Problems in NP can Admit Double-Exponential Lower Bounds when Parameterized by Treewidth or Vertex Cover

Florent Foucaud, Esther Galby, <u>Liana Khazaliya</u>, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, Prafullkumar Tale

September 11, 2024

Part 1.

(In)tractability and Treewidth

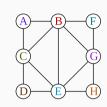
Treewidth

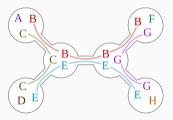
<u>Def.</u> A tree decomposition of G is a pair $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$, where \mathcal{T} is a tree whose every node t is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with following conditions:

$$\mathcal{T}1. \bigcup_{t\in V(\mathcal{T})} X_t = V(G);$$

- T2. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;
- $\mathcal{T}3$. For every $v \in V(G)$, the set $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected subtree of T.

<u>Def.</u> The width of \mathcal{T} is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.





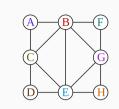
<u>Def.</u> The treewidth tw(G) is the minimum width over all tree decompositions of G.

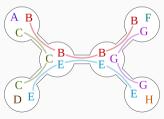
Treewidth

The treewidth of a graph G is

$$\min \{\omega(G^+) - 1 : G^+ \supseteq G \text{ and } G^+ \text{ is chordal}\}$$

Treewidth is at most t if and only if t+1 cops can always catch the robber in G in a monotone game if the robber is visible (to the cop player)





$$\mathsf{tw}(K_n) = n - 1$$

$$\mathsf{tw}(P_n \times P_m) = \mathsf{min}(m, n)$$

$$\mathsf{tw}(\mathcal{T}) = 1$$

Treewidth

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

For a given signature τ , monadic second order logic has

- element-variables (x, y, z, ...) and set-variables (X, Y, Z, ...)
- relations = (equation) and $x \in X$ (membership), as well as relations from τ
- quantifiers \exists and \forall , as well as operators \land , \lor , \neg

If φ is a sentence, we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ)

Theorem [Courcelle'90]

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

Exponential Time Hypothesis (ETH)

[Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on *n* variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{o(tw)}$, $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails

- QSAT WITH k ALTERNATIONS admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively Π_2^p -complete and Σ_3^p -complete [Marx, Mitsou, 2016]
- ∃∀-CSP admits a double-exponential lower bound in the vertex cover number

 Σ_2^p -complete

[Lampis, Mitsou, 2017]

Exponential Time Hypothesis (ETH)

[Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on *n* variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{o(tw)}$, $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

- ullet QSAT WITH k ALTERNATIONS admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively [Marx, Mitsou, 2016]
- ullet $\exists \forall \text{-CSP}$ admits a double-exponential lower bound in the vertex cover number

Exponential Time Hypothesis (ETH)

[Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{o(tw)}$, $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

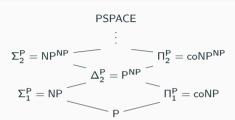
- QSAT WITH k ALTERNATIONS admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively $\underline{\Pi}_2^{p}$ -complete and $\underline{\Sigma}_3^{p}$ -complete [Marx, Mitsou, 2016]
- ∃∀-CSP admits a double-exponential lower bound in the vertex cover number

 Σ_2^p -complete

[Lampis, Mitsou, 2017]

Question.

Does any NP-complete problem require at least double-exponential running time?



Rarer results: Unless the ETH fails,

- QSAT WITH k ALTERNATIONS admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph

 PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively Π_2^p -complete and Σ_3^p -complete [Marx, Mitsou, 2016]
- ∃∀-CSP admits a double-exponential lower bound in the vertex cover number

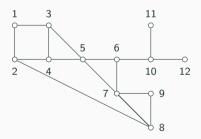
$$\Sigma_2^p$$
-complete [Lampis, Mitsou, 2017]

Part 2.

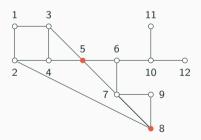
Metric Graph Problem(s)

rait 2.

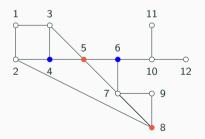
Def. The minimum size of a resolving set of G is the metric dimension of G.



