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Satisfiability (SAT)
• SAT: is a given prop. formula satisfiable?	


• First problem shown to be NP-complete 
[Cook ’71]	


• Extremely well suited for representing 
various problems (e.g., verification, planning, 
…)	


• Engineers started early in designing solvers, 
DIMACS challenge 1992	


• SAT conference, annual competitions,…
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break-through ≈2000
• Heuristic techniques, e.g. clause-learning	


• super efficient data structures like watched literals	


• combination makes SAT solvers incredibly fast	


• from about 100 vars (1990) to 1.000.000 vars  
search space from 1030 to 10300.000
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… the progress on the engineering side 
has been nothing short of spectacular  
M. Vardi, C.ACM 2014 



IPEC’14 Stefan Szeider

Structure Matters!
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• SAT solvers are good at practical instances	


• SAT solvers are not good at random instances

real-world instance 
(SW verification)

random instance
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3SAT time bounds
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  2 trivial

  1.333 1999 
(Schöning)

  1.3302 2002

  1.3290 2003

  1.3280 2003

  1.324 2010	

(Hertli)

For n=250 that exceeds the 
number of nano seconds that 
passed since the big bang!
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The Gap  
Theory n<250 vs Practise n>1.000.000

6
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Parameterize!
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Is there an FPT parameter that explains the 
success of SAT solvers?

• Parameterized 
Complexity offers a 
suitable framework 
[Downey&Fellows 1999] 	


• Fixed-Parameter 
Tractability (FPT)  
time f(k)·poly(n)
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The quest for the 
“right” parameter…
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parms that describe (to 
some extend) the behaviour 
of SAT solvers

parms for which SAT 
is FPT

community 
structure based

decomposition 
based

backdoor 
based

[Ansótegui, Bonet, Giráldez-Cru, Levy, IJCAR 2014]	

[Newsham, Ganesh, Fischmeister, Audemard, Simon, SAT 2014]
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Backdoors 
[Williams, Gomes, Selman 2003]
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Backdoor: small set of variables 
such that instantiating the 
variables puts the instance on 
an island of tractability	


Similar to modulators for 
graphs.d

Horn

Krom

renamable Horn

Acyclic
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Islands of Tractability 
(or base classes)

• A class C of CNF formulas is an island of 
tractability if	


- recognition of C is polynomial	


- SAT-decision for C is polynomial	


- C is closed under partial assignments

11
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Examples
• Class of Horn formulas (all clauses contain at most 

1 positive  literal)	


• Class of Krom (or 2CNF) formulas (all clauses 
contain at most 2 literals)	


• Class of Renamable Horn formulas (can be made 
Horn by flipping polarity of variables)	


• Acyclic formulas (the incidence graph is a forest, 
generalization: of bounded tw)	


• Class of instances decided by a polynomial-time 
subsolver: unit propagation, pure literal elimination, 
trivial decision, but no branching. 

12
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Some Notation
• CNF formula as set of clauses  

F={{¬x,y},{x,¬z,u},{x,¬u}}	


• partial assignment:  
mapping τ from S ⊆var(F) to {0,1}, 
e.g. ,τ={x↦1,y↦0}	


• Applying a partial assignment:  
F[τ]={{¬x,y},{x,¬z,u},{x,¬u}}={{¬x},{x,¬u}}	


• Deleting variables:  
F−S={{¬x,y},{x,¬z,u},{x,¬u}}={{},{¬z,u},{¬u}}⊇F[τ]

13
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Types of Backdoors

• Let C be an island of tractability, F a CNF 
formula and B ⊆ var(F).	


• B can be a strong C-backdoor, a weak C-
backdoor, or a deletion C-backdoor of F, 
according tho the following definitions.

14
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Strong Backdoors

• B is a strong C-backdoor of F if for all truth 
assignments τ:B→ {0,1} we have F[τ]∈ C.	


• If we know a strong backdoor of size k, then 
we can decide the satisfiability in time O*(2k).

15
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Weak Backdoors

• B is a weak C-backdoor of F if for some 
truth assignment τ:B→ {0,1} we have  
F[τ]∈ C ∩ SAT.	


• If we know a weak backdoor of size k then 
we can find a satisfying assignment in time 
O*(2k).

16
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Deletion Backdoors

• B is a deletion C-backdoor of F if  
F−B ∈ C 	


• If C is clause-induced (i.e, F ∈ C and F’ ⊆ F, 
then F’ ∈ C), then each deletion C-backdoor 
is a strong C-backdoor.  
(follows from F−B⊇F[τ])

17
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Origins of Backdoors
• [Williams, Gomes, Selman 2003] introduced backdoors as a 

theoretical tool to explain:	


- heavy-tailed runtime of backtrack-based solvers	


- effectiveness of random restarts	


• The solver might get lucky and find the key variables after a 
restart	


• Industrial instances (often) have small backdoors, random 
instances around the threshold don’t.	


• [Crama, Ekin, Hammer, DAM 1997] considered a similar concepts 
under different names.

18
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Algorithmic use of 
Backdoors	


[Nishimura, Ragde, Sz 2004]

1. Backdoor Detection:  
Find small backdoor (say of size at most k)	


2. Backdoor Evaluation:  
Use the backdoor to decide satisfiability (or 
count number of satisfying assignments)

19
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Backdoor Detection	

[Nishimura, Ragde, Sz 2004]

• Strong C-Backdoor Detection 

Instance: a CNF formula F, integer k ≥ 0	


Question:  does F have a strong C-backdoor of size ≤ k?	


Parameter: k

20

• Deletion C-Backdoor Detection (analogue)

• Weak C-Backdoor Detection (analogue)                         
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Horn and Krom

21

Strong Deletion Weak

FPT FPT W[2]-h

complexity chart:
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Proof
• for Horn/Krom strong and deletion backdoors 

are the same!	


- Horn/Krom is clause-induced,  
hence deletion ⇒ strong	


- single clause obstruction cannot be 
eliminated by satisfying the clause, it must be 
eliminated by deletion,  
hence strong ⇒ deletion

22
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deletion Horn-bd = VC
• Given F, we construct a graph G=(V,E)	


• V=var(F)	


• uv ∈ E iff there is a clause containing u and v 
positively.	


