Upward and Orthogonal Planarity are W[1]-hard by Treewidth

Bart M. P. Jansen, Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, Kirill Simonov

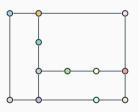
February 19, 2024

Classical variants of planarity

Upward planar drawing

Directed graph \overrightarrow{G}

Orthogonal drawing



Upward/Orthogonal Planarity Testing

With fixed embedding: With variable embedding:

poly-time solvable NP-complete

[Tamassia'87; BBLM'94] [Garg, Tamassia'01]

Fixed-parameter tractability is a framework to deal with NP-hard problems

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable [Tamassia'87; BBLM'94]
With variable embedding: NP-complete [Garg, Tamassia'01]

Fixed-parameter tractability is a framework to deal with NP-hard problems:

- ullet Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable [Tamassia'87; BBLM'94]
With variable embedding: NP-complete [Garg, Tamassia'01]

Develop algorithms for graphs which are large but simply structured

poly: SP-graphs (both); max deg less than 4 (RP); one source (UP)

FPT: treedepth (UP), number of triconnected components (UP), number of sources (UP).

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Question:

[SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Question:

[SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Both Upward and Orthogonal Planarity testing are W[1]-hard.

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Known $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms cannot be improved to $n^{o(\mathsf{tw})}$ under ETH.

Overview [Key steps]

Outline

Multicolored Clique

All-or-Nothing Flow on Planar graphs

Circulating Orientation on Planar graphs

Orthogonal/Upward Planarity Testing

Concluding Remarks

Multicolored Clique to

All-or-Nothing Flow

Multicolored Clique (MClique)

MULTICOLORED CLIQUE

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C\subseteq V(G)$ such that $|C\cap V_i|=1$ for

each $i \in [k]$?

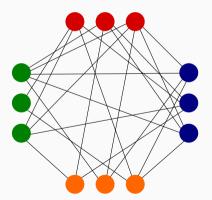
Multicolored Clique (MClique)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?



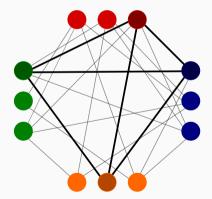
Multicolored Clique (MClique)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?



All-or-Nothing Flow¹ (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow

 $^{^1}$ XNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al. Problems Hard for Treewidth but Easy for Stable Gonality, WG'22

All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

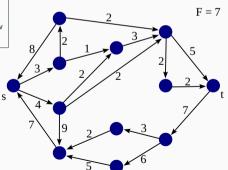
Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st- flow of value exactly $\mathcal{F},$ such that the flow



All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

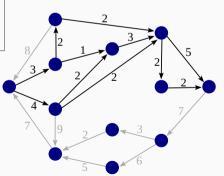
Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

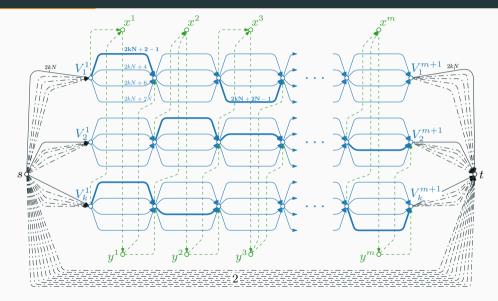
ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow



AoNF: (G', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

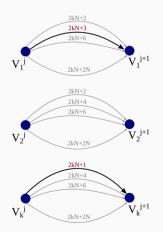


MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

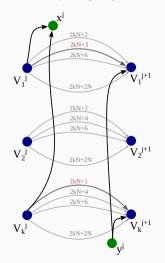


MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

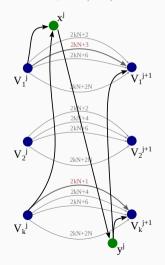


MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

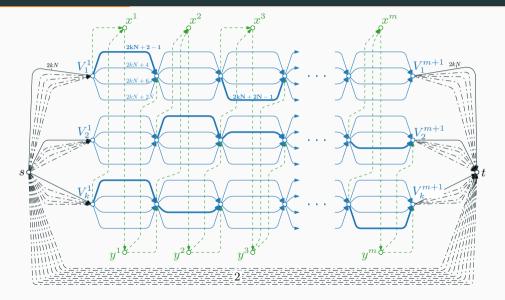
$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

