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Satisfiability (SAT)

* SAT:is a given prop. formula satisfiable?

* First problem shown to be NP-complete
[Cook '71]

: A

* Extremely well suited for representing
various problems (e.g., verification, planning,

)

* Engineers started early in designing solvers,

DIMACS challenge 1992 DIMACS

* SAT conference, annual competitions,...
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break-through =2000

* Heuristic techniques, e.g. clause-learning
* super efficient data structures like watched literals

* combination makes SAT solvers incredibly fast

* from about 100 vars (1990) to 1.000.000 vars
search space from 1039 to 1(300-000

... the progress on the engineering side

has been nothing short of spectacular
M.Vardi, CACM 2014
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Structure Matters!

real-world instance

* SAT solvers are good at practical instances
* SAT solvers are not good at random instances
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The Gap
Theory n<250 vs Practise n>1.000.000




Parameterize!

e Parameterized

barameter k

. Complexity offers a
) suitable framework
;é) i o s ® [Downey&Fellows 1999]
= o e H°° :
S| e O 0 040 e Fixed-Parameter
7 ot Size > sizen Tractability (FPT)

time f(k) - poly(n)

Is there an FPT parameter that explains the
success of SAT solvers!?
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The quest for the
“right” parameter...

parms that describe (to
some extend) the behaviour

of SAT solvers

community backdoor
structure based based

[Ansotegui, Bonet, Giraldez-Cru, Levy, |JCAR 2014]

parms for which SAT
is FPT

decomposition
based

[Newsham, Ganesh, Fischmeister, Audemard, Simon, SAT 2014]
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Backdoors
[Williams, Gomes, Selman 2003]

* ‘renamable Ho

— === Backdoor: small set of variables
o Acydlic ST 2 such that instantiating the
' S variables puts the instance on
< K . ol
w‘mtﬁw,} an island of tractability

Similar to modulators for
graphs.
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Islands of Tractability
(or base classes)

e A class C of CNF formulas is an island of
tractability if

- recognition of C is polynomial
- SAT-decision for C is polynomial

- C is closed under partial assignments
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Examples

* Class of Horn formulas (all clauses contain at most
| positive literal)

* Class of Krom (or 2CNF) formulas (all clauses
contain at most 2 literals)

* Class of Renamable Horn formulas (can be made
Horn by flipping polarity of variables)

* Acyclic formulas (the incidence graph is a forest,
generalization: of bounded tw)

* Class of instances decided by a polynomial-time
subsolver: unit propagation, pure literal elimination,
trivial decision, but no branching.

IPEC’ |4 12 Stefan Szeider



Some Notation

e CNF formula as set of clauses
F={{=x,y},{x,7z,u},{x,u}}

* partial assignment:
mapping T from S Cvar(F) to {0,1},

e.g., T={x~|,y~0}

* Applying a partial assighment:
FLTI=1mGy ) 0652560, 06G U= XX, U

* Deleting variables:
F=S={{=%y},1%¢7Z,up, {3 U} =1 "z, ub U 2 F[T]
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Types of Backdoors

* Let C be an island of tractability, F a CNF
formula and B C var(F).

* B can be a strong C-backdoor, a weak C-
backdoor, or a deletion C-backdoor of F
according tho the following definitions.
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Strong Backdoors

*B is a strong C-backdoor of F if for all truth
assignments T:B— {0,1} we have F[T]e C.

* [f we know a strong backdoor of size k, then
we can decide the satisfiability in time O*(2¥).
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Weak Backdoors

* B is a weak C-backdoor of F if for some

truth assignment T:B— {0, 1} we have
F[T]e C n SAT.

e If we know a weak backdoor of size k then

we can find a satisfying assignment in time
O*(2Y).
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Deletion Backdoors

* B is a deletion C-backdoor of F if
F-B € C

* [f Cis clause-induced (i.e, Fe Cand F C K
then F' € C), then each deletion C-backdoor

is a strong C-backdoor.
(follows from F—B2F[T])
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Origins of Backdoors

* [Williams, Gomes, Selman 2003] introduced backdoors as a
theoretical tool to explain:

- heavy-tailed runtime of backtrack-based solvers
- effectiveness of random restarts

* The solver might get lucky and find the key variables after a
restart

* Industrial instances (often) have small backdoors, random
instances around the threshold don’t.

* [Crama, Ekin, Hammer, DAM 1997] considered a similar concepts
under different names.
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Algorithmic use of
Backdoors

[Nishimura, Ragde, Sz 2004]

|. Backdoor Detection:
Find small backdoor (say of size at most k)

2. Backdoor Evaluation:
Use the backdoor to decide satisfiability (or
count number of satisfying assignments)
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Backdoor Detection

[Nishimura, Ragde, Sz 2004]

e Strong C-Backdoor Detection
Instance: a CNF formula Finteger k = 0

Question: does F have a strong C-backdoor of size < k?