• Deletion Horn-backdoors of F are exactly the 
vertex covers of G.	


• Use VC algorithm (O*(1.2738k))  
[Chen, Kanj, Xia 2010]

23
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deletion Krom-bd= 3HS
• Given F, we construct a 3-uniform hypergraph 

H=(V,E), V=var(F)	


• uvw ∈ E iff there is a clause containing these 
three variables positively or negatively	


• Deletion Horn-backdoors of F are exactly the 
hitting sets of H.	


• Use 3HS algorithm O*(2.27k)  
[Niedermeier, Rossmanith 2003]

24
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Renamable Horn

• Deletion RHorn-Backdoor Detection can be fpt-
reduced to 2SAT-Deletion  
(make 2CNF formula satisfiable by deleting k 
clauses) [Gottlob, Sz. 2006]	


• 2SAT-Deletion is FPT [Razgon, O’Sullivan 2009]

25

Strong Deletion Weak

W[2]-h FPT W[2]-h
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Q-Horn
• Q-Horn ⊇ RHorn, Horn, Krom  

in terms of linear equations 
[Boros, Crama and Hammer1990]

26

Strong Deletion Weak

W[2]-h FPT-apx W[2]-h

f:vars→ [0,1]	

!
Σx∈C f(x) + Σ¬x∈C 1-f(x) ≤ 1    (∀ clauses C)

• Deletion Q-Horn Detection is FPT-approximable 
(algorithm finds backdoor of size ≤ k2+k)  
[Gaspers, Ordyniak, Ramanujan, Saurabh, Sz. 
2013]
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Subsolvers
• Let C be a base class defined by subsolver  

UP,   PL,   UP+PL.	


• C is not clause-induced, so deletion backdoors 
don’t help!

27

Strong Deletion Weak

W[P]-c n/a W[P]-c

• Strong/Weak C-Backdoor Detection is W[P]-
complete. [Sz 2005].
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Acyclic Formulas

• A formula is Acyclic if it’s incidence graph is a forest.	


• #SAT is solvable in linear-time for acyclic formulas

28

F={{x ,¬y},{y ,¬z, ¬w}, {¬x, w}}

wyx z

{x,¬y} {y, ¬z, ¬w} {¬x, w}

!
incidence graph
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The power of partial 
assignments

29

x

appears positively in green clauses	

appears negatively in red clauses

x=truex=false

• {x} is a strong Acyclic-backdoor	

• deletion Acyclic-backdoor 

needs to be large
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Acyclic Formulas

• Deletion Acyclic-Backdoor Detection can be 
solved by FVS	


• Strong Acyclic-Backdoor Detection is fpt-
approximable [Gaspers, Sz. ICALP’12]

30

Strong Deletion Weak

FPT-apx FPT W[2]-h
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Algorithm Outline

A. small feedback vertex set	


- small treewidth, dynamic programming	


B. many disjoint cycles 	


- find an essential set S* of size at most 
f(k) that intersects with every backdoor 
set of size k.

31
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FPT-Approximation

1. Given (F, k) with many disjoint cycles	


2. compute an essential set S* 	


3. for all x in S* recursively try  
(F[x=0],k-1) and (F[x=1],k-1)	


4. If both branches produce backdoor sets X0, 
X1, then output X0 ∪ X1∪ {x}

32
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Bounded Treewidth

• Let TW[t] be the class of formulas whose 
incidence graph has treewidth ≤ t.	


• Strong TW[t]-Backdoor Detection is fpt-
approximable [Gaspers, Sz. FOCS’13]

33

Strong Deletion Weak

FPT-apx FPT W[2]-h
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Further Questions

• Weak backdoor detection is W[2]-hard for 
most base classes …. how about inputs in 
3CNF? [Gaspers, Sz. 2012] [Misra, Ordyniak, 
Raman, Sz. SAT’13]	


• How about strong backdoors where each 
assignment can put the formula into a different 
base class “heterogeneous backdoors”  
[Gaspers, Misra, Ordyniak,Sz, Zivny AAAI’14]

34



Part II
Backdoors to NP
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Reductions to SAT

• Every NP-complete problem can be reduced 
in polytime to SAT	


• In many cases this is a very practical solution, 
because of the power of today’s SAT solvers

36
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Above NP

37

SAT

• added open problem [O9] THUE CHROMATIC NUMBER,

• added open problem [O8] STRONG CHROMATIC NUMBER,

• added [L21] ∃∃!-3SAT,

• added [GT21] UNIQUE k-LIST COLORABILITY,

• added open problem [O7] THUE NUMBER,

• added [GT20] PEBBLING NUMBER,

1 Introduction

In this paper we have compiled a Garey/Johnson-style list of complete problems in the polynomial-

time hierarchy, at the second level and above. For optimization problems, we also include any

known hardness of approximation results. This list is based on a thorough, but not infallible,

literature search. We should also point out that we have not verified all of the quoted results.

We realize that the list is incomplete (and will in all likelihood remain so), but we are planning

on regularly updating it, as further problems come to our attention.

Definitions relevant to specific problems are contained in the list below. We briefly review

the definition of the polynomial hierarchy (PH). PH is defined recursively from the classes P

and NP by:

Σp
0 = Πp

0 = P

Σp
i = NPΣ

p
i−1

Πp
i = coNPΠ

p
i−1

where coNP = {L : L ∈ NP}.

In the next three sections we list problems complete for the second level of PH, problems

complete for the third level of PH, and a selection of problems in PH whose complexity

remains open. We should mention that there are natural problems complete for higher levels

in nonclassical logics. Within each section the problems are categorized by area, and individual

problems are labeled in Garey/Johnson style (e.g., GT3 for the third graph theory problem).

We distinguish optimization problems by an asterisk at the beginning of their label.

2 The Second level

2.1 Logic

[L1] ∀∃3SAT

Given: Boolean formula ϕ(x, y) in 3-CNF.

