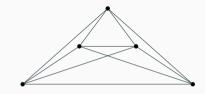
Crossing Number is NP-hard for Constant Path-width (and Tree-width)

Petr Hliněný MUNI Brno, Czech Republic Liana Khazaliya TU Wien, Vienna, Austria

Part 1.

Crossing Number: Overview

Crossings and Crossing Number



- The vertices of G are distinct points in the plane, and every edge $e = uv \in E(G)$ is a simple arc joining u to v.
- Any pair of edges crosses at most once;
 adjacent edges do not cross;
 and there is no common crossing point between three or more edges.

Crossing Number

Crossing Number

Input: A graph G and $k \in \mathbb{Z}_{\geq 0}$

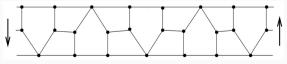
Question: Does there exist a drawing G of G with $\leq k$ edge crossings

The minimum such k for a given G is the crossing number cr(G).

Some examples

-
$$\operatorname{cr}(K_5) = 1$$
, $\operatorname{cr}(K_6) = 3$, ..., $\operatorname{cr}(K_{12}) = 150$
but $\operatorname{cr}(K_{13})$ is still unknown
Conjecture. $\operatorname{cr}(K_n) = \frac{1}{4} \cdot \lfloor \frac{n}{2} \rfloor \cdot \lfloor \frac{n-1}{2} \rfloor \cdot \lfloor \frac{n-2}{2} \rfloor \cdot \lfloor \frac{n-3}{2} \rfloor$

- The two minimal graphs of the crossing number ≥ 1 are K_5 and $K_{3,3}$.
- There exists an infinite family of simple 3-connected graphs that are minimal to having the crossing number \geq 2: [Kochol, 1987]



NP-hardness

- The general case [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases [Hlinĕný, 2004]
- With fixed rotation scheme [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And for almost-planar (planar graphs plus one edge) [Cabello and Mohar, 2010]

Approximations

- No constant factor approximation for some c>1 [Cabello, 2013]
- Randomized subpolynomial-approximation when bounded degree

[Chuzhoy and Tan, 2022]

NP-hardness

- The general case [Garey and Johnson, 1983]
- The degree-3 and minor-monotone cases [Hliněný, 2004]
- With fixed rotation scheme [Pelsmajer, Schaeffer, Štefankovič, 2007]
- And for almost-planar (planar graphs plus one edge) [Cabello and Mohar, 2010]

Approximations

- No constant factor approximation for some c>1 [Cabello, 2013]
- Randomized subpolynomial-approximation when bounded degree

[Chuzhoy and Tan, 2022]

Parameterized complexity

- In FPT with parameter k $[f(k) \cdot n^{\mathcal{O}(1)}]$ runtime [Grohe, 2001 / Kawarabayashi and Reed, 2007]

And what about structural parameters? Surprisingly, nearly nothing

- FPT algorithm for cr(G) param. by the vertex cover [Sankaran and Hliněný, 2019]
- Poly alg. for cr(G) when G is maximal path-width 3

[Biedl, Chimani, Derka, and Mutzel, 2020]

Theorem [HK'24

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Parameterized complexity

- In FPT with parameter k $[f(k) \cdot n^{\mathcal{O}(1)}]$ runtime] [Grohe, 2001 / Kawarabayashi and Reed, 2007]

And what about structural parameters? Surprisingly, nearly nothing

- FPT algorithm for cr(G) param. by the vertex cover [Sankaran and Hliněný, 2019]
- Poly alg. for cr(G) when G is maximal path-width 3

[Biedl, Chimani, Derka, and Mutzel, 2020]

Theorem [HK'24]

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Part 2.

Crossing Number: NP-hardness

Result

Theorem [HK'24]

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Reduction.

SATISFABILITY:
$$(\mathcal{V}, \mathcal{C})$$
 o Crossing Number: (G, k) $\mathsf{pw}(G) = 9$ $\mathsf{tw}(G) = 12$

6

Satisfability

SATISFABILITY

Input: A set of clauses $C = \{C_1, \dots, C_\ell\}$ over variables $V = \{x_1, \dots, x_n\}$

Question: Does there exist an assignment $\tau: \mathcal{V} \to \{\mathtt{True}, \mathtt{False}\}$ satisfying

all clauses in C?

