# **KERNELIZATION**

Sebastian Ordyniak

### Introduction

- central topic of parameterized complexity with its own annual workshop WORKER, whose 2011 installment was organized in Vienna,
- polynomial-time preprocessing procedure with guarantees on the size of the reduced instance,

close connection to approximation algorithms.

### Motivation

- It is almost always a good idea to simplify the input.
- Preprocessing is successful in practice for SAT, CPLEX, TSP, etc..

- How to measure theoretically how well the preprocessing works?
- Performance guarantees?

# Definition





size < f(k)

- polynomial-time preprocessing for parameterized problems,
- the size of the reduced instance is bounded in the parameter,
- every problem in FPT allows such a reduction and vice versa.

### k-VERTEX COVER (k-VC)

Parameter: k

**Input:** A graph G and a natural number k. **Question:** Does G have a vertex cover of size at most k, i.e. a set of vertices that covers all edges of G?

# VERTEX COVER Observation

#### Observation

For every vertex either itself or all of its neighbors occur in any vertex cover.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# VERTEX COVER Observation

#### Observation

For every vertex either itself or all of its neighbors occur in any vertex cover.

#### Rule 2

Take vertices of degree greater than k into the vertex cover (decrease k by 1 and delete them from the graph).



### $\operatorname{Vertex}\ \operatorname{Cover}\ \mathsf{Example}$

Does G have a vertex cover of size at most k = 5?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Does G have a vertex cover of size at most k = 5?



Remove isolated vertices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Does G have a vertex cover of size at most k = 4?



Take vertex of degree greater than k = 5 into the vertex cover, decrease k by one, and remove the vertex (Rule 2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Does G have a vertex cover of size at most k = 4?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Remove isolated vertices

Does G have a vertex cover of size at most k = 4?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now every vertex has degree at most k = 4!

# The Kernel

Theorem k-VERTEX COVER has a kernel of size  $O(k^2)$ .

# The Kernel

#### Theorem

k-VERTEX COVER has a kernel of size  $O(k^2)$ .

### Remark:

The above theorem is easily extended to an FPT-algorithm:

- Compute the kernel in polynomial-time.
- Use brute-force on the kernel in time  $O(2^{k^2})$ .

# Equivalence between FPT-algorithms and Kernelization

#### Theorem

A parameterized problem P is fixed-parameter tractable iff it is decidable and admits a kernelization algorithm.

Equivalence between FPT-algorithms and Kernelization

### Theorem

A parameterized problem P is fixed-parameter tractable iff it is decidable and admits a kernelization algorithm.

# $\mathsf{Proof}\ (\to)$

- Assume P can be solved in time  $f(k)n^{O(1)}$ ,
- if n < f(k) then the instance is already a kernel,
- ▶ otherwise, i.e. if n > f(k) then f(k)n<sup>O(1)</sup> ∈ n<sup>O(1)</sup> and hence the instance can be solved in polynomial-time

Equivalence between FPT-algorithms and Kernelization

### Theorem

A parameterized problem P is fixed-parameter tractable iff it is decidable and admits a kernelization algorithm.

# Proof $(\leftarrow)$

we can solve the instance by first computing the kernel of size f(k) in time n<sup>O(1)</sup> and then running the algorithm that decides P on the kernel in time g(f(k)),

► Hence, the instance can be solved in time n<sup>O(1)</sup> + g(f(k)) and P is fixed-parameter tractable.

### Kernelsize

- even though every problem in FPT has a kernel of size f(k), f should be as small as possible in order for the preprocessing to be as effective as possible.
- smaller kernels can usually be obtained by "more involved" case distinctions,
- suprisingly, one can distinguish between problems with and without polynomial sized kernels

It is possible to show that a problem does not have a polynomial sized kernel  $^{1}$  by either:

- providing a polynomial-parameter preserving fpt-reduction from a known problem without a polynomial kernel, or
- showing that the problem is OR/AND-composable

# $\mathsf{OR}/\mathsf{AND}\text{-}\mathsf{composition}$



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

OR-composition: Longest Path

### k-Longest Path (k-LP)

Parameter: k

**Input:** A graph G and a natural number k. **Question:** Does G have a path of length at least k?

# OR-composition: Longest Path

### k-Longest Path (k-LP)

Parameter: k

**Input:** A graph G and a natural number k. **Question:** Does G have a path of length at least k?

#### Observation

Given t instances  $(G_1, k), \dots, (G_t, k)$  of LP, then:

 $G_1 \dot{\cup} \cdots \dot{\cup} G_t$  is equivalent to the **OR** of  $(G_1, k), \ldots, (G_t, k)$ .

# OR-composition: Longest Path



▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

# Table of Kernelization Results

| Problem                        | Kernel size     |
|--------------------------------|-----------------|
| Vertex Cover                   | 2 <i>k</i>      |
| Connected Vertex Cover         | no poly         |
| Multiway Cut                   | ?               |
| Directed Multiway Cut          | no poly         |
| Almost-2-SAT                   | $O(k^6)$        |
| Multicut                       | no poly         |
| Pathwidth One Deletion Set     | $O(k^2)$        |
| Undirected Feedback Vertex Set | 4k <sup>2</sup> |
| Undirected Feedback Vertex Set | $4k^2$          |
| Subset Feedback Vertex Set     | ?               |
| Directed Feedback Vertex Set   | ?               |
| Odd Cycle Transversal          | $O(k^{4.5})$    |
| Edge Bipartization             | $O(k^3)$        |
| Planar DS                      | 67k             |
| Max Leaf                       | 3.75 <i>k</i>   |
| Directed Max Leaf              | $O(k^2)$        |
| Set Splitting                  | k               |
| Nonblocker                     | 5k/3            |
| Edge Dominating Set            | $2k^2 + 2k$     |
| k-Path                         | no poly         |
| Convex Recolouring             | $O(k^2)$        |
| Clique Cover                   | 2 <i>k</i>      |
| Clique Partition               | k <sup>2</sup>  |
| Cluster Editing                | 2 <i>k</i>      |
| Steiner Tree                   | no poly         |
| 3-Hitting Set                  | $O(k^2)$        |
| Interval Completion            | ?               |
| Minimum Fill-In                | $2k^2 + 2k$     |
| Contraction to Paths           | 5k + 3          |
| Contraction to Trees           | no poly         |

<□ > < @ > < E > < E > E のQ @

### Parameterized by Solution Size

Various Meta-Kernelization results on "sparse classes of graphs" are known, e.g.:

- "compact" problems definable via CMSO admit a polynomial kernel on graph classes of bounded genus,
- "quasi compact" problems that have FII admit a linear kernel on graphs of bounded genus.

▶ ...

# Meta-Kernelization

#### Parameterized by Structural Parameters

- Problems that have FII admit polynomial kernels parameterized by a treedepth-modulator on "sparse classes of graphs",
- Problems definable via MSO admit a linear (vertex-)kernel parameterized by the C-cover number for any graph class C of constant rank-width.

▶ ...

# **Thank You!**