2

[Shaefer, Umans 2002,2008] 
Compendium

Question: Is it true that (∀x)(∃y)ϕ(x, y)?

Reference: Stockmeyer [75], Wrathall [88].

Comments: Πp
2 -complete. Remains Πp

2-complete if ϕ is representable by a planar circuit

(Gutner [28]). Stockmeyer and Wrathall showed that deciding QSATk, the set of true

formulas with k−1 quantifier alternations beginning with an ∃ quantifier, is Σp
k-complete.

Earlier, Meyer and Stockmeyer [56] had shown that QUANTIFIED BOOLEAN FORMU-

LAE, the problem of deciding the truth of quantified Boolean formulas (without restric-

tion on the number of alternations), is PSPACE-complete. See MINMAX SAT for the

optimization variant.

[L2] NOT-ALL-EQUAL∀∃3SAT

Given: 3-CNF formula ϕ(x, y).

Question: Is it true that for every truth-assignment to x there is a truth-assignment to y

such that each clause in ϕ(x, y) contains both a true and a false literal?

Reference: Eiter, Gottlob [21].

Comments: Πp
2 -complete.

[*L3] MONOTONE MINIMUM WEIGHT WORD

Given: A Π1 nondeterministic circuit C that accepts a nonempty monotone set (although C

may contain NOT gates) and an integer k. A Π1 nondeterministic circuit is an ordinary

Boolean circuit with two sets of inputs x and y. We say that C accepts an input x iff

(∀y)C(x, y) = 1. A monotone set is a subset S for which x ∈ S implies x′ ∈ S for all

x′ ≽ x, where ≽ is the bitwise partial order on bitstrings.

Question: Does C accept an input x with at most k ones?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ϵ, where n is the size

of circuit C [81, 78]. The generalized version with m sets of inputs x and y1, y2, . . . , ym−1

in which C accepts an input x iff (∀y1)(∃y2)(∀y3) . . . C(x, y1, y2, . . . ym−1) is Σp
m-complete

and Σp
m-hard to approximate to within n1−ϵ [83, 78]. Maximization version of MONO-

TONE MAXIMUM ZEROS.

[*L4] MONOTONE MAXIMUM ZEROS

Given: A Π1 nondeterministic circuit C that accepts a nonempty monotone set (although C

may contain NOT gates) and an integer k. See MONOTONE MINIMUM WEIGHT WORD

above for the relevant definitions.

Question: Does C accept an input x with at least k zeros?

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/8−ϵ, where n is the

size of circuit C. The generalized version with m sets of inputs x and y1, y2, . . . , ym−1 in
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which C accepts an input x iff (∀y1)(∃y2)(∀y3) . . . C(x, y1, y2, . . . ym−1) is Σp
m-complete

and Σp
m-hard to approximate to within n1/8−ϵ. Minimization version of MONOTONE

MINIMUM WEIGHT WORD.

[L5] GENERALIZED 3-CNF CONSISTENCY

Given: Two sets A and B of Boolean formulas.

Question: Is there a Boolean formula ϕ such that ϕ ∧ ψ is satisfiable for all ψ ∈ A, and

unsatisfiable for all ψ ∈ B?

Reference: Ko, Tzeng [44].

Comments: Σp
2-complete. Similar in structure to PATTERN CONSISTENCY, and GRAPH

CONSISTENCY.

[*L6] MIN DNF

Given: A DNF formula ϕ and an integer k. The size of a formula is the number of occurrences

of literals in the formula.

Question: Is there a DNF formula ψ such that ψ ≡ ϕ and ψ has size at most k?

Reference: Umans [84].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/4−ϵ (resp., n1/3−ϵ),

where n is the size of ϕ (resp., n is the number of terms in ϕ) [81, 83, 78]. The variant in

which the size is the number of terms is also Σp
2-complete, and Σp

2-hard to approximate

to within the same factors. The problem is also known as MEEDNF, and MIN. If we drop

the restriction to DNF formulas, we obtain MEE. The complexity of the variant MINIMAL

is not known.

[*L7] IRREDUNDANT

Given: A DNF formula ϕ and an integer k.

Question: Is there a subset of at most k terms from ϕ whose disjunction is equivalent to ϕ?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/4−ϵ (resp., n1/3−ϵ),

where n is the number of occurrences of literals in ϕ (resp., n is the number of terms

in ϕ) [81, 83, 78]. Minimization version of MAXIMUM TERM DELETION. The variant

in which ϕ is a 3-DNF tautology is called MIN DNF TAUTOLOGY and remains Σp
2-

complete [24, 70], and Σp
2-hard to approximate to within nϵ [70].

[*L8] MAXIMUM TERM DELETION

Given: A DNF formula ϕ and an integer k.

Question: Can one delete at least k terms from ϕ so that the remaining DNF is equivalent

to ϕ?

Reference: Umans [83].
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Comments: Σp
2-complete. Also Σp

2-hard to approximate to within nϵ for some constant

ϵ > 0, where n is the number of occurrences of literals in ϕ [83, 78]. Maximization

version of IRREDUNDANT.

[*L9] SHORT CNF

Given: A DNF formula ϕ and an integer k in unary. The size of a formula is the number of

occurrences of literals in the formula.

Question: Is there a CNF formula ψ such that ψ ≡ ϕ and ψ has size at most k?

Reference: Schaefer, Umans [70].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within a factor nϵ, where n is
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variant in which ϕ is a DNF formula is complete for a class between coNP and Σp
2

called GC(log2 n, coNP) [84], and GC(log2 n, coNP)-hard to approximate to within an

(1/3 − ϵ) log n additive factor, where n is the number of terms in ϕ [83].

[L13] CIRCUIT RESTRICTION

Given: Two circuits C1 and C2 on the same set of variables V . Two circuits are equivalent if

they compute the same truth-table on V . A restriction of a circuit is obtained by setting

some of the variables to constant values in {0, 1}.

Question: Is C1 a restriction of C2?

