Extending Orthogonal Planar Graph Drawings

 is Fixed-Parameter TractableS. Bhore, R. Ganian, L. Khazaliya, F. Montecchiani, M. Nöllenburg

June 20, 2023

What we are interested in

Planar graph H

Orthogonal drawing $\Gamma(H)$ of H

What we care about

Bend-minimal Orthogonal Extension Problem (BMOE)

InPUT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G, \beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H)\rangle, \beta \in \mathbb{Z}$

Graph G

Subgraph H

Orthogonal drawing $\Gamma(H)$

Bend-minimal Orthogonal Extension Problem (BMOE)

Input: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G, \beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H)\rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

Graph G

Extension to G

Bend-minimal Orthogonal Extension Problem (BMOE)

Input: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G, \beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H)\rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

Graph G

Bend-minimal orthogonal extension $\Gamma(G)$

Complexity results for an extension problems

(1) planar, linear-time algorithm [Angelini et al., 2015]
(2) level planar, NP-hard
[Brückner and Rutter, 2017]
(3) upward planar, NP-hard
[Da Lozzo et al., 2020]
(4) bend-minimal orthogonal, NP-hard [Angelini et al., 2021]

Bend-minimal Orthogonal Extension Problem (BMOE)

Graph G

Subgraph H

Orthogonal drawing $\Gamma(H)$

Let $\kappa=|V(G) \backslash V(H)|+|E(G) \backslash E(H)|$, i.e. the number of missing elements. If H is connected, the BMOE problem param. by κ is FPT

Bend-minimal Orthogonal Extension Problem (BMOE)

Graph G

Bend-minimal OrtExt $\Gamma(G)$

Let $\kappa=|V(G) \backslash V(H)|+|E(G) \backslash E(H)|$, i.e. the number of missing elements.
Contribution. If H is connected, the BMOE problem param. by κ is FPT.

Overview [Key steps]

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-mpidth of sector graph is bounded
- Universal point-set for each sector
- Dynamic Drogramming

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-midth of sector graph is bounded
- Universal point-set for each sector
- Dynamic Drogramming

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded
- Universal point-set for each sector
- Dynamic Programming

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in $f(\kappa)$
- Universal point-set for each sector
- Dynamic Programming

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in $f(\kappa)$
- Universal point-set for each sector
- Dynamic Programming

Bend-minimal Orthogonal Extension Problem (BMOE)

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in $f(\kappa)$
- Universal point-set for each sector
- Dynamic Programming

Basic definitions

Definitions

The complement $X=V(G) \backslash V(H)$ is the missing vertex set of G, and $E_{X}=E(G) \backslash E(H)$ the missing edge set.

Definitions

$$
\begin{aligned}
& \text { A planar orthogonal drawing } \Gamma(G) \\
& \text { extends } \Gamma(H) \text { if its restriction to the vertices } \\
& \text { and edges of } H \text { coincides with } \Gamma(H) \text {. }
\end{aligned}
$$

Definitions

$$
\begin{aligned}
& \text { A planar orthogonal drawing } \Gamma(G) \\
& \text { extends } \Gamma(H) \text { if its restriction to the vertices } \\
& \text { and edges of } H \text { coincides with } \Gamma(H) \text {. }
\end{aligned}
$$

Definitions

A feature point of an orthogonal drawing is a point representing either a vertex or a bend.

A vertex $a \in V(H)$ is called an anchor if it is incident to an edge in E_{X}

Definitions

A feature point of an orthogonal drawing is a point representing either a vertex or a bend.

A vertex $a \in V(H)$ is called an anchor if it is incident to an edge in E_{X}.

Definitions

A port candidate is a pair (a, d), i.e. for $a x \in E_{X} a \in V(H), d \in\{\downarrow, \uparrow, \leftarrow, \rightarrow\}$.

A port-function \mathcal{P} is an ordered set of port
candidates which contains precisely one port candidate for each missing edge
$a x \in E_{X}, a \in V(H)$

Definitions

A port candidate is a pair (a, d), i.e. for $a x \in E_{X} a \in V(H), d \in\{\downarrow, \uparrow, \leftarrow, \rightarrow\}$.

A port-function \mathcal{P} is an ordered set of port candidates which contains precisely one port candidate for each missing edge $a x \in E_{X}, a \in V(H)$.