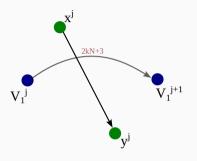


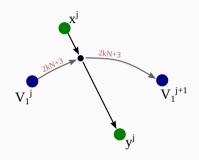
AoNF: (G', c, s, t) and $\overline{F} = k(2kN + 2N)$



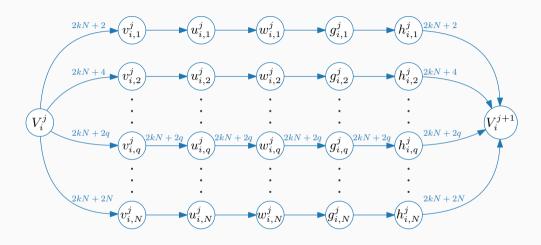
Planarization of the AoNF

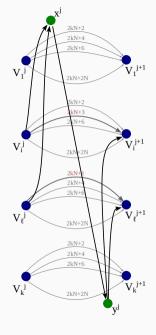
Observation

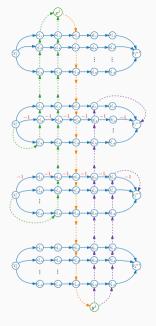




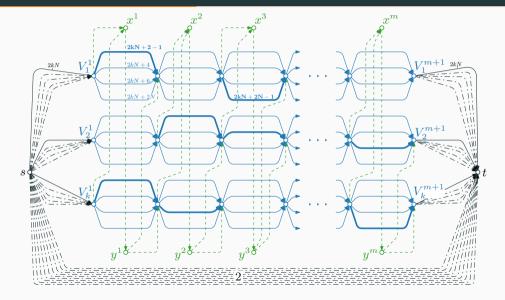
Planarizing a crossing of two edges via a degree-4 vertex does not change the answer, when the capacities of the edges differ.



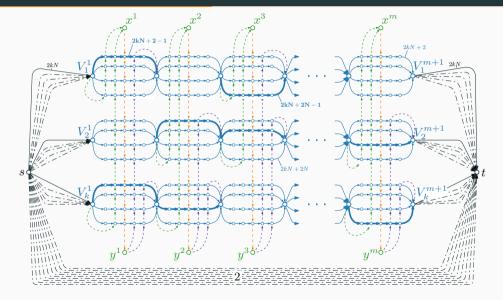




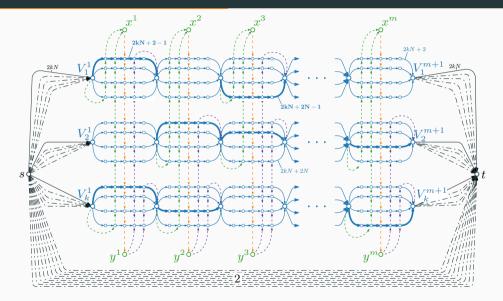
AoNF: (G', c, s, t) and $\overline{F} = k(2kN + 2N)$



Planar AoNF: (G'', c, s, t) and $\mathcal{F} = k(2kN + 2N)$



First remark: bounded pathwidth



to Circulating Orientation

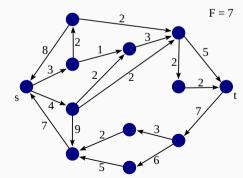
All-or-Nothing Flow (planar)

All-or-Nothing Flow (AoNF)

All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an $\mathit{st} ext{-flow}$ of value exactly \mathcal{F} , such that the flow

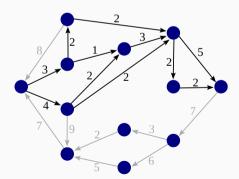


All-or-Nothing Flow (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow



Circulating Orientation (CO)

CIRCULATING ORIENTATION

Input: An undirected graph G with an edge-capacity function $c: E(G) \to \mathbb{Z}_{\geq 0}$. **Question:** Is it possible to orient the edges of G, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into v is equal to the total capacity of edges oriented out of v? (Such an orientation is called a circulating orientation.)

