

Adjacency Labeling Schemes for Small Classes

Édouard Bonnet (Lyon)

John Sylvester (Liverpool)

Maksim Zhukovskii (Sheffield)

Julien Duron (Warsaw)

Viktor Zamaraev (Liverpool)

UNIVERSITY OF
LIVERPOOL

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.
Induced: can delete vertices, but must keep remaining edges.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.
Induced: can delete vertices, but must keep remaining edges.
- \mathcal{C}_n denotes labeled graphs in \mathcal{C} with n vertices.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.
Induced: can delete vertices, but must keep remaining edges.
- \mathcal{C}_n denotes labeled graphs in \mathcal{C} with n vertices.
- Refer to $|\mathcal{C}_n|$, where $0 \leq |\mathcal{C}_n| \leq 2^{\binom{n}{2}}$, as the **speed** of \mathcal{C} . Where each unlabeled graph G is counted $n!/\text{aut}(G)$ times.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.
Induced: can delete vertices, but must keep remaining edges.
- \mathcal{C}_n denotes labeled graphs in \mathcal{C} with n vertices.
- Refer to $|\mathcal{C}_n|$, where $0 \leq |\mathcal{C}_n| \leq 2^{\binom{n}{2}}$, as the **speed** of \mathcal{C} . Where each unlabeled graph G is counted $n!/\text{aut}(G)$ times.

Example: If \mathcal{F} consists of a **clique** of each size n , then $|\mathcal{F}_n| = 1$.

Speed of Hereditary Classes

- A class \mathcal{C} is set of graphs closed under isomorphism.
- \mathcal{C} is **hereditary** if closed under taking **induced** subgraphs.
Induced: can delete vertices, but must keep remaining edges.
- \mathcal{C}_n denotes labeled graphs in \mathcal{C} with n vertices.
- Refer to $|\mathcal{C}_n|$, where $0 \leq |\mathcal{C}_n| \leq 2^{\binom{n}{2}}$, as the **speed** of \mathcal{C} . Where each unlabeled graph G is counted $n!/\text{aut}(G)$ times.

Example: If \mathcal{F} consists of a **clique** of each size n , then $|\mathcal{F}_n| = 1$.

Example: Class \mathcal{F} of **forests** has speed $|\mathcal{F}_n| \sim c^n \cdot n!$ for some $c > 0$.

labelling Scheme

Given a class \mathcal{C} find an algorithm \mathcal{A} so that for every graph $G \in \mathcal{C}_n$ there is a vertex labelling $V(G) \mapsto \{0, 1\}^*$ satisfying

$$\mathcal{A}(\ell(x), \ell(y)) = 1 \iff xy \in E(G), \quad \text{for every pair } x, y \in V(G).$$

labelling Scheme

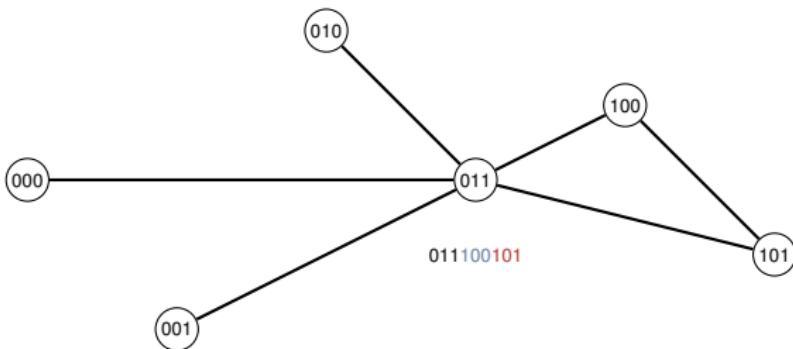
Given a class \mathcal{C} find an algorithm \mathcal{A} so that for every graph $G \in \mathcal{C}_n$ there is a vertex labelling $V(G) \mapsto \{0, 1\}^*$ satisfying

$$\mathcal{A}(\ell(x), \ell(y)) = 1 \iff xy \in E(G), \quad \text{for every pair } x, y \in V(G).$$

We say that \mathcal{C} admits an $f(n)$ -bit labelling scheme if the bit length of the longest label $\ell(v)$ of any vertex v of any graph $G \in \mathcal{C}_n$ is at most $f(n)$.