Def. The minimum size of a resolving set of G is the metric dimension of G.

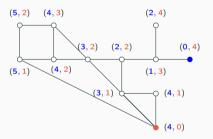


Def. The minimum size of a resolving set of G is the metric dimension of G.



Vertices 4 and 6 are **not** resolved by 5 nor 8.

Def. The minimum size of a resolving set of G is the metric dimension of G.



Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.

Metric Dimension (MDim)

METRIC DIMENSION

Input: An undirected simple graph G and a positive integer k

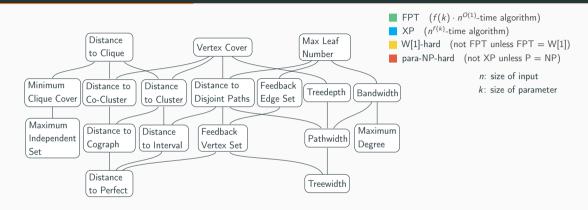
Question: Is $md(G) \le k$?

Polynomial-time

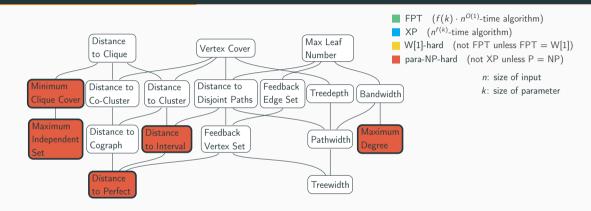
Trees [Slater'75]
Cographs [Epstein et al'15]
Outerplanar [Diaz et al'17]

NP-complete

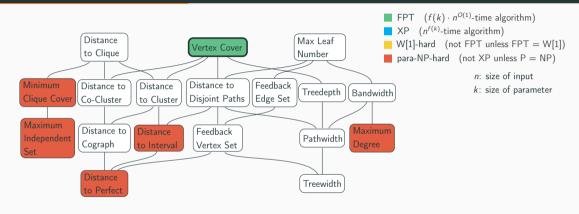
Arbitrary [Garey, Johnson'79]
Split [Epstein et al'15]
Bipartite [Epstein et al'15]
Co-bipartite [Epstein et al'15]
Planar [Diaz et al'17]
Interval [Foucaud et al'17]



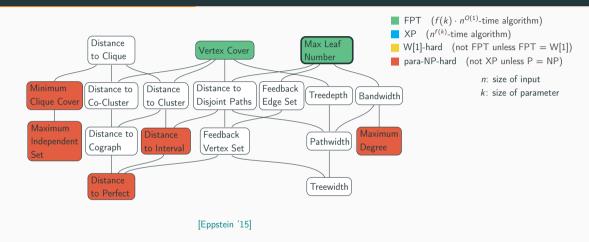
A lower parameter is upper bounded by a function of the higher one

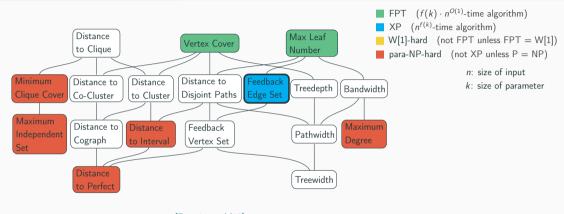


From NP-hardness results on previous slide

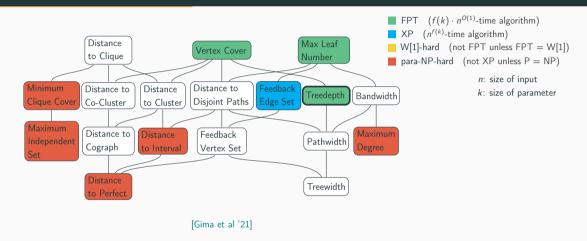


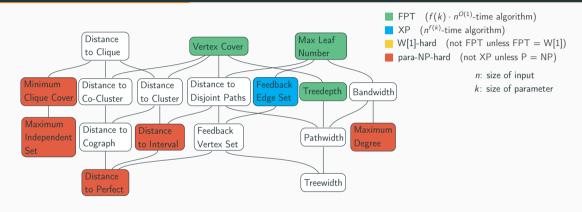
W[2]-hard parameterised by solution size [Hartung, Nichterlein '13]