Reference: Borchert, Ranjan [7].

Comments: Σp
2-complete. Three other variants are also Σp

2-complete: allowing variables to

be renamed, allowing variables to be set and renamed, or replacing variables by literals [7].

If variables are renamed bijectively, the problem turns into BOOLEAN ISOMORPHISM

which is likely to be intermediary between the first and second level of the hierarchy [1, 8].

[*L14] MINMAX SAT

Given: 3-CNF formula ϕ(x, y) and integer k.

Question: For every truth-assignment to x, is there a truth-assignment to y making at least

k clauses in ϕ(x, y) true?

Reference: Meyer, Stockmeyer [56].

Comments: Πp
2 -complete. Optimization version of ∀∃3SAT. Let us call f(ϕ) the largest k

such that for every x there exists a y making at least k clauses in ϕ(x, y) true. Then there

is a c > 0 such that approximating f(ϕ) to within a factor of c is Πp
2-hard. This follows

from work on debate systems (generalizing the PCP characterization of NP) [13, 41] as

pointed out in [42]. Ko and Lin [43] showed that the c-approximation problem remains

Πp
2-hard if the number of occurrences of each variable is bounded by a constant B

(MINMAX SAT B). This result is used in the proof that LONGEST DIRECTED CIRCUIT

is Πp
2-complete. Havev, Regev, and Ta-Shma [33] showed that MINMAX SAT B remains

Πp
2-complete, even if we know that in positive instances all clauses are true.
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[L19] GRAPH SATISFIABILITY

Given: 3-CNF formula ϕ. With a formula ϕ we associate a graph G(ϕ) on the variables and

clauses of ϕ with an edge between a variable and a clause, if the variable occurs in the

clause (positively, or negatively). We call ϕ graph-satisfiable if every ψ with G(ϕ) = G(ψ)

is satisfiable (i.e. the satisfiability of ϕ only depends on the graph G(ϕ)).

Question: Is ϕ graph satisfiable?

Reference: Szeider [76, 77].

Comments: Πp
2 -complete. For 2-CNF formulas graph satisfiability can be recognized in linear

time. Reduction from 2-COLORING EXTENSION.

[L20] ARGUMENT COHERENCE

Given: Digraph (without self-loops) H = (X,A), called an argument system. X is the set of

arguments, and A the set of attacks; we say x attacks y if (x, y) ∈ A. An argument x ∈ X

is attacked by S ⊆ X if (y, x) ∈ A for some y ∈ S. A set of arguments S is conflict-free if

no argument in S is attacked by S. An argument x ∈ X is acceptable with respect to S

if for every y ∈ X that attacks x there is a z ∈ S that attacks y. A set of arguments S is

admissible if every argument in S is acceptable with respect to S. A preferred extension

is a maximal admissible set. A stable extension S is a conflict free set that attacks every

argument in S. H is coherent if every preferred extension is stable.

Question: Is H coherent?

Reference: Dunne, Bench-Capon [17].

Comments: Πp
2 -complete. The proof also shows that the question of whether a given argu-

ment occurs in every preferred extension is Πp
2-complete as well.

[L21] ∃∃!-3SAT

Given: 3-CNF formula ϕ. “∃!” is interpreted as “there is exactly one”.

Question: Is ∃x∃!yϕ(x, y) true?

Reference: Marx [52].

Comments: Σp
2-complete. Used to show UNIQUE k-LIST COLORABILITY Σp

2-complete.

[*L22] MINIMUM EQUIVALENT EXPRESSION

Given: A well-formed Boolean formula ϕ, integer k. The size |ϕ| of a formula is the number

of occurrences of literals in the formula.

Question: Is there a well-formed Boolean formula ψ for which ψ ≡ ϕ, and |ψ| < k?

Reference: Buchfuhrer, Umans [10]. Mentioned as an open problem in Garey, Johnson [25].

Comments: Σp
2-complete under Turing-reductions [10] if all Boolean formulas are over sig-

nature {∨,∧,¬}; trivially hard for coNP, and hard for PNP
|| (P with parallel access

to NP) as shown by Hemaspaandra and Wechsung [35]. MEEd, the problem restricted
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to {∨,∧,¬}-Boolean formulas of depth at most d is also Σp
2-complete under Turing re-

ductions for any fixed d ≥ 3 [10]. Completeness under many-one reductions of MEE

and MEEd is open, as is the original version suggested by Garey, Johnson with Boolean

formulas over signature {∨,∧,¬,→}. Restricted to DNF formulas, the problem is MIN

DNF, which is Σp
2-complete. Also see MINIMAL.

[L23] ∃∃!t-3SAT

Given: 3-CNF formula ϕ(x, y) with a proper partial assignment over y. A partial assignment

over S assigns truth-values to a subset of the S-variables. It is proper if every clause

in ϕ contains a true literal. An assignment assigns truth-values to all variables in the

formula. It respects a partial assignment, if it agrees with the truth-values of the partial

assignment.

Question: Is ∃x∃!tyϕ(x, y) true? That is, is there a partial assignment t′ over x so that there

is a unique proper assignment of ϕ which respects t′?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete. Used to show MINIMUM 3SAT DEFINING SET Σp

2-complete.

[L24] MINIMUM 3SAT DEFINING SET

Given: 3-CNF formula ϕ, integer k. A defining set is a partial assignment of truth-values to

variables of ϕ which has a unique extension to a satisfying assignment of ϕ. The size of

a defining set is the number of variables that are assigned truth-values.

Question: Does ϕ have a defining set of size at most k?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete. Reduction from ∃∃t! 3SAT. Used to show MINIMUM VERTEX

COLORING DEFINING SET Σp
2-complete.

2.2 Graph Theory

[GT1] GRAPH CONSISTENCY

Given: Two sets A and B of (finite) graphs.

Question: Is there a graph G such that every graph in A is isomorphic to a subgraph of G,

but no graph in B is isomorphic to a subgraph of G?

Reference: Ko, Tzeng [44] (GRAPH RECONSTRUCTION).

