
Crossing Number is NP-hard
for Constant Path-width (and Tree-width)
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Part 1.
Crossing Number: Overview



Crossings and Crossing Number

Vertices of G are distinct points in the plane;
every edge uv is a simple arc joining u to v .
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Crossings and Crossing Number

4 crossings 0 crossings

The minimum such k for a given G is the crossing number cr(G ).
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Crossing Number

The minimum such k for a given G is the crossing number cr(G ).

Crossing Number
Input: A graph G and k ∈ Z≥0

Question: Does there exist a drawing G of G with ≤ k edge crossings
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Some examples

- cr(K5) = 1, cr(K6) = 3, . . . , cr(K12) = 150
but cr(K13) is still unknown

Conjecture. cr(Kn) =
1
4 · ⌊

n
2⌋ · ⌊

n−1
2 ⌋ · ⌊n−2

2 ⌋ · ⌊n−3
2 ⌋

- The two minimal graphs of the crossing number ≥ 1 are K5 and K3,3.

- There exists an infinite family of simple 3-connected graphs that are minimal
to having the crossing number ≥ 2: [Kochol, 1987]
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Brief complexity status

NP-hardness

- The general case [Garey and Johnson, 1983]

- The degree-3 and minor-monotone cases [Hliněný, 2004]

- And for almost-planar (planar graphs plus one edge) [Cabello and Mohar, 2010]

Approximations

- No constant factor approximation for some c > 1 [Cabello, 2013]

- Randomized subpolynomial-approximation when bounded degree
[Chuzhoy and Tan, 2022](

2O(log7/8 n·log log n) ·∆O(1)
)
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Brief complexity status

Parameterized complexity

- FPT with parameter k (number of crossings)

f (k) · n2, f (k) = 2222Ω(k)

[Grohe, STOC’01]

f (k) · n, f (k) = 2O((k+tw) log(k+tw))

[Verdiére and Magnard, ESA’21]

f (k) · n, f (k) = 2O(k log k)

[Lokshtanov, Panolan, Saurabh, Sharma, Xue, Zehavi, SODA’25]
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Brief complexity status

Parameterized complexity
- FPT with parameter k (number of crossings)

f (k) · n, f (k) = 2O(k log k)

[Lokshtanov, Panolan, Saurabh, Sharma, Xue, Zehavi, 2025]

And what about structural parameters? Surprisingly, nearly nothing

- FPT algorithm for cr(G ) param. by the vertex cover
[Sankaran and Hliněný, 2019]

- Poly alg. for cr(G ) when G is maximal path-width 3
[Biedl, Chimani, Derka, and Mutzel, 2020]

Theorem [HK’24]

Crossing Number (G , k) is NP-complete even when a given graph is of
path-width at most 12 and of tree-width at most 9.
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Part 2.
Crossing Number: NP-hardness



Result

Theorem [HK’24]

Crossing Number (G , k) is NP-complete even when a given graph is of
path-width at most 12 and of tree-width at most 9.

Reduction.
Satisfability: (V , C) → Crossing Number: (G , k)

pw(G ) = 9
tw(G ) = 12
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Satisfability

Satisfability
Input: A set of clauses C = {C1, . . . ,Cℓ} over variables V = {x1, . . . , xn}
Question: Does there exist an assignment τ : V → {True, False} satisfying
all clauses in C?

Reduction Idea.

- a large “grid structure”

- small separators

- “flips” of some parts for the encoding

- clause edges that cause an equivalence
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Color-encoding

Weighted crossing number
The ordinary crossing number, but

- an edge replaced by a bunch of several parallel;

- redraw the bunch tightly along the “cheapest”;

- a crossing contributes the product of edge weights.

Color Weight

Heavy-brown (HB) ω8

Light-black (LB) ω6

Red (R) ω4 +Θn,ℓ(ω
1)

(R’) ω3

Blue (B) ω4 +Θn,ℓ(ω
1)

(B’) ω3

Cyan (C) ω2

Green (G) ω0 = 1

Let ω = |E (G )|2, then one crossing of weight ωt+1 “outweighs” all crossings of G of weight ωt .

9



The frame and variable gadgets

The Frame with n Variable Gadgets for n = 3, h = 4

Color Weight

HB ω8

LB ω6

R ω4 +Θn,ℓ(ω
1)

R’ (hor) ω3

B ω4 +Θn,ℓ(ω
1)

B’ (hor) ω3

C ω2

G ω0 = 1
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The Frame with n Variable Gadgets for n = 3, h = 4
10



Edge-alternation

gj = ω4 + j(j + 1)ω;

sj = ω4 + j(j + 2)ω;

all horizontal (R/B) are of ω3.
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Encoding

LB-pos LB-neg

Cpos: x ∈ C

LB-pos LB-neg

Cneg: x ∈ C

LB-pos LB-neg

Cneut
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C = {(x1 ∨ x2 ∨ x4 ∨ x5), (x1 ∨ x3 ∨ x5), (x2 ∨ x3 ∨ x4)}

h = 4ℓ+ n − 2 13
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C1

C2

C3

C1

C2

C3
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Part 3.
Tree- and Path-width



Tree-width

Def. A tree decomposition of G is a pair T = (T , {Xt}t∈V (T )),
where T is a tree whose every node t is assigned a vertex
subset Xt ⊆ V (G ), called a bag, with following conditions:

T 1.
⋃

t∈V (T ) Xt = V (G);

T 2. For every vw ∈ E(G), there exists a node t of T such that bag Xt

contains both v and w ;

T 3. For every v ∈ V (G), the set Tv = {t ∈ V (T )|v ∈ Xt} induces
a connected subtree of T .

Def. The width of T is maxt∈V (T ) |Xt | − 1.

Def. The tree-width tw(G ) is the minimum width over all tree decompositions of G .
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Tree-width

The tree-width of a graph G is

min {ω(G+)− 1 : G+ ⊇ G and G+ is chordal}

The Cops-and-Robber Game

Tree-width [path-width] is at most t if and only if
t + 1 cops can always catch the robber in G in a
monotone game if the robber is visible [invisible] (to
the cop player)

tw(Kn) = n − 1 tw(Pn × Pm) = min(m, n) tw(T ) = 1
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Back to the construction

C1

C2

C3

C1

C2

C3
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Part 4.
Conclusion



Question: [In]tractability for structural parameters

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance to
Disjoint Paths

Treedepth Bandwidth

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Treewidth

FPT (f (k) · nO(1)-time algorithm)
XP (nf (k)-time algorithm)
W[1]-hard (not FPT unless FPT = W[1])
para-NP-hard (not XP unless P = NP)

n: size of input
k : size of parameter
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Thank you for your attention!

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance to
Disjoint Paths

Treedepth Bandwidth

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Treewidth

FPT (f (k) · nO(1)-time algorithm)
XP (nf (k)-time algorithm)
W[1]-hard (not FPT unless FPT = W[1])
para-NP-hard (not XP unless P = NP)

n: size of input
k : size of parameter
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