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Positive Non-Clashing Teaching

STRICT NON-CLASH
INPUT: Graph G and an integer k.

QUESTION: Is there a positive non-clashing teaching map for
the set of all balls of G with dimension at most k?

NON-CLASH
INPUT: A graph G, a set B of balls of G, and an integer k.

QUESTION: Is there a positive non-clashing teaching map for
B with dimension at most k?

Related Work
Introduced the concept Relation to recursive teaching
[Kirkpatrick et al., 2019; Fallat et al., 2023] [Simon, 2023]
NP-hardness of NON-CLASH Relation to sample compression schemes
[Kirkpatrick et al., 2019] [Kirkpatrick et al., 2019; Fallat et al., 2023; Chalopin et al., 2023]
For STRICT NON-CLASH: NP-hardness for large dimension, running time upper and lower bounds,
tight fixed-parameter algorithm when parameterized by the vertex cover number of G [Chalopin et al., 2024]
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Notation and Definitions

Let G be a simple, finite, and undirected graph.

For an integer r ≥ 0 and a vertex v ∈ V (G), the ball Br(v) is the set of all vertices at distance at most r from its center v.

Let B be a set of balls of G.

A positive teaching map T for B is a mapping which assigns to each ball B ∈ B a teaching set T (B) ⊆ B, i.e., a subset of the
vertices of B.

The dimension of T is maxB∈B |T (B)|.

A positive teaching map T is non-clashing for B if, for each pair of distinct balls B1, B2 ∈ B, there exists a vertex w ∈ T (B1)∪T (B2)
such that w ̸∈ B1 ∩B2.

The vertex w distinguishes B1 and B2, or distinguishes B1 from B2 (or vice versa).

If a teaching map is not non-clashing, there is a conflict between any two balls for which there is no element distinguishing them.

Main contributions: (1) NP-hardness of STRICT NON-CLASH, even when k = 2. (2) improved near-tight running time upper and lower bounds (3) fixed-parameter tractability for NON-CLASH parameterized by (4) lower bound excluding fixed-parameter tractability for NON-CLASH

for the problems on general graphs. the vertex integrity of G. parameterized by k plus the feedback vertex number and pathwidth of G.

Intractability and Running Time Bounds

Example: the graph G obtained by applying our reduction on the 3-SAT instance
X = {xi, xj, xq, xp} and C = {(xi ∨ xj ∨ xq), (xj ∨ xq ∨ xp)}.
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Ovals and rectangles depict stable sets and cliques, respectively. Blue edges represent all possible edges.

Positive non-clashing teaching map for B.
for k ∈ [m] T (B1(s

∗
k)) = {s′k, v} and ck is satisfied by τ (xi) for some i ∈ [n], where

if τ (xi) = True, then v = fi (fi ∈ B1(s
∗
k) ∩ A since xi ∈ ck)

if τ (xi) = False, then v = ti (ti ∈ B1(s
∗
k) ∩ A since xi ∈ ck)

T (B1(s
∗∗
k )) = {s′k, r′0} T (B1(s

∗∗∗
k )) = {s′′k, r′0}

T (B1(s
′
k)) = {s′k, s∗∗k } T (B1(s

′′
k)) = {s′′k, s∗∗∗k } T (B1(s

′
0)) = {s′0, a}

for i ∈ [n] T (B1(r
∗
i )) = {r′i, v}, where

if τ (xi) = True, then v = ti
if τ (fi) = False, then v = fi

T (B1(r
∗∗
i )) = {r′i, s′0} T (B1(r

∗∗∗
i )) = {r′′i , s′0}

T (B1(r
′
i)) = {r′i, r∗∗i } T (B1(r

′′
i )) = {r′′i , r∗∗∗i } T (B1(r

′
0)) = {r′0, a}

for i ∈ [n] T (B1(ti)) = {ti, a} T (B1(fi)) = {fi, a}
T (V (G)) = T (B1(a)) = {ti, tj}, for i, j ∈ [n], i ̸= j such that there is no
k ∈ [m] where both xi and xj appear in ck.

For each u, z ∈ V (G), in a cell at the intersection of the corresponding row and column, we place a vertex
w ∈ V (G) such that w ∈ T (B1(u)) ∪ T (B1(z)) and w /∈ B1(u) ∪B1(z).

s∗k s∗∗k s∗∗∗k s′k s′′k s′0 ti fi
r∗i v r′0 r′0 r′i r′i r′i r′i r′i
r∗∗i s′0 r′0 r′0 s′0 s′0 r′i r′i r′i
r∗∗∗i s′0 r′0 r′0 s′0 s′0 r′′i r′′i r′′i
r′i s′k r′0 r′0 r′i r′i r′i r′i r′i
r′′i s′k r′0 r′0 r′′i r′′i r′′i r′′i r′′i
r′0 s′k s′k s′′k s′k s′′k r′0 r′0 r′0
tj s′k s′k s′′k s′k s′′k s′0 ti fi
fj s′k s′k s′′k s′k s′′k s′0 ti fi

s∗k s∗∗k s∗∗∗k s′k s′′k
s∗l s′k v s′k v v

s∗∗l s′k s′k s′k r′0 r′0
s∗∗∗l s′k s′k s′′k r′0 r′0
s′l s′k s′k s′′k s′k s′k
s′′l s′k s′k s′′k s′k s′′k
s′0 s′0 s′0 s′0 s′0 s′0

Here i, j ∈ [n], k ∈ [m], and v ∈ {ti, fi} \ N(s∗k): {ti, fi} \ N(s∗k) = ti if xi = True satisfies ck; and
{ti, fi}\N(s∗k) = fi if xi = False satisfies ck. For k, l ∈ [m], filled cells correspond to the case k = l, and
the others to k ̸= l. Here, v is any vertex in N(s∗l ) ∩ A. The table for vertices of the variable force-gadgets
is defined similarly, interchanging all s and r symbols.