Circulating Orientation (CO)

All or Nothing Flow

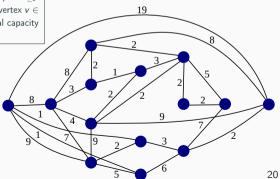
Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an *st*-flow of value exactly \mathcal{F} , such that the flow through any arc $uv \in E(G)$ is either 0 or equal to c(uv)?

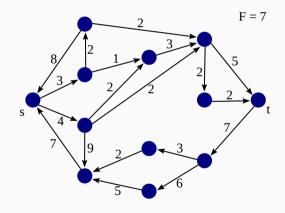
CIRCULATING ORIENTATION

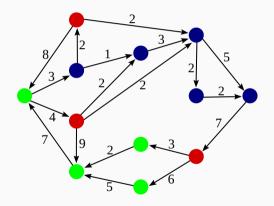
Input: An undirected graph G with an edge-capacity function $c \colon E(G) \to \mathbb{Z}_{\geq 0}$. **Question:** Is it possible to orient the edges of G, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into v is equal to the total capacity

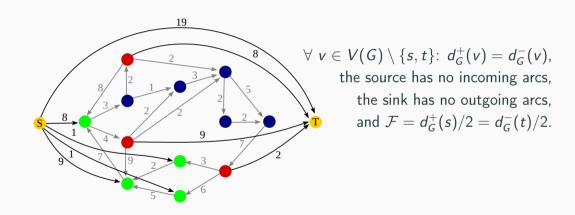
of edges oriented out of v?

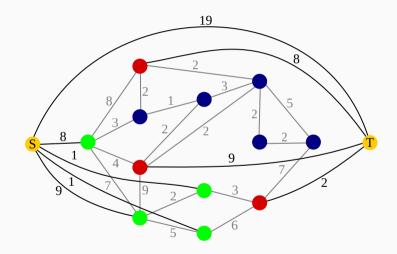


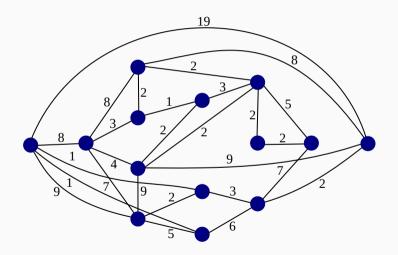
AoNF to CO



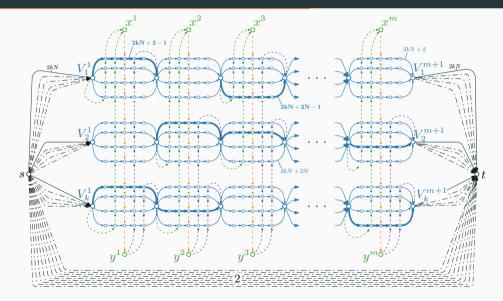








Second remark: a nice embedding



Circulating Orientation to

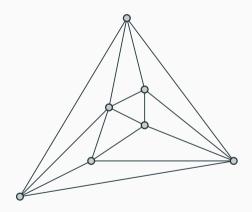
Upward Planarity Testing

Black box

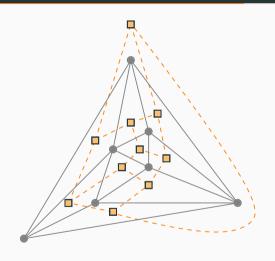
Theorem (Biedl'16)

There is a polynomial-time algorithm that, given a simple planar graph G of pathwidth k on at least three vertices, outputs a plane triangulation G' of G such that $pw(G') \in \mathcal{O}(k)$.

Triangulated instance of CO



Dual Graph

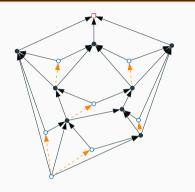


Black Box #2

Theorem (Amini, Huc, and Pérennes'09)

For a triconnected planar graph G, $pw(G^*) \leq 3 pw(G) + 2$, where G^* is the dual graph of G.

st-Planar graph



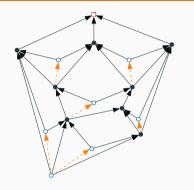
A digraph G is an <u>st-planar graph</u> if it admits a planar embedding such that:

