Our research on Logic and Algorithms Intro & Overview

AC Retreat 2015, Semmering, Austria

Stefan Szeider Algorithms and Complexity Group TU Wien, Vienna, Austria

June 29, 2015

Poly-Time Tractability

Most problems of practical relevance are NP-hard!

Structure Matters!

random input

real-world input

Two-Dimensional Model!

Famous Examples

find a VC of size k

- both problems can be solved in time n^k
- VC can be solved in time 2^km
- IS apparently cannot
- [What do we known about a graph with a small VC or IS?]

find an IS of size k

Vertex Cover Problem

trajectory of fixed-parameter algorithms

High performance comp (Langston, Knoxville) VC as backend problem for biomarker discovery, etc

Hardness Theory

- class XP: Problems that can be solved in time n^k
- Many problems outside **FPT** are not complete for **XP**
- Intermediate complexity classes
 FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ ... ⊆ XP
- IS and CLIQUE are **W[1]**-complete (and 100s others)
- DS and 3HS are **W[2]**-complete (and 100s others)
- k-COL is not even in **XP**, it is complete for the class **para-NP**.
- (all via **fpt-reductions**)

Methods and Tools

Upper Bounds Lower Bounds

- our research often focuses on the border between tractability and hardness
- draw a detailed complexity landscape
- how far can we push the border to intractability?

Topics

- Many of our topics are related to Logic (either methods or problems)
- Often parameters are not solution size but structural parameters like treewidth
- **Discrete** combinatorics and algorithms

Topics

IOPICS							3	
structural decomp	Х	Х	X	Х	Х	Х	Х	Х
backdoors / modulators	Х	X	X	Х	Х	Х	Х	Х
SAT	Х	Х	Х	X	X	Х	Х	Х
QBF				Х			X	X
Bayesian Nets						X		Х
Model counting			Х				X	X
Kernelization		Х	Х			X	Х	Х
Planning				Х		X		X
Knowledge Compilation	X			Х	Х		Х	Х
Subexponential Time				X				Х
model checking	X	Х	Х	Х		Х	Х	Х
CSP	Х	Х	Х	Х		Х		X
ASP				Х				Х
Abstract Argumentation						Х		X
	Х	Х	Х	Х	Х	Х	Х	

Thanks!

Parameterized LS

Traveling Salesman

[E. Balas, 1999] [D. Marx, 2008]

[Guo, Hartung, Niedermeier, Súchy, 2011]

- *r*-Center, Vertex Cover, Odd Cycle Transversal, Max Cut, Min Bisection [Fellows, Fomin, Lokshtanov, Rosamond, Saurabh, Villanger, 2009]
- Feedback Arc Set on Tournaments

[Fomin, Lokshtanov, Raman, Saurabh, 2010]

- Stable Marriage
- Boolean Constraint Satisfiability
- Satisfiability
- Cluster problems
- String problems

[Marx and Schlotter, 2001]

[Krokhin and Marx, 2012]

[S. Szeider, 2011]

[Dörnfelder, Guo Komusiewicz, Weller, 2011]

[Guo, Hermelin, Komusiewicz, 2012]