labelling Schemes - Bounded Degeneracy Example

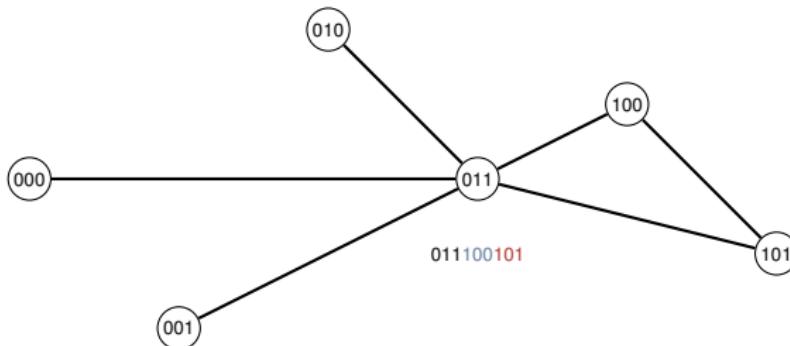
G is **k -degenerate** if all subgraphs have a vertex with degree at most k .



Labelling Schemes - Bounded Degeneracy Example

G is **k -degenerate** if all subgraphs have a vertex with degree at most k .

There is an $(k + 1) \cdot \log n$ -bit labelling scheme for k -degenerate graphs.

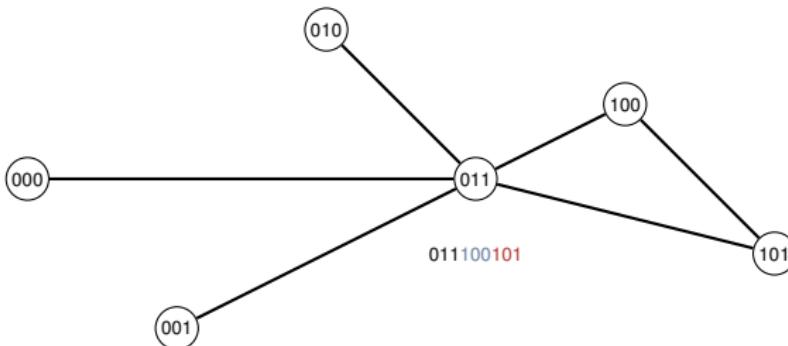


Labelling Schemes - Bounded Degeneracy Example

G is k -degenerate if all subgraphs have a vertex with degree at most k .

There is an $(k + 1) \cdot \log n$ -bit labelling scheme for k -degenerate graphs.

- Order the vertices of G by picking vertices of smallest degree one at a time.



Labelling Schemes - Bounded Degeneracy Example

G is **k -degenerate** if all subgraphs have a vertex with degree at most k .

There is an $(k + 1) \cdot \log n$ -bit labelling scheme for k -degenerate graphs.

- Order the vertices of G by picking vertices of smallest degree one at a time.
- Any vertex has $\leq k$ edges going "forward" in this ordering.

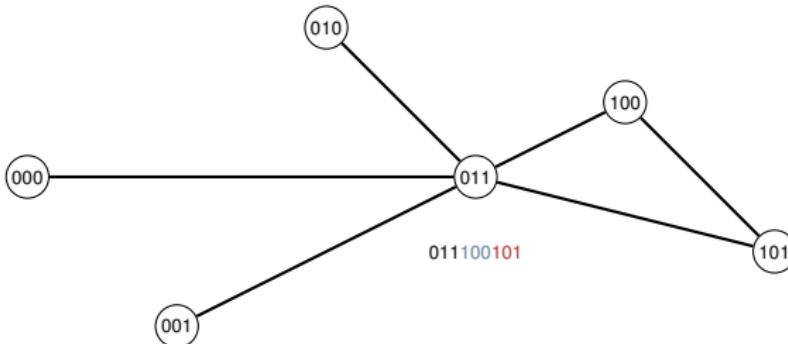


Labelling Schemes - Bounded Degeneracy Example

G is k -degenerate if all subgraphs have a vertex with degree at most k .

There is an $(k + 1) \cdot \log n$ -bit labelling scheme for k -degenerate graphs.

- Order the vertices of G by picking vertices of smallest degree one at a time.
- Any vertex has $\leq k$ edges going "forward" in this ordering.
- 1st part of label: place in the order. 2nd part: the $\leq k$ neighbours after you.