- (1) it contains no directed cycle;
- (2) it contains a single source vertex s and a single sink vertex t;
- (3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

st-Planar graph



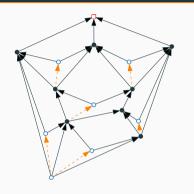
A digraph G is an <u>st-planar graph</u> if it admits a planar embedding such that:

- (1) it contains no directed cycle;
- (2) it contains a single source vertex s and a single sink vertex t;
- (3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

st-Planar graph



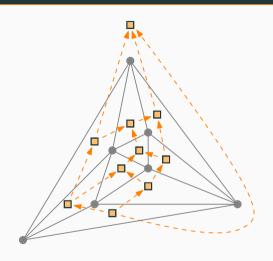
A digraph G is an <u>st-planar graph</u> if it admits a planar embedding such that:

- (1) it contains no directed cycle;
- (2) it contains a single source vertex s and a single sink vertex t;
- (3) s and t both belong to the external face of the planar embedding.

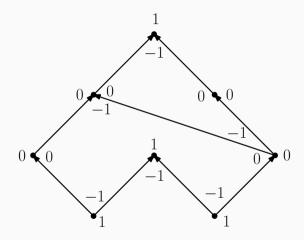
A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

Orienting the Dual Graph



Angle Assignment



Characterization of UP-graphs

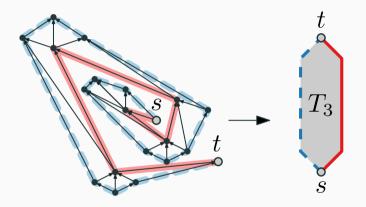
Theorem (BBLM'94, DGL'09)

Let $\mathcal E$ be a planar embedding of the underlying graph of G, and λ be an assignment of each angle of each face in $\mathcal E$ to a value in $\{-1,0,1\}$. Then $\mathcal E$ and λ define an upward planar embedding of G if and only if the following properties hold:

- **UP0** If α is a switch angle, then $\lambda(\alpha) \in \{-1,1\}$, and if α is a flat angle, then $\lambda(\alpha) = 0$.
- **UP1** If v is a switch vertex of G, then $n_1(v) = 1$, $n_{-1}(v) = \deg(v) 1$, $n_0(v) = 0$.
- **UP2** If v is a non-switch vertex of G, then $n_1(v) = 0$, $n_{-1}(v) = \deg(v) 2$, $n_0(v) = 2$.
- **UP3** If f is a face of G, then

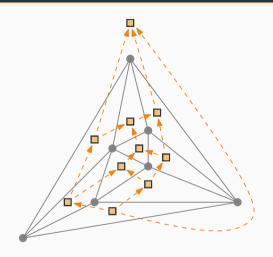
$$n_1(f) - n_{-1}(f) = \begin{cases} -2 & \text{if } f \text{ is an internal face,} \\ +2 & \text{if } f \text{ is the outer face.} \end{cases}$$

Tendril² Gadget

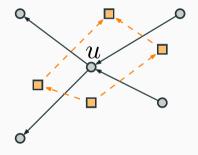


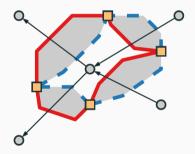
 $^{^2}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Orienting the Dual Graph



Reduction Idea: Face Balancing





... and Orthogonal Planarity

Testing

Differences

- Important that we start with a triangulated graph
- Subdivision of edges to allow an orthogonal embedding
- Orthogonal Tendril³

³A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Concluding remarks

Remarks

We have proved that

Known $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms cannot be improved to $n^{o(\mathsf{tw})}$ under ETH.

What other points are also one might find interesting:

- Alternative⁴ proof of NP-completeness
- Hardness extends for cutwidth of the primal

 $^{^4}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Further

- Membership in XNLP⁵ of both Upward and Orthogonal Planarity Testing: can be solved nondeterministically in time $f(k)n^{O(1)}$ and space f(k)log(n)?
- ullet FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph
- More restrictive parameterizations may yield FPT algorithms

⁵H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT time and Logarithmic Space, FOCS'21

Thank you for your attention!

Further directions

- Membership in XNLP
- Cutwidth of the dual graph
- Other parameterizations

Contents

Overview [Key steps]

MClique to AoNF

Planar AoNF

AoNF-pl to CO

CO to UpPlanarity

CO to OrtPlanarity

Remarks