Integrating Algebraic Dynamic Programming in Combinatorial Optimization

Christopher Bacher, Günther Raidl

bacher@ac.tuwien.ac.at www.ac.tuwien.ac.at/people/bacher Algorithms and Complexity Group TU Wien December 2nd, 2016

Dynamic Programming & Metaheuristics

Hybrid Metaheuristics often depend on Dynamic Programming for ...

- ... solving **subproblems** e.g. packing, shortest path
- ... enhancing **neighbourhood search** e.g. Dynasearch
- ... improving **recombination** operators in GAs e.g. memetic algorithms
- ... decoding solutions e.g. permutation encodings

Motivation

Some observations on Dynamic Programming ...

- DP is often encountered as solution technique
- DP has usually a problem-specific implementation

Motivation

Some observations on Dynamic Programming ...

- DP is often encountered as solution technique
- DP has usually a problem-specific implementation
- DP is often easier to describe ...
- ... than to implement

Motivation

Some observations on Dynamic Programming ...

- DP is often encountered as solution technique
- DP has usually a problem-specific implementation
- DP is often easier to describe ...
- ... than to implement

Is something wrong with Dynamic Programming?

Algebraic Dynamic Programming (ADP)

Alternative view on Dynamic Programmning (Giegerich et al., 2002)

- Formal grammar defines the search space by **decomposition**
- Separates evaluation from search space declaration
- Works for sequence data (strings)—originally intended for bioinformatics
- Extension for set/general data structures available (Siederdissen et al., 2014/15)

Algebraic Dynamic Programming (ADP)

Alternative view on Dynamic Programmning (Giegerich et al., 2002)

- Formal grammar defines the search space by **decomposition**
- Separates evaluation from search space declaration
- Works for sequence data (strings)—originally intended for bioinformatics
- Extension for set/general data structures available (Siederdissen et al., 2014/15)

Whistle: a new solver framework for ADP

- targeted for general combinatorial problems
- intended for integration in heuristics

Parts of an Algebraic Dynamic Program

Set of indexed terminal symbols

Represents atomic objects of a solution

Set of indexed non-terminal symbols

- Each non-terminal is a **DP table**
 - \rightarrow addressed by the indices
- Each indexed non-terminal represents a state/compound object

Set of production/decomposition rules

- Describes the search space
- Quantifiable
- Different types of constraints

Motivating Example: Knapsack

Given set of items $i \in \mathcal{I}$ and knapsack of max. weight Q

- *S* ... Optimally packed knapsack
- $B_{i,q}$... Knapsack of weight at most q with item i considered last
 - i ... integer
 - *q* ... real-valued
- π_i ... Item i

Motivating Example: Knapsack

Given set of items $i \in \mathcal{I}$ and knapsack of max. weight Q

■ *S* ... Optimally packed knapsack

• $B_{i,q}$... Knapsack of weight at most q with item i considered last

- i ... integer
- *q* ... real-valued
- π_i ... Item i

Decomposition Grammar

$$S \to \pi_i B_{i,Q-w_i \ge 0} \qquad \forall i \in \mathcal{I}$$
$$B_{i,q} \to \pi_j B_{j,q-w_j \ge 0} \qquad \forall j \in \mathcal{I}, [i < j]$$
$$\mid \epsilon$$

Motivating Example: Knapsack

Given set of items $i \in \mathcal{I}$ and knapsack of max. weight Q

■ *S* ... Optimally packed knapsack

• $B_{i,q}$... Knapsack of weight at most q with item i considered last

- i ... integer
- *q* ... real-valued
- π_i ... Item i

Decomposition Grammar

$$S \to \pi_i B_{i,Q-w_i \ge 0} \qquad \qquad \forall i \in \mathcal{I}$$
$$B_{i,q} \to \pi_j B_{j,q-w_j \ge 0} \qquad \qquad \forall j \in \mathcal{I}, [i < j]$$
$$\mid \epsilon$$

Evaluation Algebra σ_{value}

$$\sigma_{\text{value}}(S) = \text{value}[\#1] + \sigma_{\text{value}}(\#2)$$

$$\sigma_{\text{value}}(B_{i,q}) = \text{value}[\#1] + \sigma_{\text{value}}(\#2)$$

$$\mid 0$$

Dominance: $A \prec B \equiv \sigma_{value}(A) < \sigma_{value}(B)$

Heuristic Extensions

Search engines

Original ADP approach uses a fixed search order ...

- ... for solving "standalone" DP problems (bioinformatics)
- \blacksquare ... for proven-optimality nothing else is neded

Search engines

Original ADP approach uses a fixed search order ...

- ... for solving "standalone" DP problems (bioinformatics)
- ... for proven-optimality nothing else is neded

Flexible search orders ...

- ... separate search from search space declaration
- may find optimal solutions faster
- … have complexity benefits for some problems

Search engines

Original ADP approach uses a fixed search order ...

- ... for solving "standalone" DP problems (bioinformatics)
- ... for proven-optimality nothing else is neded

Flexible search orders ...