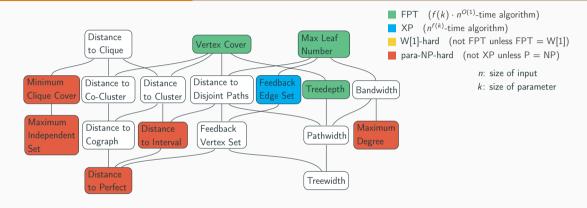


[Epstein et al '15]



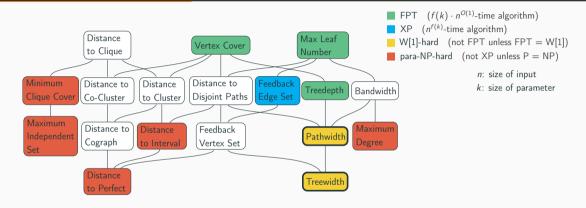


FPT parameterised by treelength + max degree [Belmonte et al '17] and clique-width + diameter [Gima et al '21]



Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]



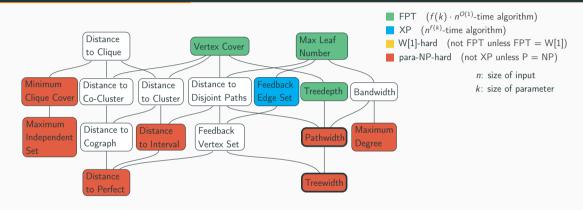
Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q2 answered first by [Bonnet, Purohit '21].

11

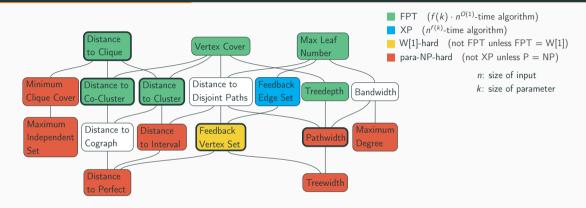
8



Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]



Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q1 answered for the combined parameter $\underline{\mathsf{Feedback}}$ Vertex Set + Pathwidth [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

Part 3.

Our Technique and MDim

Results

Theorem [FGKLMST, 2024]

METRIC DIMENSION and GEODETIC SET

- can be solved in $2^{\text{diam}^{\mathcal{O}(\text{tw})}} \cdot n^{\mathcal{O}(1)}$ time
- no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

Theorem [FGKLMST, 2024]

STRONG METRIC DIMENSION

- can be solved in $2^{2^{\mathcal{O}(vc)}} \cdot n^{\mathcal{O}(1)}$ time, admits $2^{\mathcal{O}(vc)}$ kernel
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

A way to go

Theorem [FGKLMST, 2024]

METRIC DIMENSION and GEODETIC SET

- can be solved in $2^{\operatorname{diam}^{\mathcal{O}(\operatorname{tw})}} \cdot n^{\mathcal{O}(1)}$ time
- no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

Reduction.

3-Partitioned 3-SAT:
$$\varphi$$
 \to Metric Dimension: (G, k)
$$\mathsf{tw}(G) = \mathsf{log}(n)$$

$$\mathsf{diam}(G) = \mathsf{const}$$

3-Partitioned 3-SAT

3-Partitioned 3-SAT

[Lampis, Melissinos, Vasilakis, 2023]

Input: 3-CNF formula φ with a partition of its variables into 3 disjoint sets X^{α} , X^{β} , and X^{γ} such that $|X^{\alpha}|=|X^{\beta}|=|X^{\gamma}|=n$ and each clause contains at most one variable from each of X^{α} , X^{β} , and X^{γ}

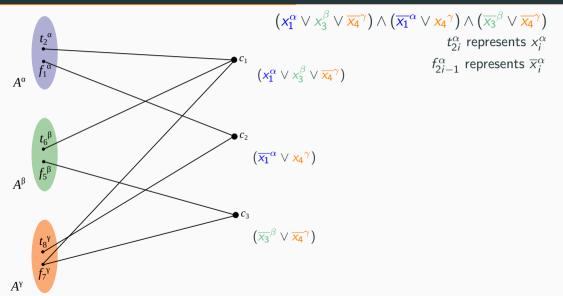
Question: Is ϕ satisfiable?