3-SATISFIABILITY (3-SAT)
INPUT: A CNF formula over a set of clauses C = {c1, . . . , cm} containing
variables from X = {x1, . . . , xn}, where each clause has exactly 3 literals.
QUESTION: Is there a variable assignment τ : X → {True,False}
satisfying each clause in C?

Theorem 1.
STRICT NON-CLASH is NP-hard even when re-
stricted to the case of split graphs with k = 2.

Theorem 2.
Unless the Exponential Time Hypothesis* fails,
there is no algorithm solving STRICT NON-CLASH

in time 2o(|V (G)|·d·k), where d and k are the diameter
of G and the target positive non-clashing teaching
dimension of the instance, respectively.

* The Exponential Time Hypothesis (ETH): There is a constant c > 0 such
that there is no 2cn algorithm for 3-SAT.

[Impagliazzo & Paturi, 2001]

Proposition 1.
NON-CLASH can be solved in 2O(|V (G)|·d·k·log |V (G)|) time.

NAE-INTEGER-3-SAT
INPUT: A set of clauses C over variables X , and an integer d. Any
clause c ∈ C has the form x ≤ cx, y ≤ cy, and z ≤ cz, where
cx, cy, cz ∈ {1, . . . , d}.
QUESTION: Is there a variable assignment X → {1, . . . , d} such that for
each clause, either one or two of its three inequalities are satisfied?

fvs(G): the feedback vertex number of G is the cardinality of a smallest vertex subset X ⊂ V (G) such that G−X is acyclic.

pw(G): the pathwidth of G has an involved definition based on the notion of path decompositions. However, it is well-known that
deleting one vertex from each connected component of G will decrease the pathwidth by at most one, and that a graph consisting of
a disjoint union of paths and subdivided caterpillars (i.e., graphs consisting of a central path with pendent paths) has pathwidth 2.

vi(G): the vertex integrity of G is the smallest integer b such that there exists a vertex subset X ⊂ V (G) with the property that, for
every connected component H of G−X , |V (H) ∪X| ≤ b.

Hardness for Classical Structural Parameterizations*

Theorem 3.
NON-CLASH is W[1]-hard when parameterized
by fvs(G) + pw(G) + k.

Example: the instance (G,B, k) of NON-CLASH obtained by applying our reduction on
the NAE-INTEGER-3-SAT formula.
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Colorful edges denote paths of the depicted lengths. Two black curves separate the clique from the rest of
the graph. Dotted edges show that a vertex of the clique is adjacent to all the vertices of the graph below
the separating curves except those in the adjacent rectangle. The gray curve gives an intuition of which
vertices of Px, Py, and Pz are contained in Brc(c) and Br′

c′
(c′).

Fixed-Parameter Tractability* via Vertex Integrity

Theorem 4.
NON-CLASH is FPT parameterized by the vertex
integrity of the input graph G.
Consider an instance (G,B, k) of NON-CLASH and let p be the vertex integrity of G.

Two subgraphs H,H ′ ∈ H are twin-blocks with respect to B, denoted H ∼B H ′, if there
exists an isomorphism αH,H ′ from H to H ′ with the following properties:
(1) for each u ∈ V (H) and v ∈ X , uv ∈ E(G) if and only if αH,H ′(u)v ∈ E(G), and
(2) for each u ∈ V (H) and r ∈ N, Br(u) ∈ B if and only if Br(αH,H ′(u)) ∈ B.

Proof Sketch.

Compute the witness X ⊂ V (G) for the vertex integrity and the corresponding set H of
connected components.

Classify the elements of H w.r.t. the equivalence classes defined by ∼B.

Observation 1.
There are at most 2O(p3) equivalence classes, and the equivalence between two compo-
nents can be tested in pO(p) time,

Lemma 1.
The equivalence classes can be computed in |V (G)| · 2O(p3) · pO(p) time with brute force.

Compute the equivalent reduced graph G′ of G by removing some components of H
whose equivalence class is larger than some f (p). This is the crux of the algorithm,
which is made possible by carefully analyzing hypothetical solutions.

Lemma 2.
The set B′ induced by B on G′ can be computed in |V (G′)| ·O(p2) · |V (G)| · |V (G′)| time.

The size of the instance (G′,B′, k) is a function of p. Thus, we can compute a positive
non-clashing teaching map of dimension at most k for B′ in time depending only on p.

* In parameterized complexity, the running-times of algorithms are studied with respect to a parameter
p ∈ N and input size n. A parameterized problem is fixed-parameter tractable (FPT) if it can be solved by
an algorithm running in time f (p) · nO(1), where f is a computable function.

[Downey & Fellows, 1999; Cygan et al., 2015]

Concluding Remarks
One open question highlighted by our work concerns the tiny remaining gap between the algorithmic lower and upper bounds obtained in Theorem 2 and
Proposition 1. In particular, is there a way to improve the running time of the latter algorithm to 2O(|V (G)|·d·k) and make the bounds tight?
General directions for future work are to perform a similar complexity analysis in the setting where negative examples are allowed, and to consider approximability.


