SAT – Propositional Satisfiability

SAT:

Input: a propositional formula φ in CNF *Question:* is φ satisfiable?

Example (satisfiable):

$$(x_1 \lor x_2) \land (x_2) \land (\neg x_1 \lor x_3) \land (\neg x_1 \lor x_4) \land (x_4)$$

Example (unsatisfiable):

$$(x_1 \lor x_2) \land (\neg x_2) \land (\neg x_1) \land (\neg x_1 \lor x_4) \land (\neg x_4)$$

SAT solvers & encodings

Best algorithms take 2^n time in the worst-case but are very efficient in many cases (instances with millions of variables solved in seconds)

Progress on the engineering [of SAT solvers] has been nothing short of spectacular. – Moshe Vardi

SAT solvers & encodings

Best algorithms take 2^n time in the worst-case but are very efficient in many cases (instances with millions of variables solved in seconds)

Progress on the engineering [of SAT solvers] has been nothing short of spectacular. – Moshe Vardi

Strategy to solve your favorite NP-complete problem Q:

- 1. encode instance of Q into instance φ of SAT (in poly-time)
- 2. call a SAT solver on φ
- 3. decode solution into a solution for Q

Example problem: does a graph G have a clique of size $\geq m$?

SAT encoding (in a picture)

SAT encoding (in a picture)

Using SAT encodings

Given any graph G and a natural number k, we build a formula F(G, k) such that:

Using SAT encodings

Given any graph G and a natural number k, we build a formula F(G, k) such that:

Idea

The formula F(G, k) is true if and only if G has a parameter with value k.

Here k can be any of the following graph parameters

- ► Treewidth (Samer & Veith 2009),
- Cliquewidth (Heule & Szeider 2013),
- Branchwidth (current work : Apply this approach for larger graphs using SAT for local improvement), ...

Counting

- ▶ How to count something using *SAT* formula?
- Various techniques (Bjork 2009)
 - Unary encoding
 - Binary encoding
 - onehot encoding

Cardinality Constraints using Unary counting

- Let L(v) be *True* when vertex v is being counted.
- ▶ Let C(i) be true when counter has value i
- We can count 2 using following formula

$$(L(1) \implies C(1))$$

Cardinality Constraints using Unary counting

- Let L(v) be *True* when vertex v is being counted.
- ▶ Let C(i) be true when counter has value i
- We can count 2 using following formula

$$(L(1) \implies C(1)) \land (C(1) \land L(2) \implies C(2))$$

Polynomial Hierarchy: Problems 'Beyond NP'

Polynomial Hierarchy: Problems 'Beyond NP'

Other kinds of reductions

Example problem: how big is the largest clique in a graph G?

Turing reductions: call a SAT solver multiple times

Example problem: find a subset of clauses that is *minimally unsatisfiable* (removing any clause makes it satisfiable) – MUS

Other kinds of reductions

Example problem: how big is the largest clique in a graph G?

Turing reductions: call a SAT solver multiple times

Example problem: find a subset of clauses that is *minimally unsatisfiable* (removing any clause makes it satisfiable) – MUS

Fpt-reductions to SAT: allow fpt-time instead of poly-time

- Interesting for problems 'beyond NP'
- ► Example problem: find smallest logically equivalent CNF

A new landscape

References

M. Bjork.

Successful SAT encoding techniques.

Journal on Satisfiability, Boolean Modeling and Computation, Addendum, IOS Press, 2009.

- M. J. H. Heule and S. Szeider.
 A SAT approach to clique-width.
 ACM Trans. Comput. Logic, 16(3):24:1–24:27, June 2015.
 - M. Samer and H. Veith. Encoding treewidth into SAT.

In Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, pages 45–50, 2009.