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Speed of Hereditary Classes

A class C is set of graphs closed under isomorphism.

C is hereditary if closed under taking induced subgraphs.

Induced: can delete vertices, but must keep remaining edges.

Cn denotes labeled graphs in C with n vertices.

Refer to |Cn|, where 0 ≤ |Cn| ≤ 2(
n
2), as the speed of C. Where each

unlabeled graph G is counted n!/ aut(G) times.

Example: If F consists of a clique of each size n, then |Fn| = 1.

Example: Class F of forests has speed |Fn| ∼ cn · n! for some c > 0.
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labelling Schemes

Given a class C find an algorithm A so that for every graph G ∈ Cn there
is a vertex labelling V (G) 7→ {0, 1}∗ satisfying

A(ℓ(x), ℓ(y)) = 1 ⇐⇒ xy ∈ E(G), for every pair x , y ∈ V (G).

labelling Scheme

We say that C admits an f (n)-bit labelling scheme if the bit length of the
longest label ℓ(v) of any vertex v of any graph G ∈ Cn is at most f (n).
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labelling Schemes - Bounded Degeneracy Example

G is k -degenerate if all subgraphs have a vertex with degree at most k .

There is an (k + 1) · log n -bit labelling scheme for k -degenerate graphs.

Order the vertices of G by picking vertices of smallest degree one at a time.

Any vertex has ≤ k edges going "forward" in this ordering.

1st part of label: place in the order. 2nd part: the ≤ k neighbours after you.

000

001

010

011

100

101011100101
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Universal Graphs

Given a class C a sequence (Un)n≥0 is universal for C if every G ∈ Cn is
an induced subgraph of Un.

(Induced) Universal Graphs

Suppose that Cn consists of

Then the following is a universal graph Un:
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Link between labelling Schemes and Universal Graphs

f (n)-bit labelling schemes ⇔ 2f (n)-induced-universal graphs.

000

001

010

011

100

101

110

111
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Information Theoretic Lower Bound

Suppose a class C admits an f (n)-bit labelling scheme.

Then each graph in Cn can be encoded with n · f (n) bits.

There are at most 2nf (n) such graphs, thus |Cn| ≤ 2nf (n).

Consequently, f (n) ≥ 1
n · log |Cn|.

Question: Which classes have O( 1
n · log |Cn|)-bit labelling schemes?

Factorial: |Cn| = 2Θ(n log n) (interval graphs, bounded degeneracy, unit disk...)
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Implicit Graph Conjecture

Every hereditary factorial class admits an O(log n)-bit labelling scheme.

Implicit Graph Conjecture [Kannan, Naor & Rudich 1988; Spinrad 2003]

For any δ > 0, there exists a hereditary factorial class which does not
admit an n1/2−δ-bit labelling scheme.

Theorem [Hamed and Pooya Hatami, 2021]
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Monotone Implicit Graph Conjecture

- Is False

A graph class is

hereditary if it is closed under taking induced subgraphs

monotone if it is closed under taking subgraphs

Every monotone factorial class admits an O(log n)-bit labelling scheme.

Monotone Implicit Graph Conjecture

There exist monotone factorial classes requiring Ω(log2 n)-bit labels.

Any monotone factorial class admits an O(log2 n)-bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

First example of tight bounds for a class which are not "order optimal".
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Small Classes

Factorial: |Cn| = 2Θ(n log n) (interval graphs, unit disk graphs,...)

Small: |Cn| = n! · 2O(n) (bounded twin-width, others, ... )

Every hereditary small class admits an O(log n)-bit labelling scheme.

Small Implicit Graph Conjecture (Small-IGC)
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Sketch of Monotone Small implies Bounded Degeneracy

Any monotone small class has bounded degeneracy.
Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Proof (sketch):
Let C be a monotone class with |Cn| ⩽ n!cn for some c.

Assume (for contradiction) there exists a G ∈ C of minumum degree d .

Then there exists H ∈ C with m := |E(H)| > dn/2 and H is spanned by a tree
T of maximal degree d .

There are at least 24m/5 subgraphs T ⊆ F ⊆ H with |Aut(F )| ⩽ 2m/10.

|Cn| ⩾
∑

F

n!
Aut(F )

⩾ 24m/5 · n!
2m/10 ⩾ n! · 27m/10 > n! · cn,

a contradiction.
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Small Implicit Graph Conjecture

Every hereditary small class admits an O(log n)-bit labelling scheme.

Small Implicit Graph Conjecture (Small-IGC)

A class is weakly sparse if there is a constant t such that all of its graphs
exclude Kt,t as a subgraph.

Every weakly sparse hereditary small class has bounded expansion.
Theorem [Bonnet, Duron, S., Zamaraev 2025]

Weakly sparse classes satisfy the Small-IGC.
Corollary

The Hatami brothers counterexample to the IGC is Weakly sparse!

13
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Relaxed Bound Small IGC

Every hereditary small class admits an O(log n)-bit labelling scheme.

Small Implicit Graph Conjecture

Every hereditary small class admits an O(log3 n)-bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

This improves on the best known upper bound of n1−ε by [Alon 2023], a
general bound which holds for any class with |Cn| = 2o(n2).

The neighbourhood complexity of a graph is the growth of the (dual) shatter
function of the neighbourhood set system.

Every hereditary small class has neighbourhood complexity O(n log n).
Theorem [Bonnet, Duron, S., Zamaraev 2025]
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function of the neighbourhood set system.

Every hereditary small class has neighbourhood complexity O(n log n).
Theorem [Bonnet, Duron, S., Zamaraev 2025]
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Sketch for Relaxed Bound Small IGC

Every hereditary small class admits an O(log3 n)-bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Main tools: neighbourhood complexity and contiguity.

G has contiguity k if one can find a linear order v1 ≺ · · · ≺ vn of V (G)
such that for any vi , NG(vi) is the disjoint union of k intervals.

Contiguity

Contiguity O(k) implies O(k log n)-bit labelling scheme (encode endpoints).

Adaption of [Welzl 1988] shows that neighbourhood complexity at most f (n)
implies contiguity of order at most log n +DimVC ·

∑n
j=1

1
f−1(j) .

Used by Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk
for FO Model Checking on Monadically Stable Classes

For us: neighbourhood complexity O(n log n) implies contiguity O(log2 n).
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Factorial Hereditary 

IGC does not hold 
Lower bound: n

Factorial Monotone 

IGC does not hold 
Upper/Lower bound: log2 n

Small Hereditary

Does the IGC hold?

Small Monotone

IGC does hold!

Small weakly-sparse 

IGC does hold!

Upper bound: log3 n
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Open Questions on Adjacency labelling Schemes

Explicit example refuting the Implicit Graph Conjecture?

(1 + o(1)) log n-bit labelling schemes for explicit small classes; e.g. bounded
clique-width, bounded twin-width, proper minor-closed.

Do hereditary small classes admit O(log n) bit labels? (Small IGC)

Do hereditary factorial classes admit O(
√

n) bit labels? (Matching the LB)

Which classes have an order optimal O
( 1

n · log |Cn|
)
-bit labelling scheme?

Does every hereditary small class have neighbourhood complexity O(n)?
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