Parameter: k

e Weak C-Backdoor Detection (analogue)

e Deletion C-Backdoor Detection (analogue)
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Horn and Krom

complexity chart:




Proof

* for Horn/Krom strong and deletion backdoors
are the same!

= Horn/Krom is clause-induced,
hence deletion = strong

- single clause obstruction cannot be
eliminated by satisfying the clause, it must be
eliminated by deletion,
hence strong = deletion
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deletion Horn-bd =VC

* Given F, we construct a graph G=(V,E)
* V=var(F)

* uv € E iff there is a clause containing u and v
positively.

* Deletion Horn-backdoors of F are exactly the
vertex covers of G.

e Use VC algorithm (O*(1.2738%))
[Chen, Kanj, Xia 2010]
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deletion Krom-bd= 3HS

* Given F we construct a 3-uniform hypergraph
H=(V,E),V=var(F)

e uvw € E iff there is a clause containing these
three variables positively or negatively

* Deletion Horn-backdoors of F are exactly the
hitting sets of H.

e Use 3HS algorithm O*(2.27%)
[Niedermeier, Rossmanith 2003]
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Renamable Horn

* Deletion RHorn-Backdoor Detection can be fpt-
reduced to 2SAT-Deletion

(make 2CNF formula satisfiable by deleting k
clauses) [Gottlob, Sz. 2006]

* 2SAT-Deletion is FPT [Razgon, O’Sullivan 2009]
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favars— [0, 1]

Q-Horn

e Q-Horn > RHorn, Horn, Krom

in terms of linear equations
[Boros, Crama and Hammer|990]

2xeC f(X) + 2-xec 1-f(x) < 1 (V clauses C)

* Deletion Q-Horn Detection is FPT—apzproximabIe
(algorithm finds backdoor of size < k“+k)

[Gaspers, Ordyniak, Ramanujan, Saurabh, Sz.
201 3]
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Subsolvers

* Let C be a base class defined by subsolver
UP PL, UP+PL.

e C is not clause-induced, so deletion backdoors
don’t help!

Deletion

n/a

* Strong/Weak C-Backdoor Detection is VW[P]-
complete. [Sz 2005].
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Acyclic Formulas

F={{x ,yhly sz wh {x wi)

/}W\madence graph

X7y} {y,7z,ow} {7 w}

* A formula is Acyclic if it’s incidence graph is a forest.

* #SAT is solvable in linear-time for acyclic formulas
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The power of partial
assignments

@ appears positively in green clauses
x  appears negatively in red clauses

x=fxlse

* {x} is a strong Acyclic-backdoor
* deletion Acyclic-backdoor
needs to be large
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Acyclic Formulas

* Deletion Acyclic-Backdoor Detection can be
solved by FVS

* Strong Acyclic-Backdoor Detection is fpt-
approximable [Gaspers, Sz. ICALP’12]
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Algorithm Outline

A. small feedback vertex set
- small treewidth, dynamic programming
B. many disjoint cycles

- find an essential set $* of size at most
f(k) that intersects with every backdoor
set of size k.
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FPT-Approximation

|. Given (F k) with many disjoint cycles
2. compute an essential set §*

3. for all x in S* recursively try
(F[x=0],k-1) and (F[x=1],k-1I)

4. If both branches produce backdoor sets Xo,
X, then output Xo u X u {x}
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Bounded Ireewidth

* Let TW]t] be the class of formulas whose
incidence graph has treewidth < t.

* Strong TW]t]-Backdoor Detection is fpt-
approximable [Gaspers, Sz. FOCS’ | 3]
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Further Questions

* Weak backdoor detection is VW[2]-hard for
most base classes .... how about inputs in
3CNF? [Gaspers, Sz. 2012] [Misra, Ordyniak,
Raman, Sz. SAT’ | 3]

* How about strong backdoors where each
assignment can put the formula into a different

base class “heterogeneous backdoors”
[Gaspers, Misra, Ordyniak,Sz, Zivny AAAI’ | 4]
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Part ||

Backdoors to NP
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Reductions to SAT

* Every NP-complete problem can be reduced
in polytime to SAT

* In many cases this is a very practical solution,
because of the power of today’s SAT solvers
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bove NP

MINMAX SAT |LIST CHROMATIC NUMBER

NOT-ALL-EQUALVI3SAT >y I 3-COLORING EXTENSION
IS AT \ / MINMAX CLIQUE | [1oos NUMBER
GRAPH SATISFIABILITY
MONOTONE MINIMUM WEIGHT WORD AP
3 GENERALIZED SUBSET SUM
GENERALIZED 3-CNF CONSISTENCY ARGUMENT COHERENCE |
MINIMUM EQUIVALENT EXPRESSION |

IRREDUNDANT p p
M AXIMON TBRM DELBTION ] 25 115 MINIMUM 3SAT DEFINING SET

GRAPH CONSISTENCY
SHORT CNF GENERALIZED GRAPH COLORING

MAXIMUM LITERAL DELETION DYNAMIC HAMILTONIAN CIRCUIT
GENERALIZED RAMSEY NUMBER

SHORTEST IMPLICANT

LONGEST DIRECTED CIRCUIT
PEBBLING NUMBER

CIRCUIT RESTRICTION

[Shaefer, Umans 2002,2008]
Compendium
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Example: Abductive
Reasoning