Universal Graphs

(Induced) Universal Graphs

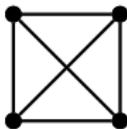
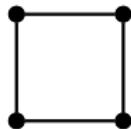
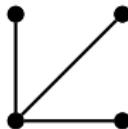
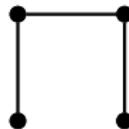
Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an induced subgraph of U_n .

Universal Graphs

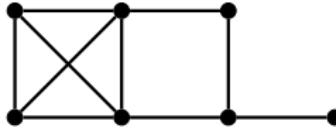
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

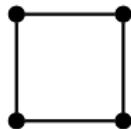
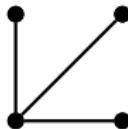
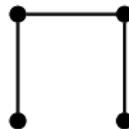


Universal Graphs

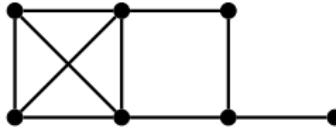
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an induced subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

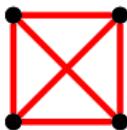
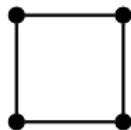
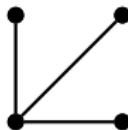
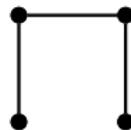


Universal Graphs

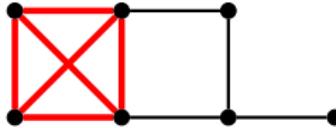
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an induced subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

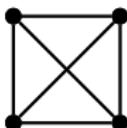
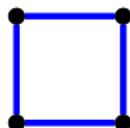
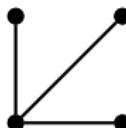
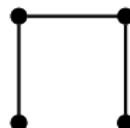


Universal Graphs

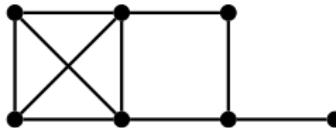
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

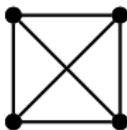
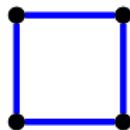
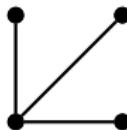
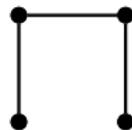


Universal Graphs

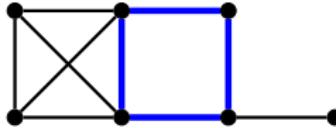
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

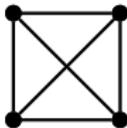
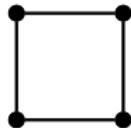
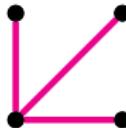
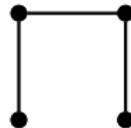


Universal Graphs

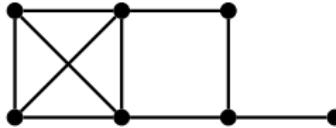
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

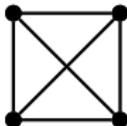
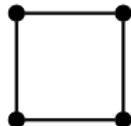
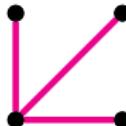
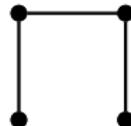


Universal Graphs

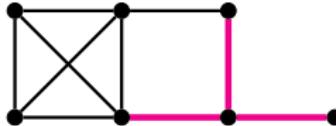
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

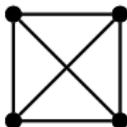
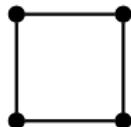
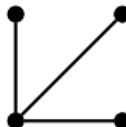
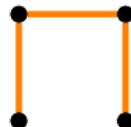


Universal Graphs

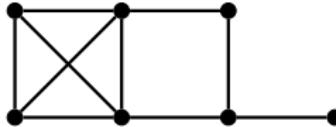
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

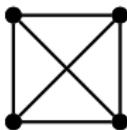
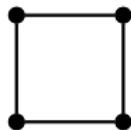
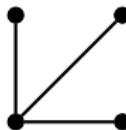
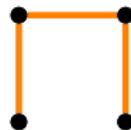


Universal Graphs

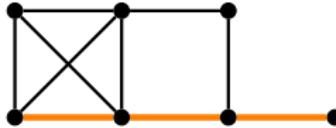
(Induced) Universal Graphs

Given a class \mathcal{C} a sequence $(U_n)_{n \geq 0}$ is universal for \mathcal{C} if every $G \in \mathcal{C}_n$ is an **induced** subgraph of U_n .

