk, Siebertz 2023

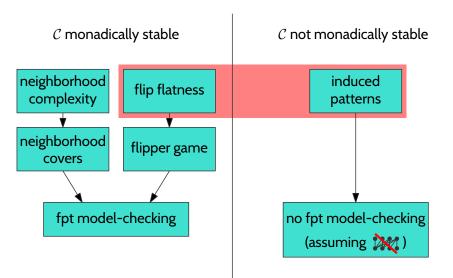
Let C be monadically stable, $r \in \mathbb{N}$. There exists $c \in \mathbb{N}$ with following property.

In every $G \in C$ we find $S \subseteq V(G)$, $|S| = U_r(|G|)$, such that S forms an independent set of clique

after performing c flips, $\forall s_1, s_2 \in S \ N_r(s_1) \cap N_r(s_2) = \emptyset$.



Outline

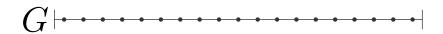


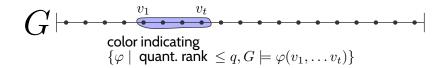
Either patterns of arbitrary size appear (not monadically stable),

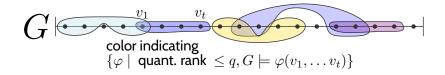
Either patterns of arbitrary size appear (not monadically stable), or there is no half-graph, 1-subdivided clique, or its complement of size $t \in \mathbb{N}$.

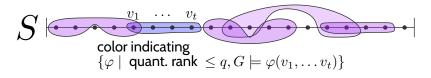
Either patterns of arbitrary size appear (not monadically stable), or there is no half-graph, 1-subdivided clique, or its complement of size $t \in \mathbb{N}$.

Use this to show radius-1 flip-flatness of C.

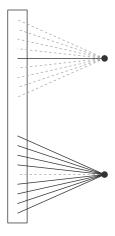


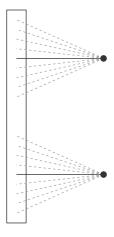


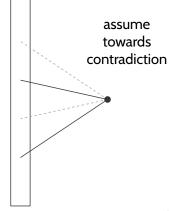


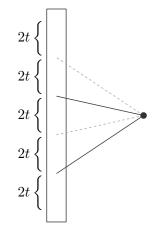


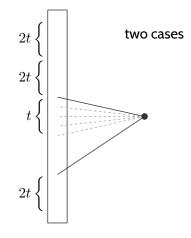
all tuples have same color

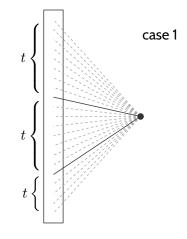


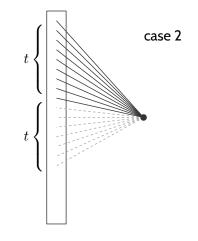


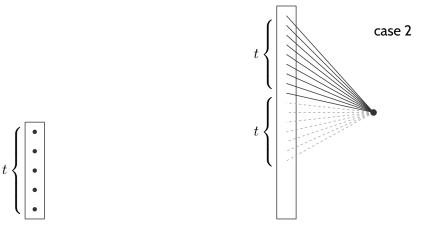


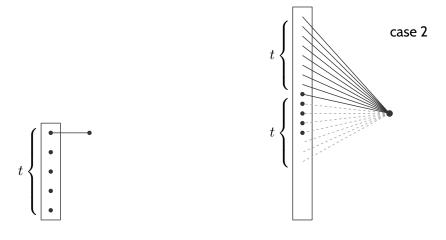


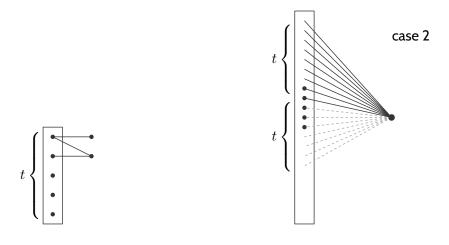


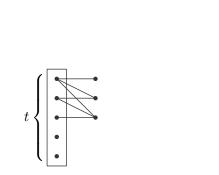


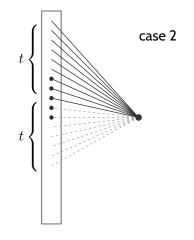


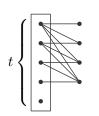


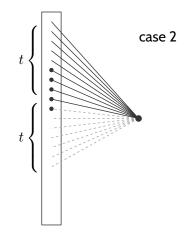


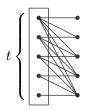


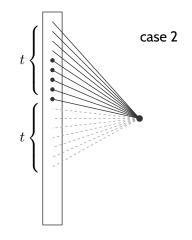


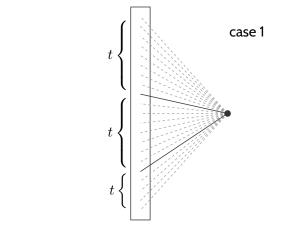


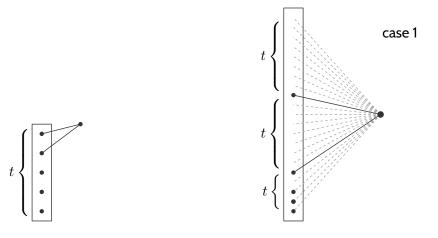


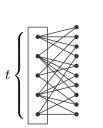


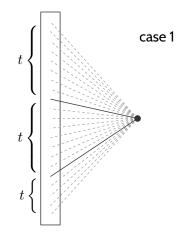






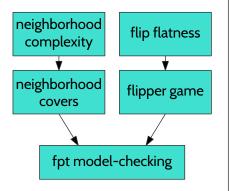




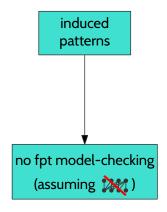


Outline

$\ensuremath{\mathcal{C}}$ monadically stable



 $\ensuremath{\mathcal{C}}$ not monadically stable



Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023

Let *C* be a hereditary graph class that does not contain arbitrarily large *semi-induced* half-graphs.

 $\begin{array}{l} \mathsf{Model \ checking \ is \ fpt \ on \ }\mathcal{C} \\ \Leftrightarrow \\ \mathcal{C} \ \mathsf{is \ monadically \ stable} \end{array}$

The End