Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

S. Bhore, R. Ganian, L. Khazaliya, F. Montecchiani, M. Nöllenburg

June 20, 2023

Planar graph H

Orthogonal drawing $\Gamma(H)$ of H

What we care about

INPUT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G$, $\beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H) \rangle, \beta \in \mathbb{Z}$

INPUT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G$, $\beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H) \rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

 $\mathsf{Graph}\ G$

Extension to G

INPUT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G$, $\beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H) \rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

Graph G

Bend-minimal orthogonal extension $\Gamma(G)$

- planar, linear-time algorithm
 [Angelini et al., 2015]
- (2) level planar, NP-hard [Brückner and Rutter, 2017]

(3) upward planar, NP-hard [Da Lozzo et al., 2020]

(4) <u>bend-minimal orthogonal</u>, NP-hard [Angelini et al., 2021]

Let $\kappa = |V(G) \setminus V(H)| + |E(G) \setminus E(H)|$, i.e. the number of missing elements.

Contribution. If H is connected, the BMOE problem param. by κ is FPT.

Graph G

Let $\kappa = |V(G) \setminus V(H)| + |E(G) \setminus E(H)|$, i.e. the number of missing elements. Contribution. If *H* is connected, the BMOE problem param. by κ is FPT.

Overview [Key steps]

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

- Restrict BMOE to a single inner face (F-BMOE)
- Define sector graph based on bend-distances
- Tree-width of sector graph is bounded in f(κ)
- Universal point-set for each sector
- Dynamic Programming

Basic definitions

The complement $X = V(G) \setminus V(H)$ is the missing vertex set of G, and $E_X = E(G) \setminus E(H)$ the missing edge set.

A planar orthogonal drawing $\Gamma(G)$ extends $\Gamma(H)$ if its restriction to the vertices and edges of H coincides with $\Gamma(H)$.

A planar orthogonal drawing $\Gamma(G)$ extends $\Gamma(H)$ if its restriction to the vertices and edges of H coincides with $\Gamma(H)$.

A feature point of an orthogonal drawing is a point representing either a vertex or a bend.

A vertex $a \in V(H)$ is called an anchor if it is incident to an edge in E_X .

A feature point of an orthogonal drawing is a point representing either a vertex or a bend.

A vertex $a \in V(H)$ is called an anchor if it is incident to an edge in E_X .

A port candidate is a pair (a, d), i.e. for $ax \in E_X \ a \in V(H), \ d \in \{\downarrow, \uparrow, \leftarrow, \rightarrow\}.$

A port-function \mathcal{P} is an ordered set of port candidates which contains precisely one port candidate for each missing edge $ax \in E_X, a \in V(H)$.

A port candidate is a pair (a, d), i.e. for $ax \in E_X \ a \in V(H), \ d \in \{\downarrow, \uparrow, \leftarrow, \rightarrow\}.$

A port-function \mathcal{P} is an ordered set of port candidates which contains precisely one port candidate for each missing edge $ax \in E_X, a \in V(H)$.

Branching and F-BMOE

Lemma. There is an algorithm that solves an instance of BMOE in time $2^{\mathcal{O}(\kappa)} \cdot \mathcal{T}(|\mathcal{I}|, k)$, where $\mathcal{T}(|\mathcal{I}|, k)$ is the time required to solve an instance \mathcal{I} of F-BMOE with instance size $|\mathcal{I}|$ and parameter value k.

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f : $\langle G_f, H_f \subset G_f, \Gamma(H_f) \rangle$,

 $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

1) missing edges and vertices are only drawn in f;

(2) each edge $ax \in E_X$ connects to $a \in V(H_f)$ via its port candidate in \mathcal{P} ; or

(3) determine that no such extension exists.

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f : $\langle G_f, H_f \subset G_f, \Gamma(H_f) \rangle$,

 $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

1) missing edges and vertices are only drawn in *f*;

(2) each edge $ax \in E_X$ connects to $a \in V(H_f)$ via its port candidate in \mathcal{P} ; or

(3) determine that no such extension exists.

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f : $\langle G_f, H_f \subset G_f, \Gamma(H_f) \rangle$,

 $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

(1) missing edges and vertices are only drawn in f;

(2) each edge $ax \in E_X$ connects to $a \in V(H_f)$ via its port candidate in \mathcal{P} ; or

determine that no such extension exists.

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f : $\langle G_f, H_f \subseteq G_f, \Gamma(H_f) \rangle$,

 $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

(1) missing edges and vertices are only drawn in f;

(2) each edge $ax \in E_X$ connects to $a \in V(H_f)$ via its port candidate in \mathcal{P} ; or

determine that no such extension exists.

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f : $\langle G_f, H_f \subseteq G_f, \Gamma(H_f) \rangle$,

 $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

(1) missing edges and vertices are only drawn in f;

(2) each edge $ax \in E_X$ connects to $a \in V(H_f)$ via its port candidate in \mathcal{P} ; or

(3) determine that no such extension exists.

Preprocessing

Pruning

Left: A reflex corner p and its projections ℓ_1 and ℓ_2 .

