Crossing Number is NP-hard for Constant Path-width (and Tree-width)

Petr Hliněný MUNI Brno, Czech Republic Liana Khazaliya TU Wien, Vienna, Austria

December 16, 2024

Part 1. Crossing Number: Overview

Vertices of G are distinct points in the plane; every edge uv is a simple arc joining u to v.

- any pair of edges crosses at most once;

- any pair of edges crosses at most once;
- adjacent edges do not cross;

- any pair of edges crosses at most once;
- adjacent edges do not cross;
- there is no common crossing point between more than 2 edges.

- any pair of edges crosses at most once;
- adjacent edges do not cross;
- there is no common crossing point between more than 2 edges.

The minimum such k for a given G is the crossing number cr(G).

The minimum such k for a given G is the crossing number cr(G).

CROSSING NUMBER Input: A graph G and $k \in \mathbb{Z}_{\geq 0}$ Question: Does there exist a drawing G of G with $\leq k$ edge crossings

Some examples

-
$$\operatorname{cr}(K_5) = 1$$
, $\operatorname{cr}(K_6) = 3$, ..., $\operatorname{cr}(K_{12}) = 150$
but $\operatorname{cr}(K_{13})$ is still unknown
Conjecture. $\operatorname{cr}(K_n) = \frac{1}{4} \cdot \lfloor \frac{n}{2} \rfloor \cdot \lfloor \frac{n-1}{2} \rfloor \cdot \lfloor \frac{n-2}{2} \rfloor \cdot \lfloor \frac{n-3}{2} \rfloor$

- The two minimal graphs of the crossing number ≥ 1 are K_5 and $K_{3,3}$.
- There exists an infinite family of simple 3-connected graphs that are minimal to having the crossing number ≥ 2 : [Kochol, 1987]

NP-hardness

- The general case [Garey and Johnson, 1983]
 The degree-3 and minor-monotone cases [Hliněný, 2004]
 And for almost-planar (planar graphs plus one edge) [Cabello and Mohar, 2010]
- Approximations
 - No constant factor approximation for some c>1 [Cabello, 2013]
 - Randomized subpolynomial-approximation when bounded degree

 $\left(2^{\mathcal{O}(\log^{7/8} n \cdot \log \log n)} \cdot \Delta^{\mathcal{O}(1)}\right)$

huzhoy and Tan, 2022]

NP-hardness

The general case [Garey and Johnson, 1983]
 The degree-3 and minor-monotone cases [Hliněný, 2004]
 And for almost-planar (planar graphs plus one edge) [Cabello and Mohar, 2010]

Approximations

- No constant factor approximation for some c>1 [Cabello, 2013]
- Randomized subpolynomial-approximation when bounded degree

 $\left(2^{\mathcal{O}(\log^{7/8} n \cdot \log \log n)} \cdot \Delta^{\mathcal{O}(1)}\right)$

[Chuzhoy and Tan, 2022]

Parameterized complexity

- FPT with parameter k (number of crossings)

$$\begin{split} f(k) \cdot n^2, \quad f(k) &= 2^{2^{2^{\Omega(k)}}} \\ f(k) \cdot n, \quad f(k) &= 2^{\mathcal{O}((k+\mathsf{tw})\log(k+\mathsf{tw}))} \\ f(k) \cdot n, \quad f(k) &= 2^{\mathcal{O}(k\log k)} \end{split}$$
 [Verdiére and Magnard, ESA'21]

Parameterized complexity

- FPT with parameter k (number of crossings)

$$f(k) \cdot n, \quad f(k) = 2^{\mathcal{O}(k \log k)}$$

[Lokshtanov, Panolan, Saurabh, Sharma, Xue, Zehavi, 2025]

And what about structural parameters? Surprisingly, nearly nothing

- FPT algorithm for cr(G) param. by the vertex cover

[Sankaran and Hliněný, 2019]

- Poly alg. for cr(G) when G is maximal path-width 3

[Biedl, Chimani, Derka, and Mutzel, 2020]

Theorem

HK'24]

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Parameterized complexity

- FPT with parameter k (number of crossings)

$$f(k) \cdot n, \quad f(k) = 2^{\mathcal{O}(k \log k)}$$

[Lokshtanov, Panolan, Saurabh, Sharma, Xue, Zehavi, 2025]

And what about structural parameters? Surprisingly, nearly nothing

- FPT algorithm for cr(G) param. by the vertex cover

[Sankaran and Hliněný, 2019]

- Poly alg. for cr(G) when G is maximal path-width 3

[Biedl, Chimani, Derka, and Mutzel, 2020]

Theorem

[HK'24]

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Part 2. Crossing Number: NP-hardness

Theorem

[HK'24]

CROSSING NUMBER (G, k) is NP-complete even when a given graph is of path-width at most 12 and of tree-width at most 9.