* studied by Charles Sanders Peirce

* used to generate explanations for
observed symptoms and

C.S. Peirce manifeStatiOnS
(1839-1914)

* fundamental importance in Al, such
as for logical diagnosis
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The Abduction Problem

* Given:
- a propositional formula T (the theory)
- a set of variables M (the manifestations)
- a set of variables H (the hypotheses)

* Task:

- find a set S C H such that that
S AT is consistent and
S AT E M (all assignments that satisfy S A T also satisfy M)

- S explains M”
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Abduction is Hard

* Deciding whether an abduction oy | 113
instance has a solution is > "; - \ /
complete [Eiter, Gottlob 1995] Ag\

e Can’t be reduced in polytime to SAT a m®

* Parameterized complexity results by
[Fellows, Pfandler, Rosamond,
Rummele 2012]
mostly hardness results,

FPT by number of variables

IPEC’ 1 4 40 Stefan Szeider



ldea:
FPT-reductions to SAT

Use FPT-tractability not / \ /
to solve the problem, but

to reduce it to SAT!

* Parameter can be far less
restrictive than for FPT-
tractability

* We combine the strengths of two

worlds (SAT and FPT)

* Suitable parameter?
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Backdoors to SAT

e [f the theory is Horn, Abduction drops to NP-c
[Eiter,Gottlob 1995]

» The unique minimal model of a Horn formula
can be found in linear time

[Dowling, Gallier 1984]

» since it is sufficient to check (S A T) & M for the
unique minimal model of S AT

e Use as parameter the Horn backdoor size
* Finding the backdoor is FPT (same as for SAT)

* Using the backdoor is the challenge!
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t=0

t=1

t=2

t=n
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Dowling-Gallier
algorithm in a formula

enforced by unit clauses

unique minimal model
43

Take conjunction of 2X
copies of this formula,
corresponding to all
truths assignments to
the backdoor
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Results

* Theorem: an Abduction instance with a strong
Horn backdoor of size k, can be reduced in
time O*(2%) an equivalent CNF formula.

* Corollary: Abduction parameterized by Horn-
backdoor size is is para-NP-complete

* Hence we can break trough the barriers of
classical complexity, exploiting structure in
terms of parameters
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Further Results

* Abduction par’d by backdoor to Krom is paraNP-c
[Pfandler, Rummele, Sz. [|CAI’ | 3]

* Disjunctive Answer Set Programming par’d by

backdoor to Normality is paraNP-c [Fichte, Sz.
AAAI | 3]

* Boolean Optimization 3VSAT par’d by universal
treewidth is paraNP-c [de Haan, Sz. SAT’ | 4]

* in retrospect: Bounded Model Checking par’d by size

of counterexample (industrial strength applications!)
[Biere, Cimatti, Clarke, Zhu,1999] is paraNP-c
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Hardness [ heory

* How can we exclude that a parameterized
problem is fpt-reducible to SAT?
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parameterized parameterized
NP-complete problems D r-complete problems

remains on second level of

PH even when parameter
is constant

very bad class
remains NP-hard even

when parameter is
constant

{ interesting boundary

[ good class ? ﬁ good class J
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Weighted Satisfiability!

v = |. for all assignments to

red there is an

assignment of weight k  \*k3¢
to green that satisfies

the circuit?

2. for all assighments to
red of weight k there is VI(H*
an assignment to green
that satisfies the circuit?
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Is the Weft important!

e *3k: weft is important.

- we end up with seemingly distinct classes
v*3ak-WI[i]

e vk3*: weft is not important.

- any circuit can be replaced with a 2DNF

- a very robust class for which we have

alternative characterisations in terms of
alternating TMs and FO-MC
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Complexity Zoo

para-X} para-I5

| |
3*vK-W[P] v* 3K W[P]
Fky*  para-A; vk
| T T |

3*vK-WI1] v* 3K W[1]
| |
para-NP / para-co-NP
N A
WI[P] co-WIP]
WI[1] co-WI[1]
\
para-P = FPT
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The classes are inhabited!

® Disjunctive Answer Set Programming [Kr’ 4]
® Boolean Optimization [SAT’ |4]
® Judgement Aggregation [ComSoc’|4]

® Graph Problems




Concrete Example: 3-Col-Ext

* Input: graph G with n leaves, integer m

» Question: can any 3-coloring of m of the n leaves
be extended to a proper 3-coloring of G?

parameter complexity

# uncolored leaves (m-n) para-
# precolored leaves (m) vk3*-complete
# leaves (n) para-NP-complete
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Last Slide

* Backdoors: natural way to parameterise
problems

* FPT: Backdoors to P
* para-NP: Backdoors to NP

* Interesting algorithmic and theoretical
challenges
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