Comments: Σp
2-complete. Similar in structure to PATTERN CONSISTENCY, and GENER-

ALIZED 3-CNF CONSISTENCY.

[*GT2] MINMAX CLIQUE

Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the size of the largest clique in G restricted to
⋃

i∈I Vi,t(i).

Question: Is mint∈JI ft(G) ≥ k?
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Reference: Ko, Lin [42].

Comments: Πp
2 -complete. There is a c > 0 such that approximating ft(G) to within a factor

c is Πp
2-hard. Also see MAXMIN VERTEX COVER.

[*GT3] MINMAX CIRCUIT

Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the length of the longest cycle in G restricted to
⋃

i∈I Vi,t(i).

Question: Is mint∈JI ft(G) ≥ k?

Reference: Ko, Lin [42].

Comments: Πp
2 -complete. It is not known whether the c-approximation version of this prob-

lem remains Πp
2-complete.

[GT4] DYNAMIC HAMILTONIAN CIRCUIT

Given: Graph G = (V,E), subset B of E. For a subset D of E, define GD = (V,E −D).

Question: Is it true that for all D ⊆ B with |D| ≤ |B|/2, GD has a Hamilton cycle.

Reference: Ko, Lin [42].

Comments: Πp
2 -complete.

[*GT5] LONGEST DIRECTED CIRCUIT

Given: Directed graph G = (V,E), and a subset E′ of E of alterable edges, integer k. For

D ⊆ E let GD be the graph obtained from G by substituting each edge (u, v) in D by

its reverse edge (v, u). Define fD to be the length of the longest cycle in GD.

Question: Is l(G) = minD⊆E′ fD ≥ k?

Reference: Ko, Lin [43].

Comments: Πp
2 -complete. There is a constant c > 0 such that approximating l(G) to within

a factor of c is Πp
2-hard.

[GT6] SUCCINCT TOURNAMENT REACHABILITY

Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and two vertices s, t. A tournament graph has exactly one edge between

each pair of vertices.

Question: Is t reachable from s in G?

Reference: Nickelsen, Tantau [79, 60].

Comments: Πp
2 -complete. The more interesting part is showing that the problem lies in Πp

2 .

Remains in Πp
2 for graphs of bounded independence number (instead of tournaments); a

generalization of this variant lies in Πp
3 , but is not known to be complete. The variant

of the tournament problem in which G must be strongly connected is also Πp
2-complete.

[*GT7] SUCCINCT TOURNAMENT DOMINATING SET
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Reference: Ko, Lin [42].

Comments: Πp
2 -complete. There is a c > 0 such that approximating ft(G) to within a factor

c is Πp
2-hard. Also see MAXMIN VERTEX COVER.

[*GT3] MINMAX CIRCUIT

Given: Graph G = (V,E), a partition (Vi,j)i∈I,j∈J of V , integer k. For a function t : I → J

let ft be the length of the longest cycle in G restricted to
⋃

i∈I Vi,t(i).

Question: Is mint∈JI ft(G) ≥ k?

Reference: Ko, Lin [42].

Comments: Πp
2 -complete. It is not known whether the c-approximation version of this prob-

lem remains Πp
2-complete.
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Given: Directed graph G = (V,E), and a subset E′ of E of alterable edges, integer k. For
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Question: Is l(G) = minD⊆E′ fD ≥ k?

Reference: Ko, Lin [43].

Comments: Πp
2 -complete. There is a constant c > 0 such that approximating l(G) to within

a factor of c is Πp
2-hard.

[GT6] SUCCINCT TOURNAMENT REACHABILITY

Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and two vertices s, t. A tournament graph has exactly one edge between

each pair of vertices.

Question: Is t reachable from s in G?

Reference: Nickelsen, Tantau [79, 60].

Comments: Πp
2 -complete. The more interesting part is showing that the problem lies in Πp

2 .

Remains in Πp
2 for graphs of bounded independence number (instead of tournaments); a

generalization of this variant lies in Πp
3 , but is not known to be complete. The variant

of the tournament problem in which G must be strongly connected is also Πp
2-complete.

[*GT7] SUCCINCT TOURNAMENT DOMINATING SET
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Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and an integer k. A tournament graph has exactly one edge between each

pair of vertices.

Question: Does G have a dominating set of size at most k? A dominating set is a subset

V ′ ⊆ V such that every vertex is reachable in zero or one steps from V ′.

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/2−ϵ, where n is the size

of the circuit C [83, 78]. The nonsuccinct version is considered in [62].

[GT8] 3-COLORING EXTENSION

Given: Graph G.

Question: Can any 3-coloring of the leaves of G be extended to a 3-coloring of all of G?

Reference: Ajtai, Fagin, Stockmeyer [2].

Comments: Πp
2 -complete, even if G has maximum degree at most 4. The general version

of the problem has two players alternating in k rounds with vertices of degree i being

colored in round i < k, and all remaining vertices colored in round k. This last player

wins, if he can complete a legal coloring. This problem is Σp
k-complete if k is odd, and

Πp
2-complete if k is even, even if the graph has maximum degree at most max{k, 4}. Also

see 2-COLORING EXTENSION.

[GT9] GENERALIZED GRAPH COLORING

Given: Graphs F , G.

Question: Is there a two-coloring of the vertices of F which does not contain a monochromatic

G as a subgraph?

Reference: Rutenburg [64].

Comments: Σp
2-complete even if G is restricted to be complete. The completeness proof also

works for other coNP-complete families of graphs, see, for example, the GENERALIZED

NODE DELETION problem. For edge colorings compare to ARROWING and STRONG

ARROWING.

[*GT10] GENERALIZED NODE DELETION

Given: Graphs F , G, integer k.

Question: Can we remove at most k vertices from F such that the resulting graph does not

contain G as a subgraph?

Reference: Σp
2-completeness is claimed in Rutenburg [64] without proof.

Comments: Σp
2-complete even if G is restricted to be complete. No nonapproximability

results are known.

[GT11] GENERALIZED RAMSEY NUMBER
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wins, if he can complete a legal coloring. This problem is Σp
k-complete if k is odd, and

Πp
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contain G as a subgraph?