Theorem

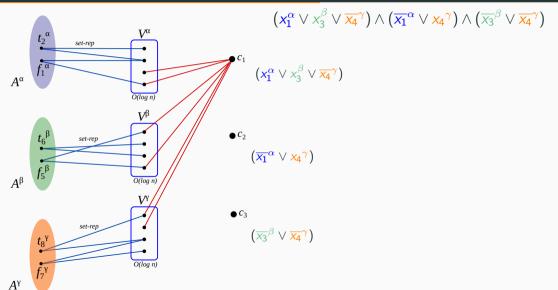
[Lampis, Melissinos, Vasilakis, 2023]

3-Partitioned 3-SAT: no $2^{o(n)}$ time algorithm assuming ETH

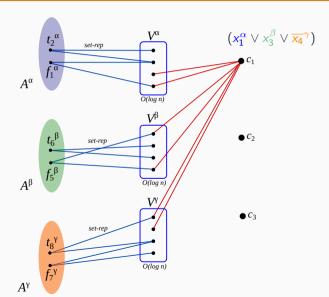
Encode SAT with small separator



Set-Representation Gadget



Set-Representation Gadget



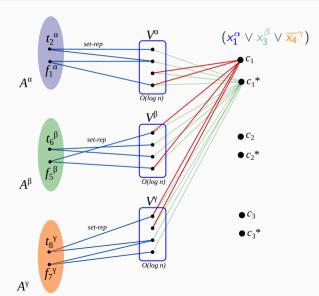
Let F_p be the collection of subsets of $\{1, \ldots, 2p\}$ that contain exactly p integers.

No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \ge 2n$. We define a 1-to-1 function $\det^2 \{1, \dots, 2n\} \to F_n$.

 t_2^{α} is the **only** vertex in A^{α} that **does not** share a **common neighbour** with $c_1 = (x_1^{\alpha} \lor x_3^{\beta} \lor \overline{x_4}^{\gamma})$

Set-Representation Gadget



Let F_p be the collection of subsets of $\{1, \ldots, 2p\}$ that contain exactly p integers.

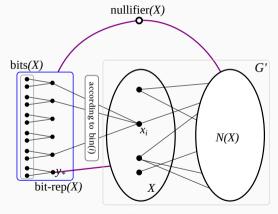
No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \ge 2n$. We define a 1-to-1 function $\det^2 \{1, \dots, 2n\} \to F_n$.

 t_2^{α} is the **only** vertex in A^{α} that **does not** share a **common neighbour** with $c_1 = (x_1^{\alpha} \lor x_3^{\beta} \lor \overline{x_4}^{\gamma})$

Bit-representation Gadget

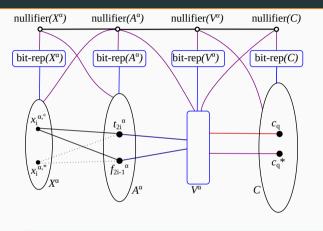
Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.



Purple edges represent all possible edges

- For any resolving set S, $|S \cap \text{bits}(X)| \ge \log(|X|) + 1$
- |S ∩ bits(X)| distinguishes each vertex in X ∪ bit-rep(X) from every other vertex in G
- nullifier(X) guarantees that the rest part of V(G) does not affected by the gadget

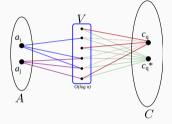
Lower bound for Metric Dimension parameterized by tw



Purple — all possible edges

Blue — set-rep

Red — complementary to blue

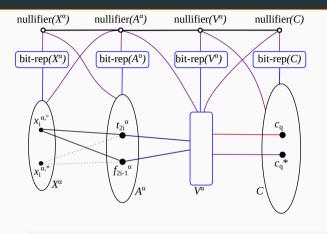


Note: tw(G) = log(n)diam(G) = cons

Theorem [FGKLMST, 2024

METRIC DIMENSION: no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

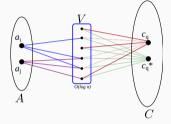
Lower bound for Metric Dimension parameterized by tw



