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What we are interested in

Planar graph H Orthogonal drawing Γ(H) of H
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What we care about

Orthogonal drawing:

bends

with 15 bends with 9 bends
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Bend-minimal Orthogonal Extension Problem (BMOE)

Input: Graph G , an already fixed orthogonal drawing Γ(H) for H ⊆ G , β ∈ Z:
⟨G ,H ⊆ G , Γ(H)⟩, β ∈ Z

Task: Extend Γ(H) to Γ(G ) using at most β ≥ 0 additional bends

Graph G Subgraph H Orthogonal drawing Γ(H)
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Complexity results for an extension problems

(1) planar, linear-time algorithm

[Angelini et al., 2015]

(2) level planar, NP-hard

[Brückner and Rutter, 2017]

(3) upward planar, NP-hard

[Da Lozzo et al., 2020]

(4) bend-minimal orthogonal, NP-hard

[Angelini et al., 2021]
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Bend-minimal Orthogonal Extension Problem (BMOE)

Graph G Subgraph H Orthogonal drawing Γ(H)

Let κ = |V (G ) \ V (H)|+ |E (G ) \ E (H)|, i.e. the number of missing elements.

Contribution. If H is connected, the BMOE problem param. by κ is FPT.
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Overview [Key steps]



Bend-minimal Orthogonal Extension Problem (BMOE)

• Restrict BMOE to a single inner face
(F-BMOE)

• Define sector graph based on
bend-distances

• Tree-width of sector graph is bounded
in f (κ)

• Universal point-set for each sector

• Dynamic Programming
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Bend-minimal Orthogonal Extension Problem (BMOE)

(a2, d2)

(a3, d3)

(a1, d1)

(2, 1, 1)

• Restrict BMOE to a single inner face
(F-BMOE)

• Define sector graph based on
bend-distances

• Tree-width of sector graph is bounded
in f (κ)

• Universal point-set for each sector

• Dynamic Programming

6



Bend-minimal Orthogonal Extension Problem (BMOE)

(a2, d2)

(a3, d3)

(a1, d1)

• Restrict BMOE to a single inner face
(F-BMOE)

• Define sector graph based on
bend-distances

• Tree-width of sector graph is bounded
in f (κ)

• Universal point-set for each sector

• Dynamic Programming

6



Bend-minimal Orthogonal Extension Problem (BMOE)

↖
Critical

︷ ︸︸ ︷subgridsize(k)

• Restrict BMOE to a single inner face
(F-BMOE)

• Define sector graph based on
bend-distances

• Tree-width of sector graph is bounded
in f (κ)

• Universal point-set for each sector

• Dynamic Programming
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Basic definitions



Definitions

The complement X = V (G ) \ V (H) is the
missing vertex set of G , and
EX = E (G ) \ E (H) the missing edge set.
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Definitions

A planar orthogonal drawing Γ(G )

extends Γ(H) if its restriction to the vertices
and edges of H coincides with Γ(H).
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Definitions

A feature point of an orthogonal drawing is a
point representing either a vertex or a bend.

A vertex a ∈ V (H) is called an anchor if it is
incident to an edge in EX .
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Definitions
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Definitions

(a2, ↓)

(a1, ↓)

(a2, ↓)

(a2, ↑)

(a2,←)

a2

a1 A port candidate is a pair (a, d), i.e. for
ax ∈ EX a ∈ V (H), d ∈ {↓, ↑, ←, →}.

A port-function P is an ordered set of port
candidates which contains precisely one port
candidate for each missing edge
ax ∈ EX , a ∈ V (H).

7



Definitions

(a2, ↓)

(a1, ↓)

(a2, ↓)

(a2, ↑)

(a2,←)

a2

a1 A port candidate is a pair (a, d), i.e. for
ax ∈ EX a ∈ V (H), d ∈ {↓, ↑, ←, →}.

A port-function P is an ordered set of port
candidates which contains precisely one port
candidate for each missing edge
ax ∈ EX , a ∈ V (H).

7



Branching and F-BMOE



Turing reduction

Lemma. There is an algorithm that solves an instance of BMOE in time
2O(κ) · T (|I|, k), where T (|I|, k) is the time required to solve an instance I of
F-BMOE with instance size |I| and parameter value k .
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BMOE on just one Face (F-BMOE)

Input: Graph Gf (just one face), fixed orthogonal drawing Γ(Hf ) for Hf ⊆ Gf ,
set of missing vertices Xf , a port function for Xf : ⟨Gf ,Hf ⊆ Gf , Γ(Hf )⟩,

Xf = V (Gf ) \ V (Hf ); port-function P .

Task: Compute the minimum number of bends
needed to extend Γ(Hf ) to Γ(Gf ) and

(1) missing edges and vertices are only drawn in f ;

(2) each edge ax ∈ EX connects to a ∈ V (Hf ) via its port candidate in P ; or

(3) determine that no such extension exists.
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Preprocessing



Pruning

p `1

`2

Left: A reflex corner p and its projections ℓ1 and ℓ2.