Reference: Σp
2-completeness is claimed in Rutenburg [64] without proof.

Comments: Σp
2-complete even if G is restricted to be complete. No nonapproximability

results are known.

[GT11] GENERALIZED RAMSEY NUMBER
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Given: Circuit C representing a tournament graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E), and an integer k. A tournament graph has exactly one edge between each

pair of vertices.

Question: Does G have a dominating set of size at most k? A dominating set is a subset

V ′ ⊆ V such that every vertex is reachable in zero or one steps from V ′.

Reference: Umans [83].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1/2−ϵ, where n is the size

of the circuit C [83, 78]. The nonsuccinct version is considered in [62].

[GT8] 3-COLORING EXTENSION

Given: Graph G.

Question: Can any 3-coloring of the leaves of G be extended to a 3-coloring of all of G?

Reference: Ajtai, Fagin, Stockmeyer [2].

Comments: Πp
2 -complete, even if G has maximum degree at most 4. The general version

of the problem has two players alternating in k rounds with vertices of degree i being

colored in round i < k, and all remaining vertices colored in round k. This last player

wins, if he can complete a legal coloring. This problem is Σp
k-complete if k is odd, and

Πp
2-complete if k is even, even if the graph has maximum degree at most max{k, 4}. Also

see 2-COLORING EXTENSION.

[GT9] GENERALIZED GRAPH COLORING

Given: Graphs F , G.

Question: Is there a two-coloring of the vertices of F which does not contain a monochromatic

G as a subgraph?

Reference: Rutenburg [64].

Comments: Σp
2-complete even if G is restricted to be complete. The completeness proof also

works for other coNP-complete families of graphs, see, for example, the GENERALIZED

NODE DELETION problem. For edge colorings compare to ARROWING and STRONG

ARROWING.

[*GT10] GENERALIZED NODE DELETION

Given: Graphs F , G, integer k.

Question: Can we remove at most k vertices from F such that the resulting graph does not

contain G as a subgraph?

Reference: Σp
2-completeness is claimed in Rutenburg [64] without proof.

Comments: Σp
2-complete even if G is restricted to be complete. No nonapproximability

results are known.

[GT11] GENERALIZED RAMSEY NUMBER
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Given: Bipartite graph G, function f : V → {2, 3}. G is called f -choosable, if for every

assignment of f(v) colors to each node v, one color can be chosen for each node to obtain

a proper coloring; that is, a coloring in which adjacent vertices have different colors.

Question: Is G f -choosable?

Reference: Attributed to Rubin in Erdős, Rubin, Taylor [22].

Comments: Πp
2 -complete. Remains Πp

2-complete if G is restricted to be planar (Gutner [28]).

Also see LIST CHROMATIC NUMBER.

[*GT16] LIST CHROMATIC NUMBER

Given: Graph G, integer k. G is called k-choosable, if for every assignment of k colors to

every node, one color can be chosen for each node to obtain a proper coloring; that is,

a coloring in which adjacent vertices have different colors. The list chromatic number,

χℓ(G), also known as the choice number of G is the smallest k such that G is k-choosable.

Question: Is χℓ(G) ≤ k?

Reference: Gutner, Tarsi [29].

Comments: Πp
2 -complete for any fixed k ≥ 3. Reduction from BIPARTITE GRAPH (2, 3)-

CHOOSABILITY. Remains Πp
2-complete if G is bipartite. For k = 2, the problem is

solvable in polynomial time using a result of Erdős, Rubin, Taylor [22]. Gutner [28] shows

that the following planar versions of the problem remain Πp
2-complete: determining

whether a planar triangle-free graph is 3-choosable, determining whether a planar graph

is 4-choosable, determining whether a union of two forests (on a shared vertex set) is

3-choosable. Also see BIPARTITE GRAPH (2, 3)-CHOOSABILITY and UNIQUE k-LIST

COLORABILITY.

[*GT17] GROUP CHROMATIC NUMBER

Given: Graph G = (V,E), integer k. For a fixed Abelian group A, G is said to be A-colorable

if for every orientation of the edges of G, and every edge-labelling φ : E → A, there

is a vertex-coloring c : V → A, such that φ(u, v) ̸= c(u) − c(v) for all directed edges

(u, v) of G. The group chromatic number χg(G) is the smallest number ℓ such that G is

A-colorable for all Abelian groups of order at least ℓ.

Question: Is χg(G) ≤ k?

Reference: Král’ [46]. Also in Král’ and Nejedlý [47].

Comments: Πp
2 -complete for any fixed k ≥ 3. Also see GROUP CHOOSABILITY.

[GT18] GROUP CHOOSABILITY

Given: Graph G = (V,E), integer ℓ. For a fixed Abelian group A, G is said to be A-ℓ-

choosable if for every orientation of the edges of G, every list assignment L : V →
(A

ℓ

)

,

and every edge-labelling φ : E → A, there is a vertex-coloring c : V → A with c(u) ∈ L(u),

such that φ(u, v) ̸= c(u)− c(v) for all directed edges (u, v) of G.
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Question: Is G A-ℓ-choosable?

Reference: Král’ and Nejedlý [47].

Comments: Πp
2 -complete for any fixed group A of order at least 3 and any fixed ℓ ≥ 3.

In particular, it is Πp
2-complete to decide whether G is A-colorable (also in [46]). The

problem becomes polynomial-time solvable if ℓ ≤ 2. GROUP CHOOSABILITY gener-

alizes LIST CHROMATIC NUMBER. Also see the closely related GROUP CHROMATIC

NUMBER.

[*GT19] CLIQUE COLORING

Given: Graph G = (V,E), integer k. A k-clique-coloring is a function c : V → {1, . . . , k} such

that every maximal clique of G contains two vertices of different color.

Question: Does G have a k-clique-coloring?

Reference: Marx [51].

