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What we are interested in

Planar graph H Orthogonal drawing '(H) of H
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What we care about

bends
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Orthogonal drawing: with 15 bends with 9 bends




Bend-minimal Orthogonal Extension Problem (BMOE)

INPUT: Graph G, an already fixed orthogonal drawing I'(H) for H C G, § € Z:
(G,HC G,T(H),3eZ
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Orthogonal drawing I'(H)

Subgraph H



Bend-minimal Orthogonal Extension Problem (BMOE)

INPUT: Graph G, an already fixed orthogonal drawing I'(H) for H C G, § € Z:
(G,HC G,T(H)),peZ

TAsk: Extend ['(H) to ['(G) using at most > 0 additional bends

Extension to G




Bend-minimal Orthogonal Extension Problem (BMOE)

INPUT: Graph G, an already fixed orthogonal drawing I'(H) for H C G, § € Z:
(G,HC G,T(H),3eZ
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Complexity results for an extension problems

(1) planar, linear-time algorithm (3) upward planar, NP-hard
[Angelini et al., 2015] [Da Lozzo et al., 2020]
(2) level planar, NP-hard (4) bend-minimal orthogonal, NP-hard

[Briickner and Rutter, 2017] [Angelini et al., 2021]



Bend-minimal Orthogonal Extension Problem (BMOE)

pall

Graph G Subgraph H Orthogonal drawing I'(H)

Let K = |V(G) \ V(H)| + |E(G) \ E(H)|, i.e. the number of missing elements.



Bend-minimal Orthogonal Extension Problem (BMOE)

Graph G Bend-minimal OrtExt I'(G)

Let K = |V(G) \ V(H)| + |E(G) \ E(H)|, i.e. the number of missing elements.
Contribution. If H is connected, the BMOE problem param. by x is FPT.



Overview [Key steps]



Bend-minimal Orthogonal Extension Problem (BMOE)

e Restrict BMOE to a single inner face
(F-BMOE)
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Bend-minimal Orthogonal Extension Problem (BMOE)
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e Restrict BMOE to a single inner face
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e Define sector graph based on
bend-distances



Bend-minimal Orthogonal Extension Problem (BMOE)

e Restrict BMOE to a single inner face
(F-BMOE)

e Define sector graph based on

(a1, dh)

bend-distances

(a2, o)

e Tree-width of sector graph is bounded
in f(r)

(a3, ds)




Bend-minimal Orthogonal Extension Problem (BMOE)

e Restrict BMOE to a single inner face

(F-BMOE)
II—: .
S - S e Define sector graph based on
%\@ < bend-distances
Chitical e Tree-width of sector graph is bounded

in f(r)

e Universal point-set for each sector




Bend-minimal Orthogonal Extension Problem (BMOE)

Restrict BMOE to a single inner face
(F-BMOE)

Define sector graph based on
bend-distances

Tree-width of sector graph is bounded
in f(r)

Universal point-set for each sector

Dynamic Programming



Basic definitions



The complement X = V(G) \ V(H) is the
missing vertex set of G, and
Ex = E(G) \ E(H) the missing edge set.




A planar orthogonal drawing I'(G)
extends I'(H) if its restriction to the vertices
and edges of H coincides with I'(H).




A planar orthogonal drawing I'(G)

extends I'(H) if its restriction to the vertices
and edges of H coincides with I'(H).
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A feature point of an orthogonal drawing is a

point representing either a vertex or a bend.

L,




A feature point of an orthogonal drawing is a

point representing either a vertex or a bend.

A vertex a € V(H) is called an anchor if it is
incident to an edge in Ex.




a A port candidate is a pair (a, d), i.e. for
t (@2,1) ax € Ex ae V(H), d e {l|, 1, +, =}
]
(327~L)
(a1,{) @2
@
(22, 1) (a2, ) o—




a A port candidate is a pair (a, d), i.e. for
? (a2, 1) ax € Ex ae V(H), d e {l|, 1, +, =}
]
A port-function P is an ordered set of port
(a2,1) candidates which contains precisely one port
@32 candidate for each missing edge
* ax € Ex,a € V(H).
(a2, 1) (a2, 4=) o—




Branching and F-BMOE



Turing reduction

Lemma. There is an algorithm that solves an instance of BMOE in time
20() . T(|Z], k), where T(|Z|, k) is the time required to solve an instance Z of
F-BMOE with instance size |Z| and parameter value k.



BMOE on just one Face (F-BMOE)

INPUT: Graph Gf (just one face), fixed orthogonal drawing I'(Hy) for Hf C Gy,
set of missing vertices X, a port function for Xg: (Gr, Hr C Gy, T(Hp))
fy I'f = Yf, fl/

] Xr = V(Gr) \ V(Hs); port-function P.
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BMOE on just one Face (F-BMOE)

INPUT: Graph Gf (just one face), fixed orthogonal drawing I'(Hy) for Hf C Gy,
set of missing vertices X, a port function for Xg: (Gr, Hy C Gr,T(Hr)),

] Xr = V(Gr) \ V(Hs); port-function P.
TAsSK: Compute the minimum number of bends
! needed to extend I'(Hy) to I'(Gy) and
LOJ (1) missing edges and vertices are only drawn in f;

(2) each edge ax € Ex connects to a € V(Hy) via its port candidate in P; or



BMOE on just one Face (F-BMOE)

INPUT: Graph Gf (just one face), fixed orthogonal drawing I'(Hy) for Hf C Gy,
set of missing vertices X, a port function for Xg: (Gr, Hy C Gr,T(Hr)),

] Xr = V(Gr) \ V(Hs); port-function P.
TAsSK: Compute the minimum number of bends
! needed to extend I'(Hy) to I'(Gy) and
LOJ (1) missing edges and vertices are only drawn in f;

(2) each edge ax € Ex connects to a € V(Hy) via its port candidate in P; or

(3) determine that no such extension exists.