Purple — all possible edges

Blue — set-rep

Red — complementary to blue



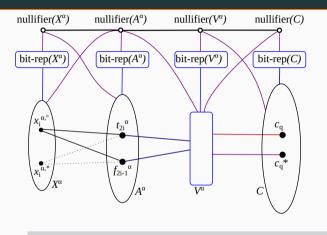
Note: tw(G) = log(n)diam(G) = const

Theorem

[FGKLMST, 2024]

METRIC DIMENSION: no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

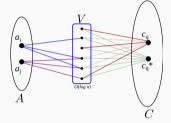
Lower bound for Metric Dimension parameterized by tw



Purple — all possible edges

Blue — set-rep

Red — complementary to blue



Note: tw(G) = log(n)diam(G) = const

Theorem [FGKLMST, 2024]

METRIC DIMENSION: no $2^{f(diam)^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Part 4.

Other Results and Applications

Geodetic Set and Strong MDim

GEODETIC SET

Input: An undirected simple graph *G*

Question: Does there exist $S \subseteq V(G)$ such that $|S| \le k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

Theorem [FGKLMST, 2024]

GEODETIC SET

• no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

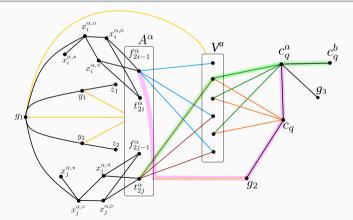
Geodetic Set and Strong MDim

Geodetic Set

Input: An undirected simple graph G

Question: Does there exist $S \subseteq V(G)$ such that $|S| \le k$ and, for any vertex $u \in V(G)$, there are two

vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?



Strong Metric Dimension

STRONG METRIC DIMENSION

Input: An undirected simple graph *G*

Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any pair of vertices $u, v \in V(G)$, there exists a vertex $w \in S$ such that either u lies on some shortest path between v and w, or v lies on some shortest path between u and w?

Theorem [FGKLMST, 2024]

STRONG METRIC DIMENSION

• no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

Match with the Algorithms

Theorem [FGKLMST, 2024]

METRIC DIMENSION and GEODETIC SET

- can be solved in $2^{\text{diam}^{\mathcal{O}(\text{tw})}} \cdot n^{\mathcal{O}(1)}$ time
- no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH

Theorem [FGKLMST, 2024]

STRONG METRIC DIMENSION

- can be solved in $2^{2^{\mathcal{O}(vc)}} \cdot n^{\mathcal{O}(1)}$ time, admits $2^{\mathcal{O}(vc)}$ kernel
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

Applications of the Technique

Theorem

[Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

POSITIVE NON-CLASHING TEACHING DIMENSION for Balls in Graphs

• no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

Theorem

[Chakraborty, Foucaud, Majumdar, Tale, (to appear) ISAAC 2024]

LOCATING-DOMINATING SET (resp., TEST COVER)

• no $2^{2^{o(tw)}} \cdot n^{O(1)}$ (resp., $2^{2^{o(tw)}}(|U|+|\mathcal{F}|)^{O(1)}$) time algorithm assuming ETH

Part 5.

Open Problems

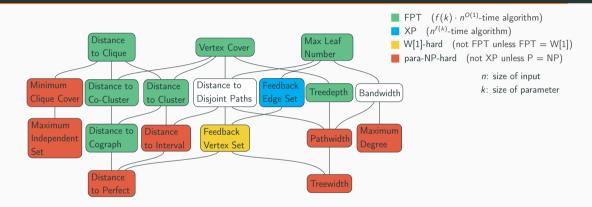
Open Questions

Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.

Q2: For which <u>classic problems</u> in NP are the best known <u>FPT algorithms</u> parameterized by tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?

... and for Metric Dimension



Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?

Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?

Q6: Distance to Disjoint Paths? Bandwidth?

Thank you for your attention!

Further directions

- Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.
- Q2: For which <u>classic problems</u> in NP are the best known <u>FPT algorithms</u> parameterized by tw, vc (or other parameters) double-exponential?
- Q3: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?

For Metric Dimension:

- Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?
- Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?
- Q6: Distance to Disjoint Paths? Bandwidth?

Contents

Introduction
Metric Dimension

Lower Bounds: Technique

Other Results Problems