Suppose that \mathcal{C}_n consists of



Then the following is a universal graph U_n :

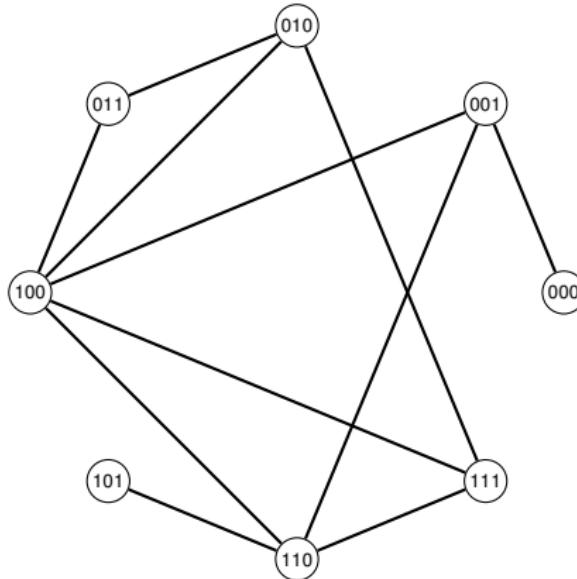


Link between labelling Schemes and Universal Graphs

$f(n)$ -bit labelling schemes $\Leftrightarrow 2^{f(n)}$ -induced-universal graphs.

Link between labelling Schemes and Universal Graphs

$f(n)$ -bit labelling schemes $\Leftrightarrow 2^{f(n)}$ -induced-universal graphs.



Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Then each graph in \mathcal{C}_n can be encoded with $n \cdot f(n)$ bits.

Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Then each graph in \mathcal{C}_n can be encoded with $n \cdot f(n)$ bits.

There are at most $2^{nf(n)}$ such graphs, thus $|\mathcal{C}_n| \leq 2^{nf(n)}$.

Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Then each graph in \mathcal{C}_n can be encoded with $n \cdot f(n)$ bits.

There are at most $2^{nf(n)}$ such graphs, thus $|\mathcal{C}_n| \leq 2^{nf(n)}$.

Consequently, $f(n) \geq \frac{1}{n} \cdot \log |\mathcal{C}_n|$.

Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Then each graph in \mathcal{C}_n can be encoded with $n \cdot f(n)$ bits.

There are at most $2^{nf(n)}$ such graphs, thus $|\mathcal{C}_n| \leq 2^{nf(n)}$.

Consequently, $f(n) \geq \frac{1}{n} \cdot \log |\mathcal{C}_n|$.

Question: Which classes have $\mathcal{O}(\frac{1}{n} \cdot \log |\mathcal{C}_n|)$ -bit labelling schemes?

Information Theoretic Lower Bound

Suppose a class \mathcal{C} admits an $f(n)$ -bit labelling scheme.

Then each graph in \mathcal{C}_n can be encoded with $n \cdot f(n)$ bits.

There are at most $2^{nf(n)}$ such graphs, thus $|\mathcal{C}_n| \leq 2^{nf(n)}$.

Consequently, $f(n) \geq \frac{1}{n} \cdot \log |\mathcal{C}_n|$.

Question: Which classes have $\mathcal{O}(\frac{1}{n} \cdot \log |\mathcal{C}_n|)$ -bit labelling schemes?

Factorial: $|\mathcal{C}_n| = 2^{\Theta(n \log n)}$ (interval graphs, bounded degeneracy, unit disk...)

Implicit Graph Conjecture

Implicit Graph Conjecture [Kannan, Naor & Rudich 1988; Spinrad 2003]

Every **hereditary** factorial class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Implicit Graph Conjecture

Implicit Graph Conjecture [Kannan, Naor & Rudich 1988; Spinrad 2003]

Every **hereditary** factorial class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Hamed and Pooya Hatami, 2021]

For any $\delta > 0$, there exists a **hereditary** factorial class which does not admit an $n^{1/2-\delta}$ -bit labelling scheme.