Comments: Σp
2-complete for any fixed k ≥ 2. A k-clique-coloring of G is not necessarily a

k-clique-coloring of the subgraphs of G. The variant HEREDITARY CLIQUE COLORING,

in which the graph and all its induced subgraphs are required to be k-clique colorable

turns out to be Πp
3-complete. CLIQUE CHOOSABILITY is another Πp

3-complete variant.

[*GT20] PEBBLING NUMBER

Given: Graph G = (V,E), integer k. Vertices of the graph can contain pebbles. A pebbling

move along an edge uv ∈ E removes two pebbles from u and adds one pebble to v. The

pebbling number π(G) is the smallest number k of pebbles such that for all distributions

of k pebbles on G and for all target vertices v ∈ V there is a sequence of pebbling moves

that places a pebble on v.

Question: Is π(G) ≤ k?

Reference: Milans, Clark [57].

Comments: Πp
2 -complete. Remains Πp

2 -complete for a single target vertex which is part of

the input. Determining the optimal pebbling number, π̂(G), the smallest number k of

pebbles such that there is a distribution of k pebbles on G such that for every target

vertex v ∈ V there is a sequence of pebbling moves that places a pebble on v, is NP-

complete. The complexity of deciding π(G) = |V | remains open (note that π(G) ≥ |V |).

[*GT21] UNIQUE k-LIST COLORABILITY

Given: Graph G = (V,E), integer k. A k-list coloring L assigns k colors to each node of G.

The graph is L-colorable if there is a proper coloring of the graph such that every vertex

v is assigned a color from its list L(v). A graph is k-list colorable (or k-choosable) if there

is a k-list coloring L such that G is L-colorable. A graph is uniquely k-list colorable if

there is a k-list coloring L such that there is exactly one L-coloring of G.

Question: Is G uniquely k-list colorable?
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Reference: Marx [52].

Comments: Σp
2-complete. Reduction from ∃∃!-3SAT. Remains Σp

2-complete for k = 3 or if

each of the lists contains 2 or 3 elements. Can be decided in polynomial time for k = 2

(Mahdian and Mahmoodian, see [52]). Also, see LIST CHROMATIC NUMBER.

[*GT22] THUE NUMBER

Given: A graph G = (V,E), integer k. A word w is square-free (or non-repetitive) if there are

no u, v, w such that w = uvvw (with v not the empty word). A non-repetitive k-edge

coloring of G is a k-edge coloring of G such that for any path in G, the sequence of colors

along the path is square-free. The smallest k such that G has a non-repetitive k-edge

coloring is called the Thue number of G.

Question: Is the Thue number of G at most k?

Reference: Manin [50].

Comments: Σp
2-complete. Deciding whether a given edge coloring is non-repetitive is coNP-

complete. If we only have to avoid non-repetitive sequences up to a certain length, the

problem is NP-complete. Thue number was first defined in Alon, Grytczuk, Hauszczak,

Riordan [4]. Named after Axel Thue who proved that there are infinite square-free words.

Also see THUE CHROMATIC NUMBER (open problems).

[*GT23] GRAPH SANDWICH PROBLEM FOR Π

Given: Graphs F,F ′ so that F ⊆ F ′.

Question: Is there a graph G satisfying Π so that F ⊆ G ⊆ F ′?

Reference: Schaefer [69].

Comments: Σp
2-complete for the property of being Pk-free where k = Θ(|V (G)|1/2). Open

whether there is a natural property Π, such as being well-covered, for which problem is

Σp
2-complete.

[GT24] MINIMUM VERTEX COLORING DEFINING SET

Given: Graph G, integer k. A defining set for a vertex coloring is a partial vertex coloring

which has a unique extension to a legal vertex coloring of G. The size of a defining set

is the number of vertices colored.

Question: Does G have a vertex coloring defining set of size at most k?

Reference: Hatami, Maserrat [31].

Comments: Σp
2-complete for vertex 3-colorings. Reduction from MINIMUM 3SAT DEFINING

SET. For a discussion on the relationship to the forcing chromatic number, see [30].

[*GT25] SUCCINCT k-DIAMETER

Given: Circuit C representing a directed graph G = (V,E) (i.e., C(u, v) = 1 if and only

if (u, v) ∈ E). The diameter of a directed graph is the largest distance between any

two vertices of the graph. The distance between two vertices is the length of a smallest

directed path between the vertices.
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Question: Does G have diameter at most k?

Reference: Hemaspaandra, Hemaspaandra, Tantau, Watanabe [34].

Comments: Σp
2-complete for any fixed k ≥ 2. Remains Σp

2-complete for tournaments (di-

rected graphs for which there is exactly one edge between any two vertices) and undirected

graphs [80]. Also see SUCCINCT k-DIAMETER and SUCCINCT k-RADIUS.

[*GT26] SUCCINCT k-KING

Given: Circuit C representing a directed graph G = (V,E) (i.e., C(u, v) = 1 if and only if

(u, v) ∈ E), integer k. A vertex is a k-king is every vertex in the graph can be reached

by a directed path of length at most k.

Question: Does G contain a k-king?

Reference: Hemaspaandra, Hemaspaandra, Tantau, Watanabe [34].

Comments: Πp
2 -complete for any fixed k ≥ 2. Remains Πp

2-complete for tournaments (di-

rected graphs for which there is exactly one edge between any two vertices). Also see

SUCCINCT k-KING and SUCCINCT k-DIAMETER.

2.3 Sets and Partitions

[*SP1] SUCCINCT SET COVER

Given: A collection S = {ϕ1,ϕ2, . . . ,ϕm} of 3-DNF formulas on n variables, and an integer

k.

Question: Is there a subset S′ ⊆ S of size at most k for which ∨ϕ∈S′ϕ ≡ 1?

Reference: Umans [81].

Comments: Σp
2-complete. Also Σp

2-hard to approximate to within n1−ϵ, where n is the

number of occurrences of literals in ϕ1,ϕ2, . . . ,ϕm [81, 78]. The restriction in which

all the φi except φ1 are single literals, and φ1 evaluates to 1 on at least 1/2 of the

domain remains Σp
2-complete and Σp

2-hard to approximate to within the same factor.

