Column Generation

A short Introduction

Martin Riedler AC Retreat

Contents

2 Motivation

Basic Idea

- We already heard about Cutting Planes:
 - use an exponential number of constraints
 - use clever separation methods to only add violated constraints to the model until a feasible model is obtained

Basic Idea

- We already heard about Cutting Planes:
 - use an exponential number of constraints
 - use clever separation methods to only add violated constraints to the model until a feasible model is obtained
- Column Generation
 - this is the dual principle
 - use an exponential number of variables
 - only consider variables that have the potential to increase the objective value
 - ▶ can also be applied during Branch&Bound \Rightarrow Branch&Price
 - or even in combination with Cutting Planes

A small example The Cutting Stock Problem

Definition

Consider a paper company that has a supply of large rolls of paper, of width $W \in \mathbb{N}$.

- Customers have demands for smaller widths of papers.
- In particular b_i rolls of width w_i , i = 1, ..., m, need to be produced (assume $b_i \in \mathbb{N}$, $w_i \in \mathbb{N}$, $w_i \leq W$, for each i)

The goal is to minimize the number of large rolls used while satisfying customer demands.

A small example (cont.)

The Cutting Stock Problem

- Smaller rolls can be obtained by slicing a large roll in a certain way, called a pattern
- Example: A large roll of with W = 70 can, e.g., be cut into
 - 3 rolls of width $w_1 = 17$ and
 - 1 roll of width $w_2 = 15$
 - with a waste of 4.

A small example (cont.)

acili

The Cutting Stock Problem

- Smaller rolls can be obtained by slicing a large roll in a certain way, called a pattern
- Example: A large roll of with W = 70 can, e.g., be cut into
 - 3 rolls of width $w_1 = 17$ and
 - 1 roll of width $w_2 = 15$
 - with a waste of 4.
- Use one variable $x_j \in \mathbb{Z}^m$ for each feasible pattern j
 - $\widehat{=}\,$ number of large rolls that are cut according to this specific pattern
- Pattern *j* represented as vector (column) **A**_{*j*}, *i*th entry *a*_{*ij*} denotes the number of rolls of width *w*_{*i*}.
- Above example: $\mathbf{A}_j = (3, 1, 0, \dots, 0)'$.

A small example: ILP

The Cutting Stock Problem

- Let $\mathbf{A} = (a_{ij})$ be the matrix consisting of all feasible cutting patterns $j = 1, \dots, n$
- Each column \mathbf{A}_j is a feasible pattern if

$$\sum_{i=1}^m w_i a_{ij} \leq W$$
 $a_{ij} \in \mathbb{N}_0, \ i = 1, \dots, m$

acili

A small example: ILP

The Cutting Stock Problem

- Let $\mathbf{A} = (a_{ij})$ be the matrix consisting of all feasible cutting patterns $j = 1, \dots, n$
- Each column A_j is a feasible pattern if

$$\sum_{i=1}^m w_i a_{ij} \leq W$$
 $a_{ij} \in \mathbb{N}_0, \; i=1,\ldots,m$

Compact ILP (set partitioning formulation):

min
$$\sum_{j=1}^{n} x_j$$

s.t. $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \in \mathbb{Z}_+^m$

acilii

A small example: LP

The Cutting Stock Problem

min
$$\sum_{j=1}^{n} x_j$$

s.t. $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, \dots, m$
 $x_j \ge 0$ $j = 1, \dots, n$

Initialization of restricted master problem (RMP)

• Consider, e.g., *m* trivial patterns where pattern *j* consists of only one roll of with *w_j*.

acilii

A small example: Pricing Subproblem

The Cutting Stock Problem

Intuitively

• Find a variable corresponding to a feasible pattern with minimum reduced costs

Formally

- Obtained via the dual of the LP model
- In our case this turns out to be an *integer knapsack problem*
- \Rightarrow This problem can be solved fairly efficient (e.g., using dynamic programming or branch-and-bound)

Contents

When to consider Column Generation?

- Sometimes, such formulations are somehow natural
 - ► Vehicle Routing (variables correspond to feasible tours)
 - ► Network Design (variables correspond to feasible paths or connections)
 - Cutting and Packing (variables corresponding to packing assignments / cutting patterns)
- Column generation may yield state-of-the-art results if the problem is rather "restricted"
- Sometimes we can get stronger LP-bounds by reformulation (⇒ *Dantzig-Wolfe Decomposition*)
- Column generation provides a decomposition of the problem into master and subproblems
 - This decomposition may have a natural interpretation in the contextual setting allowing for the incorporation of additional important constraints.

Metaheuristics and Column Generation

Two basic possibilities to boost column generation

- Apply (meta-)heuristics to the pricing subproblems.
- Apply metaheuristic to IMP and extract connections of good solutions, adding them as columns.
 - Sequential (batch) approach: The metaheuristic is performed first to create initial columns.
 - Parallel approach:

The metaheuristic repeatedly delivers columns to the column generation algorithm.

Thank you for your Attention! Questions?