Monotone Implicit Graph Conjecture

A graph class is

- *hereditary* if it is closed under taking induced subgraphs

Monotone Implicit Graph Conjecture

A graph class is

- *hereditary* if it is closed under taking induced subgraphs
- *monotone* if it is closed under taking subgraphs

Monotone Implicit Graph Conjecture

A graph class is

- *hereditary* if it is closed under taking induced subgraphs
- *monotone* if it is closed under taking subgraphs

Monotone Implicit Graph Conjecture

Every *monotone* factorial class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Monotone Implicit Graph Conjecture - Is **False**

A graph class is

- *hereditary* if it is closed under taking induced subgraphs
- *monotone* if it is closed under taking subgraphs

Monotone Implicit Graph Conjecture

Every *monotone* factorial class admits an $O(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

There exist *monotone* factorial classes requiring $\Omega(\log^2 n)$ -bit labels.

Monotone Implicit Graph Conjecture - Is False

A graph class is

- *hereditary* if it is closed under taking induced subgraphs
- *monotone* if it is closed under taking subgraphs

Monotone Implicit Graph Conjecture

Every *monotone* factorial class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

There exist *monotone* factorial classes requiring $\Omega(\log^2 n)$ -bit labels.
Any *monotone* factorial class admits an $\mathcal{O}(\log^2 n)$ -bit labelling scheme.

Monotone Implicit Graph Conjecture - Is False

A graph class is

- *hereditary* if it is closed under taking induced subgraphs
- *monotone* if it is closed under taking subgraphs

Monotone Implicit Graph Conjecture

Every *monotone* factorial class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

There exist *monotone* factorial classes requiring $\Omega(\log^2 n)$ -bit labels.
Any *monotone* factorial class admits an $\mathcal{O}(\log^2 n)$ -bit labelling scheme.

First example of tight bounds for a class which are not "order optimal".

Factorial: $|\mathcal{C}_n| = 2^{\Theta(n \log n)}$ (interval graphs, unit disk graphs, ...)

Factorial: $|\mathcal{C}_n| = 2^{\Theta(n \log n)}$ (*interval graphs, unit disk graphs, ...*)

Small: $|\mathcal{C}_n| = n! \cdot 2^{O(n)}$ (*bounded twin-width, others, ...*)

Factorial: $|\mathcal{C}_n| = 2^{\Theta(n \log n)}$ (*interval graphs, unit disk graphs, ...*)

Small: $|\mathcal{C}_n| = n! \cdot 2^{O(n)}$ (*bounded twin-width, others, ...*)

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any **monotone** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any **monotone** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

This is a corollary of our more general result:

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any **monotone** small class has bounded degeneracy.

Sketch of Monotone Small implies Bounded Degeneracy

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Sketch of Monotone Small implies Bounded Degeneracy

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Proof (sketch):

- Let \mathcal{C} be a monotone class with $|\mathcal{C}_n| \leq n!c^n$ for some c .

Sketch of Monotone Small implies Bounded Degeneracy

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Proof (sketch):

- Let \mathcal{C} be a monotone class with $|\mathcal{C}_n| \leq n!c^n$ for some c .
- Assume (for contradiction) there exists a $G \in \mathcal{C}$ of minimum degree d .

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Proof (sketch):

- Let \mathcal{C} be a monotone class with $|\mathcal{C}_n| \leq n!c^n$ for some c .
- Assume (for contradiction) there exists a $G \in \mathcal{C}$ of minimum degree d .
- Then there exists $H \in \mathcal{C}$ with $m := |E(H)| > dn/2$ and H is spanned by a tree T of maximal degree d .

Sketch of Monotone Small implies Bounded Degeneracy

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Proof (sketch):

- Let \mathcal{C} be a monotone class with $|\mathcal{C}_n| \leq n!c^n$ for some c .
- Assume (for contradiction) there exists a $G \in \mathcal{C}$ of minimum degree d .
- Then there exists $H \in \mathcal{C}$ with $m := |E(H)| > dn/2$ and H is spanned by a tree T of maximal degree d .
- There are at least $2^{4m/5}$ subgraphs $T \subseteq F \subseteq H$ with $|\text{Aut}(F)| \leq 2^{m/10}$.