Preprocessing




Left: A reflex corner p and its projections ¢; and /5.

Middle: A face (striped) with all its non-essential reflex corners and projections.

Right: The corresponding clean instance.
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Outer face

A (-handle A (-spiral
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Discretizing the Instances



Sectors and the Sector Graph

(a2, ch)

(2,1,1)

(a1, d1)

(a3, d3)

For a point p € f, the bend distance
bd(p, (a,d)) to a port candidate (a, d)
is the min g € Z such that there exists
an orthogonal polyline with g bends
connecting p and a in the interior of f
which arrives to a from direction d.

For point p € f and for a port-function
P = ((a1,d1),...,(aq,dy)), we define a

bend-vector of p as the tuple vect(p) =

(bd(p, (31, dl))a R bd(p, (aq7 dq)))'
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The Sector Graph

Sectors A and B are adjacent if there
=1l exists a point p in A and a direction
d € {1,1,+,—} such that the first
point outside of A hit by the ray starting
from p in direction d is in B.

(a2, ch)

(a3, d3)
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The Sector Graph

Sectors A and B are adjacent if there
=1l exists a point p in A and a direction
d € {1,1,+,—} such that the first
point outside of A hit by the ray starting

(22, o) from p in direction d is in B.

(as, d3) The number of vertices in G is

upper-bounded by 9x2, where x is the
number of feature points in ['(Hg).
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Exploiting the Treewidth



Tree decomposition

Def. A tree decomposition of a graph G is a pair

T = (T,{X:}tev(r)), where T is a tree whose every
node t is assigned a vertex subset X; C V(G), called
a bag, with three following conditions:

T1. UteV(T) Xe = V(G);

T?2. For every vw € E(G), there exists a node t of
T such that bag X; contains both v and w;

T3. For every v € V(G), the set

T, ={t e V(T)|v e X;} induces a connected
subtree of T.

14



Tree decomposition

Def. A tree decomposition of a graph G is a pair

T = (T,{X:}tev(r)), where T is a tree whose every
node t is assigned a vertex subset X; C V(G), called
a bag, with three following conditions:

Tl UteV(T) Xe = V(G);

T?2. For every vw € E(G), there exists a node t of
T such that bag X; contains both v and w;

T3. For every v € V(G), the set
T, ={t e V(T)|v e X;} induces a connected
subtree of T.

Def. The width of T = (T, {X:}tcv(m)) is maxeev (1) [ Xe| — 1.
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Sector Graphs Are Tree-Like

Lemma. The sector graph G, is a tree.

DER

(al7dl) i

—

—

B ] (227 d2)
[ 1] L
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Sector Graphs Are Tree-Like

(a1, ch) : (a1, ch)

!

1 (a2, db) ‘ (a2, db)
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Baseline and Histogram

Each sector admits at least one baseline.

[0

0

The segments colored red (blue) are local maxima (minima).
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Baseline and Histogram
iFmin§
ﬂ Fe, N
Fi it it

Cases of relative location of the F, sector in F relative to the F-baseline

—

Each sector is subdivided into a linear in the number of local maxima number of

new sectors.
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Baseline and Histogram
iFmin§
ﬂ Fe, N
Fi it it

Cases of relative location of the F, sector in F relative to the F-baseline

—

Each sector is subdivided into a linear in the number of local maxima number of

new sectors.

Let G be a sector graph of a face f of the drawing I'(G):

tw(G) < (4 + 4k)*.
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From Sector Graph to The Skeleton

For each sector and for each direction, there are at most 4k critical reflex corners.

(32, d2) Critical
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From Sector Graph to The Skeleton

i

Critical

e Replace each vertex of the skeleton with a tiny square grid of size O(k3).

e Grid points in each subsector is enough to host all vertices and bends of one
column/row of the skeleton

20



The Final Step: DP




The Final Step

An instance Z = (Gr, Hf, T (Hr), P) with k = |V(Gf) \ V(Hf)| of F-BMOE

e admits a sector graph G of treewidth at most (4 + 4k)4";

e a bend-minimal extension of '(Hy) to an orthogonal planar drawing of Gf
can be assumed to only contain feature points on the sector-grid points [at
most gridsize(k) many per sector].

Lemma. F-BMOE can be solved in time 2K°” . |V/(G)|.
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The Final Step

Lemma. F-BMOE can be solved in time 2K°® . |V(G)|.

e There is an algorithm that solves an instance Z of BMOE in time
2009 - T(|Z], k),

where T(a, b) is the time required to solve an instance of F-BMOE with
instance size a and parameter value b.

Corollary. BMOE can be solved in time P n,
where n is the number of feature points of I'(H).
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Further directions




We have proved that the Bend-Minimal Orthogonal Extension Problem if FPT in
the number of missing elements.

e What if H is not connected?
e The approach can be adjusted to minimize the number o of bends per edge.

e Can we extend the result to planar drawings using a fixed number of slopes?
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Thanks for attention!
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