
KERNELIZATION

Sebastian Ordyniak



Introduction

I central topic of parameterized complexity with its own annual
workshop WORKER, whose 2011 installment was organized
in Vienna,

I polynomial-time preprocessing procedure with guarantees on
the size of the reduced instance,

I close connection to approximation algorithms.



Motivation

I It is almost always a good idea to simplify the input.

I Preprocessing is successful in practice for SAT, CPLEX, TSP,
etc..

I How to measure theoretically how well the preprocessing
works?

I Performance guarantees?



Definition

I polynomial-time preprocessing for parameterized problems,

I the size of the reduced instance is bounded in the parameter,

I every problem in FPT allows such a reduction and vice versa.



Vertex Cover

k-Vertex Cover (k-VC) Parameter: k

Input: A graph G and a natural number k .
Question: Does G have a vertex cover of size at most k , i.e. a set
of vertices that covers all edges of G?



Vertex Cover Observation

Observation
For every vertex either itself or all
of its neighbors occur in any
vertex cover.



Vertex Cover Observation

Observation
For every vertex either itself or all
of its neighbors occur in any
vertex cover.

Rule 2
Take vertices of degree greater
than k into the vertex cover
(decrease k by 1 and delete them
from the graph).



Vertex Cover Example

Does G have a vertex cover of size at most k = 5?



Vertex Cover Example

Does G have a vertex cover of size at most k = 5?

Remove isolated vertices



Vertex Cover Example

Does G have a vertex cover of size at most k = 4?

Take vertex of degree greater than k = 5 into the vertex cover,
decrease k by one, and remove the vertex (Rule 2)



Vertex Cover Example

Does G have a vertex cover of size at most k = 4?

Remove isolated vertices



Vertex Cover Example

Does G have a vertex cover of size at most k = 4?

Now every vertex has degree at most k = 4!



The Kernel

Theorem
k-Vertex Cover has a kernel of size O(k2).



The Kernel

Theorem
k-Vertex Cover has a kernel of size O(k2).

Remark:
The above theorem is easily extended to an FPT-algorithm:

I Compute the kernel in polynomial-time.

I Use brute-force on the kernel in time O(2k
2
).



Equivalence between FPT-algorithms and Kernelization

Theorem
A parameterized problem P is fixed-parameter tractable iff it is
decidable and admits a kernelization algorithm.



Equivalence between FPT-algorithms and Kernelization

Theorem
A parameterized problem P is fixed-parameter tractable iff it is
decidable and admits a kernelization algorithm.

Proof (→)

I Assume P can be solved in time f (k)nO(1),

I if n < f (k) then the instance is already a kernel,

I otherwise, i.e. if n > f (k) then f (k)nO(1) ∈ nO(1) and hence
the instance can be solved in polynomial-time



Equivalence between FPT-algorithms and Kernelization

Theorem
A parameterized problem P is fixed-parameter tractable iff it is
decidable and admits a kernelization algorithm.

Proof (←)

I we can solve the instance by first computing the kernel of size
f (k) in time nO(1) and then running the algorithm that
decides P on the kernel in time g(f (k)),

I Hence, the instance can be solved in time nO(1) + g(f (k))
and P is fixed-parameter tractable.



Kernelsize

I even though every problem in FPT has a kernel of size f (k), f
should be as small as possible in order for the preprocessing to
be as effective as possible.

I smaller kernels can usually be obtained by “more involved”
case distinctions,

I suprisingly, one can distinguish between problems with and
without polynomial sized kernels



Lower Bounds

It is possible to show that a problem does not have a polynomial
sized kernel 1 by either:

I providing a polynomial-parameter preserving fpt-reduction
from a known problem without a polynomial kernel, or

I showing that the problem is OR/AND-composable

1Under the assumption that the polynomial hierachie does not collapse to
its second level.



OR/AND-composition

I1 k

n

It k

n

I ∗ equivalent to the OR/AND of I1, . . . , It
k∗

poly(k)

in poly(t*n+k)-time



OR-composition: Longest Path

k-Longest Path (k-LP) Parameter: k

Input: A graph G and a natural number k .
Question: Does G have a path of length at least k?



OR-composition: Longest Path

k-Longest Path (k-LP) Parameter: k

Input: A graph G and a natural number k .
Question: Does G have a path of length at least k?

Observation
Given t instances (G1, k), · · · , (Gt , k) of LP, then:

G1∪̇ · · · ∪̇Gt is equivalent to the OR of (G1, k), . . . , (Gt , k).



OR-composition: Longest Path

G1 k

n

Gt k

n

G1∪̇ · · · ∪̇Gt
k

poly(k)

in poly(t*n+k)-time



Table of Kernelization Results
Problem Kernel size
Vertex Cover 2k
Connected Vertex Cover no poly
Multiway Cut ?
Directed Multiway Cut no poly

Almost-2-SAT O(k6)
Multicut no poly

Pathwidth One Deletion Set O(k2)

Undirected Feedback Vertex Set 4k2

Undirected Feedback Vertex Set 4k2

Subset Feedback Vertex Set ?
Directed Feedback Vertex Set ?

Odd Cycle Transversal O(k4.5)

Edge Bipartization O (k3)
Planar DS 67k
Max Leaf 3.75k

Directed Max Leaf O(k2)
Set Splitting k
Nonblocker 5k/3

Edge Dominating Set 2k2 + 2k
k-Path no poly

Convex Recolouring O(k2)
Clique Cover 2k

Clique Partition k2

Cluster Editing 2k
Steiner Tree no poly

3-Hitting Set O(k2)
Interval Completion ?

Minimum Fill-In 2k2 + 2k
Contraction to Paths 5k + 3
Contraction to Trees no poly



Meta-Kernelization

Parameterized by Solution Size

Various Meta-Kernelization results on “sparse classes of graphs”
are known, e.g.:

I “compact” problems definable via CMSO admit a polynomial
kernel on graph classes of bounded genus,

I “quasi compact” problems that have FII admit a linear kernel
on graphs of bounded genus.

I . . .



Meta-Kernelization

Parameterized by Structural Parameters

I Problems that have FII admit polynomial kernels
parameterized by a treedepth-modulator on “sparse classes of
graphs”,

I Problems definable via MSO admit a linear (vertex-)kernel
parameterized by the C-cover number for any graph class C of
constant rank-width.

I . . .



Thank You!


	Introduction
	A Simple Kernel for Vertex Cover

	Equivalence between FPT-algorithms and Kernelization
	Lower Bounds