Reduction.

SATISFABILITY: $(\mathcal{V}, \mathcal{C}) \rightarrow \text{CROSSING NUMBER: } (G, k)$ pw(G) = 9tw(G) = 12 SATISFABILITY Input: A set of clauses $C = \{C_1, \ldots, C_\ell\}$ over variables $\mathcal{V} = \{x_1, \ldots, x_n\}$ Question: Does there exist an assignment $\tau : \mathcal{V} \to \{\text{True}, \text{False}\}$ satisfying all clauses in C?

Reduction Idea.

- a large "grid structure"
- small separators
- "flips" of some parts for the encoding
- clause edges that cause an equivalence

Weighted crossing number

The ordinary crossing number, but

- an edge replaced by a bunch of several parallel;
- redraw the bunch tightly along the "cheapest";
- a crossing contributes the product of edge weights.

Color	Weight
Heavy-brown (HB)	ω^8
Light-black (LB)	ω^6
Red (R)	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
(R ')	ω^3
Blue (B)	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
(B')	ω^3
Cyan (C)	ω^2
Green (G)	$\omega^0 = 1$

Let $\omega = |E(G)|^2$, then one crossing of weight ω^{t+1} "outweighs" all crossings of G of weight ω^t .

The frame and variable gadgets

The Frame with *n* Variable Gadgets for n = 3, h = 4

Color	Weight
HB	ω^8
LB	ω^6
R	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
R' (hor)	ω^3
В	$\omega^4 + \Theta_{n,\ell}(\omega^1)$
B' (hor)	ω^3
С	ω^2
G	$\omega^0 = 1$

The frame and variable gadgets

The Frame with *n* Variable Gadgets for n = 3, h = 4

Edge-alternation

 $g_j = \omega^4 + j(j+1)\omega;$ $s_j = \omega^4 + j(j+2)\omega;$

all horizontal (R/B) are of ω^3 .

Encoding

$\mathcal{C} = \{(x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor x_5), (x_2 \lor x_3 \lor \overline{x_4})\}$

 $h = 4\ell + n - 2 \qquad 13$

$\mathcal{C} = \{(x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor x_5), (x_2 \lor x_3 \lor \overline{x_4})\}$

$$\mathcal{C} = \{ (x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor x_5), (x_2 \lor x_3 \lor \overline{x_4}) \}$$

$$\mathcal{C} = \{ (x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor x_5), (x_2 \lor x_3 \lor \overline{x_4}) \}$$

 $\mathcal{C} = \{ (x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor x_5), (x_2 \lor x_3 \lor \overline{x_4}) \}$

17

 $\mathcal{C} = \{ (x_1 \lor \overline{x_2} \lor x_4 \lor \overline{x_5}), (\overline{x_1} \lor \overline{x_3} \lor \overline{x_5}), (x_2 \lor x_3 \overline{\lor \overline{x_4}}) \}$

17

Part 3. Tree- and Path-width

Tree-width

<u>**Def.</u>** A tree decomposition of G is a pair $\mathcal{T} = (\mathcal{T}, \{X_t\}_{t \in V(\mathcal{T})})$, where \mathcal{T} is a tree whose every node t is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with following conditions:</u>

 $\mathcal{T}1. \bigcup_{t \in V(\mathcal{T})} X_t = V(G);$

- T2. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;
- *T*3. For every $v \in V(G)$, the set $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected subtree of *T*.

<u>**Def.**</u> The width of \mathcal{T} is $\max_{t \in V(\mathcal{T})} |X_t| - 1$.

<u>Def.</u> The tree-width tw(G) is the minimum width over all tree decompositions of G.

Tree-width

The tree-width of a graph G is

min { $\omega(G^+) - 1 : G^+ \supseteq G$ and G^+ is chordal}

The Cops-and-Robber Game

Tree-width [path-width] is at most t if and only if t + 1 cops can always catch the robber in G in a monotone game if the robber is *visible* [*invisible*] (to the cop player)

1

$$\operatorname{\mathsf{tw}}(K_n) = n - 1$$
 $\operatorname{\mathsf{tw}}(P_n \times P_m) = \min(m, n)$ $\operatorname{\mathsf{tw}}(T) =$

Back to the construction

Part 4. Conclusion

Question: [In]tractability for structural parameters

Thank you for your attention!

FPT $(f(k) \cdot n^{O(1)}$ -time algorithm) XP $(n^{f(k)}$ -time algorithm) W[1]-hard (not FPT unless FPT = W[1]) para-NP-hard (not XP unless P = NP) *n*: size of input *k*: size of parameter

Contents

Overview NP-hardness Tree- and Path-width Conclusion