PLANNING

Sebastian Ordyniak

Introduction

Planning:

- central problem in AI,
- general framework that concerns the realization of strategies or action sequences, typically for execution by intelligent agents,

many variants of different difficulty considered.

Applications

- automated control of industrial processes,
- design of intelligent agents, autonomous robots, and unmanned vehicles,
- natural language processing,
- system verification.

Hubble Space Teleskop

Example: Towers of Hanoi

Example: Towers of Hanoi

Solution = **Plan**

Classical Planning

Planning Instance

- set of variables together with their domains
- set of actions, each actions has:
 - a precondition and
 - an effect

both precondition and effect are a partial assignment of the variables

- an initial state (a complete assignment of the variables)
- > a **goal state** (a partial assignment of the variables)

Planning: Problems

PLANNING

Input: A planning instance *P*.

Question: Compute a plan for P or output that no plan for P exists.

Optimal Planning

Input: A planning instance P. **Question:** Compute a plan of minimum length for P or output that no plan for P exists.

Bounded Planning

Input: A planning instance P and a natural number k. **Question:** Is there a plan for P of length at most k?

Parameter: k

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆□ →

Classical Complexity

- Classical Planning is **PSPACE**-complete in general.
- However, various natural restrictions are known under which planning becomes (non-deterministic) polynomial-time tractable, e.g.:
 - syntactical restrictions (P,U,B,S)
 - restrictions on the number of preconditions and effects

structural restrictions on the causal graph;

BOUNDED PLANNING parameterized by "plan length"

	$m_e = 1$	fix $m_e > 1$	arb. <i>m</i> e
$m_p = 0$	in P	in W[1]	W[2]-C
	in P	NP-C	NP-C
$m_{p} = 1$	W[1]-C	W[1]-C	W[2]-C
	NP-H	NP-H	PSPACE-C
fix $m_p > 1$	W[1]-C	W[1]-C	W[2]-C
	NP-H	PSPACE	PSPACE
arb. <i>m_p</i>	W[1]-C	W[1]-C	W[2]-C
	PSPACE-C	PSPACE-C	PSPACE-C

Bylander's restrictions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

BOUNDED PLANNING parameterized by "plan length"

PUBS retrictions

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Few "global variables"

Few "global actions"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

Bounded domain planning is fixed-parameter tractable parameterized by the number of global actions.

Theorem

Bounded domain planning is fixed-parameter tractable parameterized by the number of global variables.¹

We also obtain matching hardness results for all the other combinations.

Thank You!