This restriction can be seen as a succinct version of RICH HYPERGRAPH COVER [83],

whose complexity was considered in [62].

[SP2] GENERALIZED SUBSET SUM

Given: Two vectors u and v of integers, and an integer t.

Question: Is (∃x)(∀y)[ux + vy ̸= t] true, where the variables x and y are binary vectors of

the same length as u and v?

Reference: Berman, Karpinski, Larmore, Plandowski, Rytter [6].

Comments: Σp
2-complete. Used to show FULLY COMPRESSED TWO-DIMENSIONAL PAT-

TERN MATCHING Πp
2-complete.

[*SP3] MAXMIN VERTEX COVER
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Example:  Abductive 
Reasoning

• studied by Charles Sanders Peirce 	


• used to generate explanations for 
observed symptoms and 
manifestations	


• fundamental importance in AI, such 
as for logical diagnosis

38

C. S. Peirce  
(1839–1914)	
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The Abduction Problem
• Given: 	


- a propositional formula T (the theory)	


- a set of variables M (the manifestations)	


- a set of variables H (the hypotheses)	


• Task:	


-  find a set S ⊆ H such that that  
S ∧ T is consistent and  
S ∧ T ⊨ M (all assignments that satisfy S ∧ T also satisfy M)	


- “S explains M”

39
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Abduction is Hard
• Deciding whether an abduction 

instance has a solution is ∑p
2 -

complete [Eiter, Gottlob 1995]	


• Can’t be reduced in polytime to SAT	


• Parameterized complexity results by 
[Fellows, Pfandler, Rosamond, 
Rümmele 2012]  
mostly hardness results,  
FPT by number of variables 

40

SAT
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Idea:  
FPT-reductions to SAT

41

Use FPT-tractability not 
to solve the problem, but 
to reduce it to SAT!

• Parameter can be far less 
restrictive than for FPT-
tractability	


• We combine the strengths of two 
worlds (SAT and FPT)	


• Suitable parameter?	


SAT

FPT-red



IPEC’14 Stefan Szeider

Backdoors to SAT
• If the theory is Horn,  Abduction drops to NP-c 

[Eiter,Gottlob1995]	


‣ The unique minimal model of a Horn formula 
can be found in linear time  
[Dowling, Gallier 1984]	


‣ since it is sufficient to check (S ∧ T) ⊨ M for the 
unique minimal model of S ∧ T	


• Use as parameter the Horn backdoor size	


• Finding the backdoor is FPT (same as for SAT)	


• Using the backdoor is the challenge!

42
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Dowling-Gallier 
algorithm in a formula

43

x1 x2 x3 x4 x5 x5t=0

t=1

t=2

…

enforced by unit clauses

Take conjunction of  2k 
copies of this formula, 
corresponding to all 
truths assignments to 
the backdoor 

t=n

unique minimal model
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Results

• Theorem:  an Abduction instance with a strong 
Horn backdoor of size k, can be reduced in 
time O*(2k) an equivalent CNF formula.	


• Corollary: Abduction parameterized by Horn-
backdoor size is is para-NP-complete	


• Hence we can break trough the barriers of 
classical complexity, exploiting structure in 
terms of parameters

44
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Further Results
• Abduction par’d by backdoor to Krom is paraNP-c 

[Pfandler, Rümmele, Sz. IJCAI’13]	


• Disjunctive Answer Set Programming par’d by 
backdoor to Normality is paraNP-c [Fichte, Sz. 
AAAI’13]	


• Boolean Optimization ∃∀SAT par’d by universal 
treewidth is paraNP-c [de Haan, Sz. SAT’14]	


• in retrospect: Bounded Model Checking par’d by size 
of counterexample (industrial strength applications!)  
[Biere, Cimatti, Clarke, Zhu,1999] is paraNP-c

45
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Hardness Theory

• How can we exclude that a parameterized 
problem is fpt-reducible to SAT?

46
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FPT

para-NPvery bad class 
remains NP-hard even 

when parameter is 
constant 

good class

W[1]
interesting boundary

parameterized  
NP-complete problems

para-NP

para-Πp2
very bad class 

remains on second level of 
PH even when parameter 

is constant 

good class

parameterized  
∑p2-complete problems

   ?   
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Weighted Satisfiability!

48

circuit

1. for all assignments to 
red there is an 
assignment of weight k 
to green that satisfies 
the circuit?	


2. for all assignments to 
red of weight k there is 
an assignment to green 
that satisfies the circuit?

∃∀

∀*∃k

∀k∃*
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Is the Weft important?
• ∀*∃k: weft is important.  

- we end up with seemingly distinct classes 
∀*∃k-W[i] 

• ∀k∃*: weft is not important.  

- any circuit can be replaced with a 2DNF 

- a very robust class for which we have 
alternative characterisations in terms of 
alternating TMs and FO-MC  

49
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Complexity Zoo

50

Theoretical tools: a picture

para-⌃P
2 para-⇧P

2

9⇤8k -W[P]

9⇤8k -W[1]

para-NP

8⇤9k -W[P]

8⇤9k -W[1]

para-co-NP

para-�P
29k8⇤ 8k9⇤

W[P] co-W[P]

W[1] co-W[1]

para-P = FPT

? ?
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The classes are inhabited!

• Disjunctive Answer Set Programming [Kr’14]	


• Boolean Optimization [SAT’14]	


• Judgement Aggregation [ComSoc’14] 	


• Graph Problems

51



IPEC’14 Stefan Szeider

Concrete Example: 3-Col-Ext
• Input: graph G with n leaves, integer m	


• Question: can any 3-coloring of m of the n leaves 
be extended to a proper 3-coloring of G?
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parameter complexity

# uncolored leaves (m-n) para-

# precolored leaves (m) ∀k∃*-complete

# leaves (n) para-NP-complete
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Last Slide

• Backdoors: natural way to parameterise 
problems	


• FPT: Backdoors to P	


• para-NP: Backdoors to NP	


• Interesting algorithmic and theoretical 
challenges
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Questions?