Sketch of Monotone Small implies Bounded Degeneracy

Theorem [Bonnet, Duron, S., Zamaraev, Zhukovskii 2024]

Any monotone small class has bounded degeneracy.

Proof (sketch):

- Let \mathcal{C} be a monotone class with $|\mathcal{C}_n| \leq n!c^n$ for some c .
- Assume (for contradiction) there exists a $G \in \mathcal{C}$ of minimum degree d .
- Then there exists $H \in \mathcal{C}$ with $m := |E(H)| > dn/2$ and H is spanned by a tree T of maximal degree d .
- There are at least $2^{4m/5}$ subgraphs $T \subseteq F \subseteq H$ with $|\text{Aut}(F)| \leq 2^{m/10}$.
- $$|\mathcal{C}_n| \geq \sum_F \frac{n!}{\text{Aut}(F)} \geq 2^{4m/5} \cdot \frac{n!}{2^{m/10}} \geq n! \cdot 2^{7m/10} > n! \cdot c^n,$$
- a contradiction.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

A class is **weakly sparse** if there is a constant t such that all of its graphs exclude $K_{t,t}$ as a subgraph.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

A class is **weakly sparse** if there is a constant t such that all of its graphs exclude $K_{t,t}$ as a subgraph.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **weakly sparse hereditary** small class has bounded expansion.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

A class is **weakly sparse** if there is a constant t such that all of its graphs exclude $K_{t,t}$ as a subgraph.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **weakly sparse hereditary** small class has bounded expansion.

Corollary

Weakly sparse classes satisfy the Small-IGC.

Small Implicit Graph Conjecture

Small Implicit Graph Conjecture (Small-IGC)

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

A class is **weakly sparse** if there is a constant t such that all of its graphs exclude $K_{t,t}$ as a subgraph.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **weakly sparse hereditary** small class has bounded expansion.

Corollary

Weakly sparse classes satisfy the Small-IGC.

The Hatami brothers counterexample to the IGC is **Weakly sparse!**

Relaxed Bound Small IGC

Small Implicit Graph Conjecture

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Relaxed Bound Small IGC

Small Implicit Graph Conjecture

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Relaxed Bound Small IGC

Small Implicit Graph Conjecture

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

This improves on the best known upper bound of $n^{1-\varepsilon}$ by [Alon 2023], a general bound which holds for any class with $|\mathcal{C}_n| = 2^{o(n^2)}$.

Relaxed Bound Small IGC

Small Implicit Graph Conjecture

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

This improves on the best known upper bound of $n^{1-\varepsilon}$ by [Alon 2023], a general bound which holds for any class with $|\mathcal{C}_n| = 2^{o(n^2)}$.

The **neighbourhood complexity** of a graph is the growth of the (dual) shatter function of the neighbourhood set system.

Relaxed Bound Small IGC

Small Implicit Graph Conjecture

Every **hereditary** small class admits an $\mathcal{O}(\log n)$ -bit labelling scheme.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

This improves on the best known upper bound of $n^{1-\varepsilon}$ by [Alon 2023], a general bound which holds for any class with $|\mathcal{C}_n| = 2^{o(n^2)}$.

The **neighbourhood complexity** of a graph is the growth of the (dual) shatter function of the neighbourhood set system.

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class has **neighbourhood complexity** $\mathcal{O}(n \log n)$.

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Contiguity

G has **contiguity k** if one can find a linear order $v_1 \prec \dots \prec v_n$ of $V(G)$ such that for any v_i , $N_G(v_i)$ is the disjoint union of k intervals.

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Contiguity

G has **contiguity k** if one can find a linear order $v_1 \prec \dots \prec v_n$ of $V(G)$ such that for any v_i , $N_G(v_i)$ is the disjoint union of k intervals.

- **Contiguity $\mathcal{O}(k)$** implies $\mathcal{O}(k \log n)$ -bit labelling scheme (encode endpoints).

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Contiguity

G has **contiguity k** if one can find a linear order $v_1 \prec \dots \prec v_n$ of $V(G)$ such that for any v_i , $N_G(v_i)$ is the disjoint union of k intervals.

- **Contiguity $\mathcal{O}(k)$** implies $\mathcal{O}(k \log n)$ -bit labelling scheme (encode endpoints).
- Adaption of [Welzl 1988] shows that **neighbourhood complexity** at most $f(n)$ implies **contiguity** of order at most $\log n + \text{Dim}_{VC} \cdot \sum_{j=1}^n \frac{1}{f^{-1}(j)}$.

