Grid-based Graph Drawing with ILP/SAT Modeling

joint work with T. Biedl, T. Bläsius, B. Niedermann, R. Prutkin, I. Rutter

Motivation

Motivation

Apply Integer Linear Programming (ILP) & SAT-solving:

- Collection of general constraints.
- Solving problem = assemble constraints.

Given: Grid R, objects, constraints

Given: Grid *R*, objects, constraints

Find: Box on *R* for each object such that constraints are satisfied.

Representation of single box B:

- Grid of binary variables $x(B)_{i,j}$
- Meaning: x(B)_{i,j} = 1 iff grid point (i,j) belongs to B.

Example:

Given: Grid *R*, objects, constraints

Find: Box on R for each object such that constraints are satisfied.

Representation of single box B:

- Grid of binary variables $x(B)_{i,j}$
- Meaning: x(B)_{i,j} = 1 iff grid point (i,j) belongs to B.

Given: Grid *R*, objects, constraints

Given: Grid R, objects, constraints

Given: Grid R, objects, constraints

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

$$\sum_{i} b_{i}^{d} = 1 \quad \sum_{i} e_{i}^{d} = 1 \text{ for } d \in \{1, 2\}$$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

$$\sum_{i} b_{i}^{d} = 1$$
 $\sum_{i} e_{i}^{d} = 1$ for $d \in \{1, 2\}$

2.) Boxes are not empty.

 $\sum_{i,j} x_{i,j} \geq 1$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

 $\sum_{i} b_{i}^{d} = 1 \quad \sum_{i} e_{i}^{d} = 1 \text{ for } d \in \{1, 2\}$

2.) Boxes are not empty.

 $\sum_{i,j} x_{i,j} \geq 1$

3.) The first row of *B* is indicated by b_i^1 . $x_{i,j} \le x_{i-1,j} + b_i^1$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

 $\sum_{i} b_{i}^{d} = 1 \quad \sum_{i} e_{i}^{d} = 1 \text{ for } d \in \{1, 2\}$

2.) Boxes are not empty.

 $\sum_{i,j} x_{i,j} \geq 1$

3.) The first row of *B* is indicated by b_i^1 . $x_{i,j} \le x_{i-1,j} + b_i^1$ 4.) The last row of *D* is indicated by a_i^1

4.) The last row of *B* is indicated by e_i^1 . $x_{i,j} \le x_{i+1,j} + e_i^1$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

 $\sum_{i} b_{i}^{d} = 1 \quad \sum_{i} e_{i}^{d} = 1 \text{ for } d \in \{1, 2\}$

2.) Boxes are not empty.

 $\sum_{i,j} x_{i,j} \geq 1$

3.) The first row of *B* is indicated by b_i^1 . $x_{i,j} \le x_{i-1,j} + b_i^1$

4.) The last row of *B* is indicated by e_i^1 . $x_{i,j} \le x_{i+1,j} + e_i^1$

5.) The first column of *B* is indicated by b_i^2 . $x_{i,j} \le x_{i,j-1} + b_j^2$

Represent box *B* by ILP constraints (here in 2D). Grid of binary variables $x_{i,j}$

1.) There is a first/last row/column.

 $\sum_{i} b_{i}^{d} = 1 \quad \sum_{i} e_{i}^{d} = 1 \text{ for } d \in \{1, 2\}$

2.) Boxes are not empty.

 $\sum_{i,j} x_{i,j} \geq 1$

3.) The first row of *B* is indicated by b_i^1 . $x_{i,j} \le x_{i-1,j} + b_i^1$

4.) The last row of *B* is indicated by e_i^1 . $x_{i,j} \le x_{i+1,j} + e_i^1$

5.) The first column of *B* is indicated by b_i^2 .