Reduction Idea.

- a large "grid structure"
- small separators
- "flips" of some parts for the encoding
- clause edges that cause an equivalence

Color-encoding of the weights

Weighted crossing number.

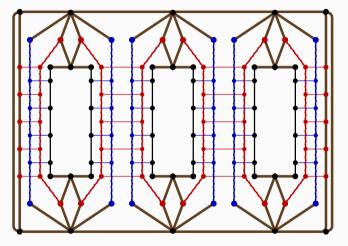
the ordinary crossing number, but a crossing contributes the product of edge weights to the weighted crossing number:

- replaced by a bunch of several parallel;
- redraw the bunch tightly along the "cheapest"

Color	Weight
Heavy-brown (HB)	ω^8
Light-black (LB)	ω^6
Red (R)	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
(R')	ω^3
Blue (B)	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
(B')	ω^3
Cyan (C)	ω^2
Green (G)	$\omega^{0}=1$

Let $\omega = |E(G)|^2$, then informally, even one crossing of weight ω^{t+1} "outweighs" all crossings of G of weight ω^t .

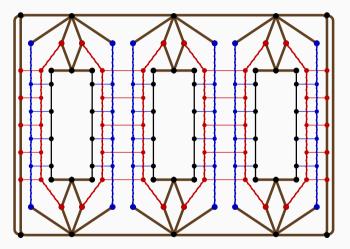
The frame and variable gadgets



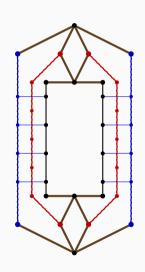
The Frame with n Variable Gadgets for n = 3, h = 4

Color	Weight
НВ	ω^8
LB	ω^6
R	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
R' (hor)	ω^3
В	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
B' (hor)	ω^3
С	ω^2
G	$\omega^{0} = 1$

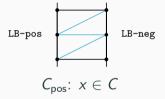
The frame and variable gadgets

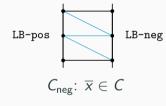


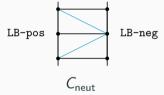
The Frame with n Variable Gadgets for n=3, h=4



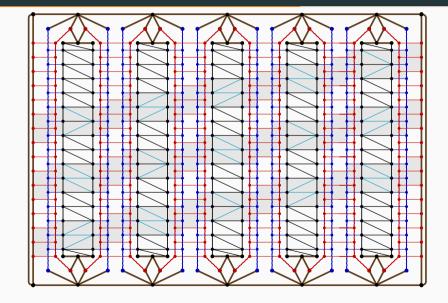
Encoding



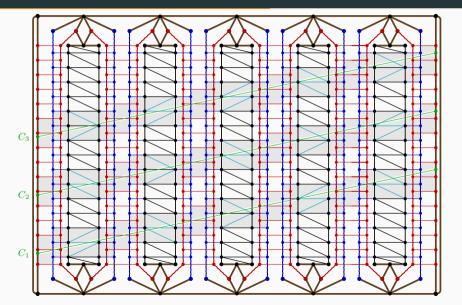




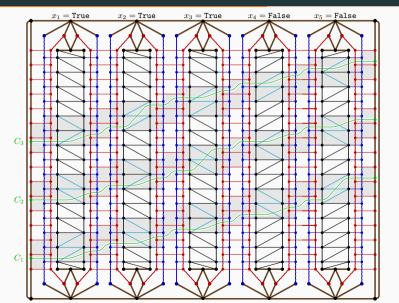
$$\mathcal{C} = \{(x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_5}), (\overline{x_1} \vee \overline{x_3} \vee x_5), (x_2 \vee x_3 \vee \overline{x_4})\}$$



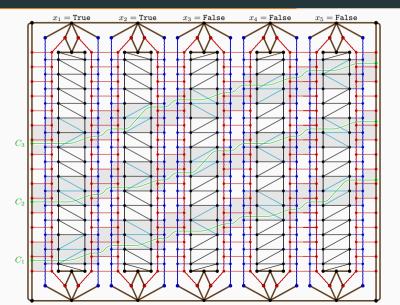
$\mathcal{C} = \{(x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_5}), (\overline{x_1} \vee \overline{x_3} \vee x_5), (x_2 \vee x_3 \vee \overline{x_4})\}$