Middle: A face (striped) with all its non-essential reflex corners and projections.

Right: The corresponding clean instance.
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Outer face

R ζ
eζjzj−1

zj

A ζ-handle

R ζ
eζjzj−1

zj

A ζ-spiral
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Discretizing the Instances



Sectors and the Sector Graph

(a2, d2)

(a3, d3)

(a1, d1)

(2, 1, 1)

For a point p ∈ f , the bend distance
bd(p, (a, d)) to a port candidate (a, d)

is the min q ∈ Z such that there exists
an orthogonal polyline with q bends
connecting p and a in the interior of f
which arrives to a from direction d .

For point p ∈ f and for a port-function
P = ((a1, d1), . . . , (aq, dq)), we define a
bend-vector of p as the tuple vect(p) =

(bd(p, (a1, d1)), . . . , bd(p, (aq, dq))).
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The Sector Graph

(a2, d2)

(a3, d3)

(a1, d1)

Sectors A and B are adjacent if there
exists a point p in A and a direction
d ∈ {↑, ↓,←,→} such that the first
point outside of A hit by the ray starting
from p in direction d is in B .

The number of vertices in G is
upper-bounded by 9x2, where x is the
number of feature points in Γ(HF ).
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Exploiting the Treewidth



Tree decomposition

Def. A tree decomposition of a graph G is a pair
T = (T , {Xt}t∈V (T )), where T is a tree whose every
node t is assigned a vertex subset Xt ⊆ V (G ), called
a bag, with three following conditions:

T 1.
⋃

t∈V (T ) Xt = V (G );

T 2. For every vw ∈ E (G ), there exists a node t of
T such that bag Xt contains both v and w ;

T 3. For every v ∈ V (G ), the set
Tv = {t ∈ V (T )|v ∈ Xt} induces a connected
subtree of T .

Def. The width of T = (T , {Xt}t∈V (T )) is maxt∈V (T ) |Xt | − 1.
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Sector Graphs Are Tree-Like

Lemma. The sector graph G1 is a tree.

(a1, d1)

(a2, d2)
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Sector Graphs Are Tree-Like

(a1, d1)

(a2, d2)

(a1, d1)

(a2, d2)
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Baseline and Histogram

Each sector admits at least one baseline.

δ
α

The segments colored red (blue) are local maxima (minima).
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Baseline and Histogram

Fmin

ℓ1 ℓ2Fℓ1

Fℓ2

Fmin

Cases of relative location of the Fmin sector in F relative to the F -baseline

Each sector is subdivided into a linear in the number of local maxima number of
new sectors.

Let G be a sector graph of a face f of the drawing Γ(G ):

tw(G) ≤ (4 + 4k)4k .
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From Sector Graph to The Skeleton

For each sector and for each direction, there are at most 4k critical reflex corners.

(a2, d2)

(a3, d3)

(a1, d1)

↖
Critical
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From Sector Graph to The Skeleton

↖
Critical

︷ ︸︸ ︷subgridsize(k)

• Replace each vertex of the skeleton with a tiny square grid of size O(k3).

• Grid points in each subsector is enough to host all vertices and bends of one
column/row of the skeleton
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The Final Step: DP



The Final Step

An instance I = ⟨Gf ,Hf , Γ(Hf ),P⟩ with k = |V (Gf ) \ V (Hf )| of F-BMOE

• admits a sector graph G of treewidth at most (4 + 4k)4k ;

• a bend-minimal extension of Γ(Hf ) to an orthogonal planar drawing of Gf

can be assumed to only contain feature points on the sector-grid points [at
most gridsize(k) many per sector].

Lemma. F-BMOE can be solved in time 2kO(1) · |V (Gf )|.

21



The Final Step

Lemma. F-BMOE can be solved in time 2kO(1) · |V (Gf )|.

• There is an algorithm that solves an instance I of BMOE in time
2O(κ) · T (|I|, k),

where T (a, b) is the time required to solve an instance of F-BMOE with
instance size a and parameter value b.

Corollary. BMOE can be solved in time 2κO(1) · n,
where n is the number of feature points of Γ(H).
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Further directions



Further

We have proved that the Bend-Minimal Orthogonal Extension Problem if FPT in
the number of missing elements.

• What if H is not connected?

• The approach can be adjusted to minimize the number σ of bends per edge.

• Can we extend the result to planar drawings using a fixed number of slopes?
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Thanks for attention!

Further directions

• What if H is not connected?

• Minimize the number of bends per edge.

• Add a fixed number of slopes.

Сontents
Overview [Key steps]
Basic definitions
Branching and F-BMOE
Preprocessing
Discretizing the Instances
Exploiting the Treewidth
The Final Step: DP

24


	Overview [Key steps]
	Basic definitions
	Branching and F-BMOE
	Preprocessing
	Discretizing the Instances
	Exploiting the Treewidth
	The Final Step: DP
	Further directions