 $x_{i,j} \leq x_{i,j-1} + b_j^2$

6.) The last column of *B* is indicated by e_i^2 .

$$x_{i,j} \leq x_{i,j+1} + e_j^2$$

Visibility Representations

Def: A visibility representation of a graph G = (V, E) draws

- each vertex v as a horizontal line segment $\Gamma(v)$
- each edge e = (u, v) as a vertical line segment $\Gamma(e)$ such that
 - no two vertex segments intersect
 - no two edge segments intersect
 - each edge segment $\Gamma(u, v)$ has its endpoints on $\Gamma(u)$ and $\Gamma(v)$ and intersects no other vertex segment

Properties of Visibility Representations

- graph G must be planar (obviously)
- every planar graph has a visibility representation

[Wismath '85], [Tamassia, Tollis '86]

minimizing the area of a visibility representation is NP-hard

[Lin, Eades '03]

 \mathbf{e}^1

U

U

 $\left(\right)$

()

0

0

 \cap

3.) Vertices are horizontal segments:

3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments:

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments: $b_i^2(e) = e_i^2(e)$

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments: $b_i^2(e) = e_i^2(e)$
- 5.) Vertices do not overlap:

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments: $b_i^2(e) = e_i^2(e)$
- 5.) Vertices do not overlap:

$$\sum_{v\in V} x_{i,j}(v) \leq 1$$

1.) $\forall v \in V$ introduce box. 2.) $\forall e \in E$ introduce box.

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments: $b_i^2(e) = e_i^2(e)$
- 5.) Vertices do not overlap:

$$\sum_{v \in V} x_{i,j}(v) \leq 1$$

Martin Nöllenburg

6.) Edges do not overlap non-incident vertices:

1.) $\forall v \in V$ introduce box. 2.) $\forall e \in E$ introduce box.

- 3.) Vertices are horizontal segments: $b_i^1(v) = e_i^1(v)$
- 4.) Edges are vertical segments: $b_i^2(e) = e_i^2(e)$
- 5.) Vertices do not overlap:

$$\sum_{v\in V} x_{i,j}(v) \leq 1$$

6.) Edges do not overlap non-incident vertices:

$$\sum_{v \in V \setminus e} x_{i,j}(v) \leq (1 - x_{i,j}(e))$$
 for all $e \in E$

1.) $\forall v \in V$ introduce box.

2.) $\forall e \in E$ introduce box.

7.) Edges intersect incident vertices:

- 7.) Edges intersect incident vertices:
 For all *e* = {*u*, *v*} ∈ *E*:
 a.) Grid of binary variables
 - a.) Grid of binary variable $X_{i,j}(e, u) = X_{i,j}(e, v)$

7.) Edges intersect incident vertices:

For all $e = \{u, v\} \in E$:

a.) Grid of binary variables $X_{i,i}(e, u) \quad X_{i,i}(e, v)$

b.) Common point $x_{i,j}(e, u) \le x_{i,j}(u) \ x_{i,j}(e, v) \le x_{i,j}(v)$ $x_{i,i}(e, u) \leq x_{i,i}(e) x_{i,i}(e, v) \leq x_{i,i}(e)$

1.) $\forall v \in V$ introduce box. 2.) $\forall e \in E$ introduce box.

7.) Edges intersect incident vertices:

For all $e = \{u, v\} \in E$:

- a.) Grid of binary variables $x_{i,j}(e, u) \quad x_{i,j}(e, v)$
- b.) Common point $x_{i,j}(e, u) \le x_{i,j}(u) \ x_{i,j}(e, v) \le x_{i,j}(v)$ $x_{i,j}(e, u) \le x_{i,j}(e) \ x_{i,j}(e, v) \le x_{i,j}(e)$
- c.) Existence of common point. $\sum_{i,j} x_{i,j}(e, u) \ge 1 \sum_{i,j} x_{i,j}(e, v) \ge 1$

Overview – Considered Problems

Overview – Considered Problems

Summary

- flexible framework for modeling many grid-based graph layout problems
- suitable for NP-hard problems
- less efficient than tailored algorithms
- gets faster if ILP constraints are transformed into SAT
- easy-to-use tool PIGRA for working with the framework