Middle: A face (striped) with all its non-essential reflex corners and projections.

Right: The corresponding clean instance.

A ζ -handle

A ζ -spiral

Discretizing the Instances

Sectors and the Sector Graph

For a point $p \in f$, the <u>bend distance</u> bd(p, (a, d)) to a port candidate (a, d)is the min $q \in \mathbb{Z}$ such that there exists an orthogonal polyline with q bends connecting p and a in the interior of fwhich arrives to a from direction d.

For point $p \in f$ and for a port-function $\mathcal{P} = ((a_1, d_1), \dots, (a_q, d_q))$, we define a <u>bend-vector</u> of p as the tuple vect $(p) = (bd(p, (a_1, d_1)), \dots, bd(p, (a_q, d_q)))$.

The Sector Graph

Sectors A and B are <u>adjacent</u> if there exists a point p in A and a direction $d \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray starting from p in direction d is in B.

The number of vertices in G is upper-bounded by $9x^2$, where x is the number of feature points in $\Gamma(H_F)$.

The Sector Graph

Sectors A and B are <u>adjacent</u> if there exists a point p in A and a direction $d \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray starting from p in direction d is in B.

The number of vertices in \mathcal{G} is upper-bounded by $9x^2$, where x is the number of feature points in $\Gamma(H_F)$.

Exploiting the Treewidth

Tree decomposition

<u>Def.</u> A tree decomposition of a graph *G* is a pair $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$, where *T* is a tree whose every node *t* is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with three following conditions:

$$\mathcal{T}$$
1. $\bigcup_{t\in V(T)} X_t = V(G);$

T2. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;

T3. For every
$$v \in V(G)$$
, the set
 $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected
subtree of T.

<u>**Def.**</u> The width of $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$ is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.

Tree decomposition

<u>Def.</u> A tree decomposition of a graph *G* is a pair $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$, where *T* is a tree whose every node *t* is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with three following conditions:

$$\mathcal{T}$$
1. $\bigcup_{t\in V(T)} X_t = V(G);$

- T2. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;
- T3. For every $v \in V(G)$, the set $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected subtree of T.

<u>**Def.**</u> The width of $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$ is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.

Lemma. The sector graph \mathcal{G}_1 is a tree.

Sector Graphs Are Tree-Like

Each sector admits at least one baseline.

The segments colored red (blue) are local maxima (minima).

Baseline and Histogram

Cases of relative location of the F_{min} sector in F relative to the F-baseline

Each sector is subdivided into a linear in the number of local maxima number of new sectors.

Let ${\mathcal G}$ be a sector graph of a face f of the drawing $\Gamma(G)$: tw $({\mathcal G}) \leq (4+4k)^{4k}.$

Baseline and Histogram

Cases of relative location of the F_{min} sector in F relative to the F-baseline

Each sector is subdivided into a linear in the number of local maxima number of new sectors.

Let G be a sector graph of a face f of the drawing $\Gamma(G)$:

 $\mathsf{tw}(\mathcal{G}) \leq (4+4k)^{4k}.$

For each sector and for each direction, there are at most 4k critical reflex corners.

From Sector Graph to The Skeleton

- Replace each vertex of the skeleton with a tiny square grid of size $\mathcal{O}(k^3)$.
- Grid points in each subsector is enough to host all vertices and bends of one column/row of the skeleton

The Final Step: DP

An instance $\mathcal{I} = \langle G_f, H_f, \Gamma(H_f), \mathcal{P} \rangle$ with $k = |V(G_f) \setminus V(H_f)|$ of F-BMOE

- admits a sector graph G of treewidth at most $(4 + 4k)^{4k}$;
- a bend-minimal extension of Γ(H_f) to an orthogonal planar drawing of G_f can be assumed to only contain feature points on the sector-grid points [at most gridsize(k) many per sector].

Lemma. F-BMOE can be solved in time $2^{k^{\mathcal{O}(1)}} \cdot |V(G_f)|$.

Lemma. F-BMOE can be solved in time $2^{k^{\mathcal{O}(1)}} \cdot |V(G_f)|$.

• There is an algorithm that solves an instance \mathcal{I} of BMOE in time $2^{\mathcal{O}(\kappa)} \cdot \mathcal{T}(|\mathcal{I}|, k)$,

where T(a, b) is the time required to solve an instance of F-BMOE with instance size *a* and parameter value *b*.

Corollary. BMOE can be solved in time $2^{\kappa^{\mathcal{O}(1)}} \cdot n$, where *n* is the number of feature points of $\Gamma(H)$.

Further directions

We have proved that the Bend-Minimal Orthogonal Extension Problem if FPT in the number of missing elements.

- What if H is not connected?
- The approach can be adjusted to minimize the number σ of bends per edge.
- Can we extend the result to planar drawings using a fixed number of slopes?

Further directions

- What if H is not connected?
- Minimize the number of bends per edge.
- Add a fixed number of slopes.

Contents

Overview [Key steps] Basic definitions Branching and F-BMOE Preprocessing Discretizing the Instances Exploiting the Treewidth The Final Step: DP