- ... separate search from search space declaration
- may find optimal solutions faster
- … have complexity benefits for some problems

Whistle supports different search engines

- Depth-First Search
- Greedy Search
- ∎ A*

Index propagation

Original ADP

- Not explicit indices (by default)
- Automatic deduction
- Restricted to sequence/set data
- No index errors

Whistle ADP

- Explicit indices (by default)
- No automatic deduction
- Index propagators:
 - Sequence data
 - Cyclic permutations
 - Resource usage
 - ...
- Less index errors
- More flexibility

Partial Invalidation

DP approaches can be embedded in heuristics ...

Improvement heuristics ...

- ...change parts of a solution
- ...would require recalculation of the whole DP

Partial Invalidation

DP approaches can be embedded in heuristics ...

Improvement heuristics ...

- ...change parts of a solution
- ...would require recalculation of the whole DP

Partial Invalidation ...

- ... keeps track of dependencies of table cells
- ... allows for invalidation of parts of a table
 - \rightarrow on basis of changed terminal symbols
- … can reuse remaining information

Shadowing

In Genetic Algorithms solution candidates ...

- ... depend on their parents
- ... can reuse their information

$\label{eq:shadowing} \textbf{Shadowing} \text{ of table cells allows to redirect table access}$

 \rightarrow less recomputation

Examples

Shortest Path

Given a graph G = (V, A)

- S_{s,t} ... Shortest path from s to t
 P_{s,X,t} ... Path from s to t with unvisited nodes X
 s, t ... integer
 X ... set
- $a_{i,j}$... Arc from *i* to *j*

$$\begin{split} S_{s,t} &\to P_{s,V \setminus \{s,t\},t} \\ P_{s,X,t} &\to a_{s,x} P_{X,X-x,t} \\ &\mid a_{s,t} \end{split} \quad \forall x \in X, [(s,x) \in A] \\ &[(s,t) \in A] \end{split}$$

Shortest Path

Given a graph G = (V, A)

- S_{s,t} ... Shortest path from s to t
 P_{s,X,t} ... Path from s to t with unvisited nodes X
 s, t ... integer
 X ... set
- $a_{i,j}$... Arc from *i* to *j*

$$\begin{split} S_{s,t} &\to P_{s,V \setminus \{s,t\},t} \\ P_{s,X,t} &\to a_{s,x} P_{X,X-x,t} \\ &\mid a_{s,t} \end{split} \quad \forall x \in X, [(s,x) \in A] \\ &[(s,t) \in A] \end{split}$$

Shortest path is not expressibly without set semantics!

Shortest Path with Resource Constraints

Given graph G = (V, A) and k resource capacities $Q^{(k)}$

Traveling Salesman Problem

Given a graph G = (V, A) visit all vertices in V exactly once

Formalization of the Bellman-Held-Karp algorithm

$$S \rightarrow a_{1,i}P_{i,V\setminus\{1,i,j\},j}a_{j,1} \quad \forall i,j \in V, [1 \neq i \neq j][(1,i) \in A][(j,1) \in A]$$
$$P_{i,X,j} \rightarrow a_{i,x}P_{x,X-x,j} \qquad \forall x \in X, [(i,x) \in A]$$
$$| a_{i,j} \qquad [X = \emptyset][(i,j) \in A]$$

Considering the similarity of Shortest Path and TSP models \dots

Why is one significantly harder than the other?

Considering the similarity of Shortest Path and TSP models \dots

Why is one significantly harder than the other?

In some cases ...

- ... table indices can be relaxed ... not symbol indices!
 → multiple indexed symbols map to the same table cell
- ... indices can be stored in an amalgamated form
- symbols with a higher **degree of freedom** are computed → then update amalgamated index

Considering the similarity of Shortest Path and TSP models \dots

Why is one significantly harder than the other?

In some cases ...

- ... table indices can be relaxed ... not symbol indices!
 → multiple indexed symbols map to the same table cell
- ... indices can be stored in an **amalgamated form**
- symbols with a higher **degree of freedom** are computed → then update amalgamated index

Preconditions are already formalized

Considering the similarity of Shortest Path and TSP models ...

Why is one significantly harder than the other?

Two possibilities for Shortest Path ...

- Amalgamated set index: less visited nodes ⇒ higher degree of freedom
- \blacksquare Completely relaxed set index: requires heuristic search order \rightarrow Djikstra's algorithm

Considering the similarity of Shortest Path and TSP models ...

Why is one significantly harder than the other?

Two possibilities for Shortest Path ...

- Amalgamated set index: less visited nodes ⇒ higher degree of freedom
- \blacksquare Completely relaxed set index: requires heuristic search order \rightarrow Djikstra's algorithm

Not applicable for the **TSP**!

Conclusion

Whistle—ADP for combinatorial optimization ...no need to implement all this by yourself!

- Tailored for combinatorial optimization in general
- Written in **Rust** as compiler plugin—C ABI compatible
- Supports integer, float, and set indices
- Uses a new compatibility and dominance mechanism instead of objective functions
- Supports Index Propagators for advanced index deduction: Sequence data, Cyclic permutations, Resources, ...
- Different evaluation algorithms: Top-down, Bottom-up, Bidirectional (new)
- Supports different search engines: DFS (current), Greedy, A*, Beam-Search
- Supports Partial Invalidation and Shadowing

Thank you for your attention!