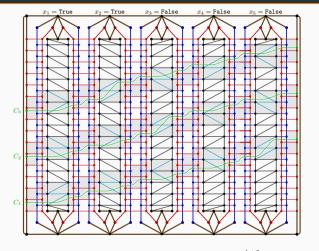
$$\mathcal{C} = \{(x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_5}), (\overline{x_1} \vee \overline{x_3} \vee x_5), (x_2 \vee x_3 \vee \overline{x_4})\}$$



$$\mathcal{C} = \{(x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_5}), (\overline{x_1} \vee \overline{x_3} \vee x_5), (x_2 \vee x_3 \vee \overline{x_4})\}$$



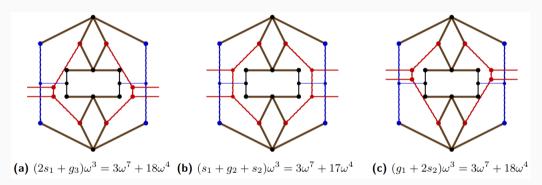
$$\mathcal{C} = \{(x_1 \vee \overline{x_2} \vee x_4 \vee \overline{x_5}), (\overline{x_1} \vee \overline{x_3} \vee x_5), (x_2 \vee x_3 \vee \overline{x_4})\}$$



Color	Weight
НВ	ω^8
LB	ω ⁶
R	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
R' (hor)	ω^3
В	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
B' (hor)	ω^3
С	ω^2
G	$\omega^0 = 1$

$$k = 2n(2h+1)\omega^7 + 2n\ell\omega^6 + 4n\ell\omega^4 + 2n\sum_{j=2}^{h+1}j(j+1)\omega^4 + 2n\sum_{j=1}^{h+1}j(j+2)\omega^4 + n\ell\omega^2 + (\omega^2 - 1)$$

Lastly...



$$g_j=\omega^4+j(j+1)\omega;\ s_j=\omega^4+j(j+2)\omega,$$
 all horizontal (R/B) are of ω^3

Part 3.

Tree- and Path-width

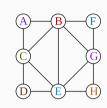
Tree-width

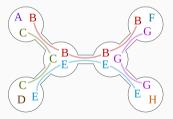
<u>Def.</u> A tree decomposition of G is a pair $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$, where \mathcal{T} is a tree whose every node t is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with following conditions:

$$\mathcal{T}1. \bigcup_{t\in V(\mathcal{T})} X_t = V(G);$$

- T2. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;
- $\mathcal{T}3$. For every $v \in V(G)$, the set $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected subtree of T.

<u>Def.</u> The width of \mathcal{T} is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.





<u>Def.</u> The tree-width tw(G) is the minimum width over all tree decompositions of G.

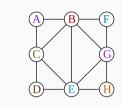
Tree-width

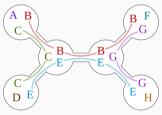
The tree-width of a graph G is

$$\min \{\omega(G^+) - 1 : G^+ \supseteq G \text{ and } G^+ \text{ is chordal}\}$$

The Cops-and-Robber Game

Tree-width [path-width] is at most t if and only if t+1 cops can always catch the robber in G in a monotone game if the robber is visible [invisible] (to the cop player)



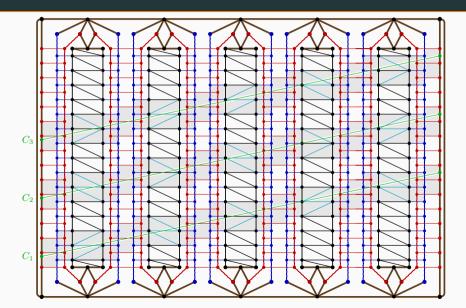


$$\mathsf{tw}(K_n) = n - 1$$

$$\mathsf{tw}(P_n \times P_m) = \mathsf{min}(m, n)$$

$$\mathsf{tw}(\mathcal{T}) = 1$$

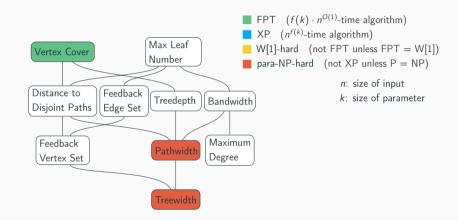
Back to the construction



Part 4.

Conclusion

Question



Thank you for your attention!