Branching and F-BMOE

Turing reduction

Lemma. There is an algorithm that solves an instance of BMOE in time $2^{\mathcal{O}(k)} \cdot T(|\mathcal{I}|, k)$, where $T(|\mathcal{I}|, k)$ is the time required to solve an instance \mathcal{I} of F-BMOE with instance size $|\mathcal{I}|$ and parameter value k.

BMOE on just one Face (F-BMOE)

InPuT: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} :

$$
\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle
$$

$$
X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right) ; \text { port-function } \mathcal{P}
$$

(2) each edge $a x \in E_{X}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate in \mathcal{P}; or

[^0]
BMOE on just one Face (F-BMOE)

Input: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} :

$$
\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle,
$$

$$
X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right) ; \text { port-function } \mathcal{P}
$$

TASK: Compute the minimum number of bends

 needed to extend $\Gamma\left(H_{f}\right)$ to $\Gamma\left(G_{f}\right)$ and(1) missing edges and vertices are only drawn in f

(2) each edge $a x \in E_{X}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate in \mathcal{P}; or

[^1]
BMOE on just one Face (F-BMOE)

InPuT: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} :

$$
\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle
$$

$$
X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right) ; \text { port-function } \mathcal{P}
$$

TASK: Compute the minimum number of bends needed to extend $\Gamma\left(H_{f}\right)$ to $\Gamma\left(G_{f}\right)$ and
(1) missing edges and vertices are only drawn in f;
(2) each edge $a x \in E_{X}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate in \mathcal{P}; or
(3) determine that no such extension exists

BMOE on just one Face (F-BMOE)

InPut: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} :

$$
\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle
$$

$$
X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right) ; \text { port-function } \mathcal{P}
$$

TASK: Compute the minimum number of bends needed to extend $\Gamma\left(H_{f}\right)$ to $\Gamma\left(G_{f}\right)$ and
(1) missing edges and vertices are only drawn in f;
(2) each edge $a x \in E_{X}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate in \mathcal{P}; or (3) determine that no such extension exists.

BMOE on just one Face (F-BMOE)

InPut: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} :

$$
\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle
$$

$$
X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right) ; \text { port-function } \mathcal{P}
$$

TASK: Compute the minimum number of bends needed to extend $\Gamma\left(H_{f}\right)$ to $\Gamma\left(G_{f}\right)$ and
(1) missing edges and vertices are only drawn in f;
(2) each edge $a x \in E_{X}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate in \mathcal{P}; or
(3) determine that no such extension exists.

Preprocessing

Pruning

Left: A reflex corner p and its projections ℓ_{1} and ℓ_{2}.
Middle: A face (striped) with all its non-essential reflex corners and projections.
Right: The corresponding clean instance.

Outer face

A ζ-handle

A ζ-spiral

Discretizing the Instances

Sectors and the Sector Graph

For a point $p \in f$, the bend distance $\operatorname{bd}(p,(a, d))$ to a port candidate (a, d) is the $\min q \in \mathbb{Z}$ such that there exists an orthogonal polyline with q bends connecting p and a in the interior of f which arrives to a from direction d.

For point $p \in f$ and for a port-function $\mathcal{P}=\left(\left(a_{1}, d_{1}\right), \ldots,\left(a_{q}, d_{q}\right)\right)$, we define a bend-vector of p as the tuple $\operatorname{vect}(p)=$ $\left(\operatorname{bd}\left(p,\left(a_{1}, d_{1}\right)\right), \ldots, \operatorname{bd}\left(p,\left(a_{q}, d_{q}\right)\right)\right)$.

The Sector Graph

Sectors A and B are adjacent if there exists a point p in A and a direction $d \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray starting from p in direction d is in B.

The number of vertices in \mathcal{G} is upper-bounded by $9 x^{2}$, where x is the number of feature points in $\Gamma\left(H_{F}\right)$

The Sector Graph

Sectors A and B are adjacent if there exists a point p in A and a direction $d \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray starting from p in direction d is in B.

The number of vertices in \mathcal{G} is upper-bounded by $9 x^{2}$, where x is the number of feature points in $\Gamma\left(H_{F}\right)$.

Exploiting the Treewidth

Tree decomposition

Def. A tree decomposition of a graph G is a pair $\mathcal{T}=\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$, where T is a tree whose every node t is assigned a vertex subset $X_{t} \subseteq V(G)$, called a bag, with three following conditions:

$\mathcal{T} 1 . \bigcup_{t \in V(T)} X_{t}=V(G)$;
\mathcal{T} 2. For every $v w \in E(G)$, there exists a node t of T such that bag X_{t} contains both v and w;
$\mathcal{T} 3$. For every $v \in V(G)$, the set
$T_{v}=\left\{t \in V(T) \mid v \in X_{t}\right\}$ induces a connected
 subtree of T.