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Contiguity

G has **contiguity k** if one can find a linear order $v_1 \prec \dots \prec v_n$ of $V(G)$ such that for any v_i , $N_G(v_i)$ is the disjoint union of k intervals.

- **Contiguity $\mathcal{O}(k)$** implies $\mathcal{O}(k \log n)$ -bit labelling scheme (encode endpoints).
- Adaption of [Welzl 1988] shows that **neighbourhood complexity** at most $f(n)$ implies **contiguity** of order at most $\log n + \text{Dim}_{VC} \cdot \sum_{j=1}^n \frac{1}{f^{-1}(j)}$.

Used by Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk
for FO Model Checking on Monadically Stable Classes

Sketch for Relaxed Bound Small IGC

Theorem [Bonnet, Duron, S., Zamaraev 2025]

Every **hereditary** small class admits an $\mathcal{O}(\log^3 n)$ -bit labelling scheme.

Main tools: **neighbourhood complexity** and **contiguity**.

Contiguity

G has **contiguity k** if one can find a linear order $v_1 \prec \dots \prec v_n$ of $V(G)$ such that for any v_i , $N_G(v_i)$ is the disjoint union of k intervals.

- **Contiguity $\mathcal{O}(k)$** implies $\mathcal{O}(k \log n)$ -bit labelling scheme (encode endpoints).
- Adaption of [Welzl 1988] shows that **neighbourhood complexity** at most $f(n)$ implies **contiguity** of order at most $\log n + \text{Dim}_{VC} \cdot \sum_{j=1}^n \frac{1}{f^{-1}(j)}$.
- For us: **neighbourhood complexity $\mathcal{O}(n \log n)$** implies **contiguity $\mathcal{O}(\log^2 n)$** .

Factorial **Hereditary**

IGC does not hold

Lower bound: \sqrt{n}

Factorial **Monotone**

IGC does not hold

Upper/Lower bound: $\log^2 n$

Small Hereditary

Does the IGC hold?

Upper bound: $\log^3 n$

Small **weakly-sparse**

IGC does hold!

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.
- Do **hereditary** small classes admit $\mathcal{O}(\log n)$ bit labels? (Small IGC)

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.
- Do **hereditary** small classes admit $\mathcal{O}(\log n)$ bit labels? (Small IGC)
- Do **hereditary** factorial classes admit $\mathcal{O}(\sqrt{n})$ bit labels? (Matching the LB)

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.
- Do **hereditary** small classes admit $\mathcal{O}(\log n)$ bit labels? (Small IGC)
- Do **hereditary** factorial classes admit $\mathcal{O}(\sqrt{n})$ bit labels? (Matching the LB)
- Which classes have an order optimal $\mathcal{O}\left(\frac{1}{n} \cdot \log |\mathcal{C}_n|\right)$ -bit labelling scheme?

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.
- Do **hereditary** small classes admit $\mathcal{O}(\log n)$ bit labels? (Small IGC)
- Do **hereditary** factorial classes admit $\mathcal{O}(\sqrt{n})$ bit labels? (Matching the LB)
- Which classes have an order optimal $\mathcal{O}\left(\frac{1}{n} \cdot \log |\mathcal{C}_n|\right)$ -bit labelling scheme?
- Does every **hereditary** small class have **neighbourhood complexity** $\mathcal{O}(n)$?

Open Questions on Adjacency labelling Schemes

- Explicit example refuting the Implicit Graph Conjecture?
- $(1 + o(1)) \log n$ -bit labelling schemes for explicit small classes; e.g. bounded clique-width, bounded twin-width, proper minor-closed.
- Do **hereditary** small classes admit $\mathcal{O}(\log n)$ bit labels? (Small IGC)
- Do **hereditary** factorial classes admit $\mathcal{O}(\sqrt{n})$ bit labels? (Matching the LB)
- Which classes have an order optimal $\mathcal{O}\left(\frac{1}{n} \cdot \log |\mathcal{C}_n|\right)$ -bit labelling scheme?
- Does every **hereditary** small class have **neighbourhood complexity** $\mathcal{O}(n)$?