Tree decomposition

Def. A tree decomposition of a graph G is a pair $\mathcal{T}=\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$, where T is a tree whose every node t is assigned a vertex subset $X_{t} \subseteq V(G)$, called a bag, with three following conditions:

$\mathcal{T} 1 . \bigcup_{t \in V(T)} X_{t}=V(G)$;
\mathcal{T} 2. For every $v w \in E(G)$, there exists a node t of T such that bag X_{t} contains both v and w;
$\mathcal{T} 3$. For every $v \in V(G)$, the set
$T_{v}=\left\{t \in V(T) \mid v \in X_{t}\right\}$ induces a connected
 subtree of T.

Def. The width of $\mathcal{T}=\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$ is $\max _{t \in V(T)}\left|X_{t}\right|-1$.

Sector Graphs Are Tree-Like

Lemma. The sector graph \mathcal{G}_{1} is a tree.

Sector Graphs Are Tree-Like

Baseline and Histogram

Each sector admits at least one baseline.

The segments colored red (blue) are local maxima (minima).

Baseline and Histogram

Cases of relative location of the $F_{\text {min }}$ sector in F relative to the F-baseline

Each sector is subdivided into a linear in the number of local maxima number of new sectors.

Let \mathcal{G} be a sector graph of a face f of the drawing $\Gamma(G)$: $+\operatorname{man}_{(C)}(1+\Lambda k)^{4 k}$

Baseline and Histogram

Cases of relative location of the $F_{\text {min }}$ sector in F relative to the F-baseline

Each sector is subdivided into a linear in the number of local maxima number of new sectors.

Let \mathcal{G} be a sector graph of a face f of the drawing $\Gamma(G)$:

$$
\operatorname{tw}(\mathcal{G}) \leq(4+4 k)^{4 k}
$$

From Sector Graph to The Skeleton

For each sector and for each direction, there are at most $4 k$ critical reflex corners.

From Sector Graph to The Skeleton

- Replace each vertex of the skeleton with a tiny square grid of size $\mathcal{O}\left(k^{3}\right)$.
- Grid points in each subsector is enough to host all vertices and bends of one column/row of the skeleton

The Final Step: DP

The Final Step

An instance $\mathcal{I}=\left\langle G_{f}, H_{f}, \Gamma\left(H_{f}\right), \mathcal{P}\right\rangle$ with $k=\left|V\left(G_{f}\right) \backslash V\left(H_{f}\right)\right|$ of F-BMOE

- admits a sector graph \mathcal{G} of treewidth at most $(4+4 k)^{4 k}$;
- a bend-minimal extension of $\Gamma\left(H_{f}\right)$ to an orthogonal planar drawing of G_{f} can be assumed to only contain feature points on the sector-grid points [at most gridsize(k) many per sector].

Lemma. F-BMOE can be solved in time $2^{k^{\mathcal{O}(1)}} \cdot\left|V\left(G_{f}\right)\right|$.

The Final Step

Lemma. F-BMOE can be solved in time $2^{k^{O(1)}} \cdot\left|V\left(G_{f}\right)\right|$.

- There is an algorithm that solves an instance \mathcal{I} of BMOE in time $2^{\mathcal{O}(k)} \cdot T(|\mathcal{I}|, k)$,
where $T(a, b)$ is the time required to solve an instance of F -BMOE with instance size a and parameter value b.

Corollary. BMOE can be solved in time $2^{\kappa^{\mathcal{O}(1)}} \cdot n$, where n is the number of feature points of $\Gamma(H)$.

Further directions

Further

We have proved that the Bend-Minimal Orthogonal Extension Problem if FPT in the number of missing elements.

- What if H is not connected?
- The approach can be adjusted to minimize the number σ of bends per edge.
- Can we extend the result to planar drawings using a fixed number of slopes?

Thanks for attention!

Contents

Overview [Key steps]
Basic definitions
Branching and F-BMOE
Preprocessing
Discretizing the Instances
Exploiting the Treewidth
The Final Step: DP

[^0]: (3) determine that no such extension exists

[^1]: (3) determine that no such extension exists

