The Computational Complexity of Positive Non-Clashing Teaching in Graphs

by Robert Ganian¹, Liana Khazaliya¹, Fionn Mc Inerney², and Mathis Rocton¹ ¹TU Wien (Austria), ²Telefónica Scientific Research (Spain)

Positive Non-Clashing Teaching

STRICT NON-CLASH

INPUT: Graph G and an integer k.

QUESTION: Is there a positive non-clashing teaching map for the set of all balls of G with dimension at most k?

Related Work

Introduced the concept Relation to recursive teaching [Kirkpatrick et al., 2019; Fallat et al., 2023] [Simon, 2023] NP-hardness of NON-CLASH Relation to sample compression schemes [Kirkpatrick et al., 2019; Fallat et al., 2023; Chalopin et al., 2023] [Kirkpatrick et al., 2019] For **STRICT NON-CLASH**: NP-hardness for large dimension, running time upper and lower bounds, tight fixed-parameter algorithm when parameterized by the vertex cover number of G [Chalopin et al., 2024]

Main contributions: (1) NP-hardness of **STRICT NON-CLASH**, even when k = 2.

Intractability and Running Time Bounds

Example: the graph G obtained by applying our reduction on the 3-SAT instance $\mathcal{X} = \{x_i, x_j, x_q, x_p\} \text{ and } \mathcal{C} = \{(x_i \lor x_j \lor \overline{x_q}), (x_j \lor x_q \lor \overline{x_p})\}.$

Ovals and rectangles depict stable sets and cliques, respectively. Blue edges represent all possible edges. Positive non-clashing teaching map for \mathcal{B} .

 $T(B_1(r_i^{**})) = \{r_i', s_0'\} \quad T(B_1(r_i^{***})) = \{r_i'', s_0'\}$ $T(B_1(r'_i)) = \{r'_i, r^{**}_i\} \quad T(B_1(r''_i)) = \{r''_i, r^{***}_i\} \quad T(B_1(r'_0)) = \{r'_0, a\}$

for $i \in [n]$ $T(B_1(t_i)) = \{t_i, a\}$ $T(B_1(f_i)) = \{f_i, a\}$

 $T(V(G)) = T(B_1(a)) = \{t_i, t_j\}$, for $i, j \in [n], i \neq j$ such that there is no $k \in [m]$ where both x_i and x_j appear in c_k .

For each $u, z \in V(G)$, in a cell at the intersection of the corresponding row and column, we place a vertex $w \in V(G)$ such that $w \in T(B_1(u)) \cup T(B_1(z))$ and $w \notin B_1(u) \cup B_1(z)$.

	s_k^*	s_k^{**}	s_k^{***}	s'_k	s_k''	$ s'_0 $	t_i	f_i			s_k^*	s_k^{**}	s_k^{***}	s'_k	s_k''
r_i^*	v	r'_0	r'_0	r'_i	r'_i	r'_i	r'_i	r'_i		s_l^*	s'_k	v	s'_k	v	v
r_i^{**}	s'_0	r'_0	r_0'	s_0'	s_0'	r'_i	r'_i	r'_i		s_l^{**}	s'_k	s'_k	s'_k	r'_0	r'_0
r_i^{***}	s'_0	r'_0	r_0'	s_0'	s_0'	r''_i	r''_i	r_i''		s_l^{***}	s'_k	s'_k	s_k''	r'_0	r'_0
r'_i	s'_k	r_0'	r_0'	r'_i	r'_i	r_i'	r'_i	r'_i		s_l'	s'_k	s'_k	s_k''	s'_k	s'_k
r_i''	s'_k	r'_0	r_0'	r_i''	r_i''	r''_i	r''_i	r_i''		s_l''	s'_k	s'_k	s_k''	s'_k	s_k''
r'_0	s'_k	s'_k	s_k''	s'_k	s_k''	r'_0	r'_0	r'_0		s'_0	s'_0	s'_0	s'_0	s'_0	s'_0
t_j	s'_k	s'_k	s_k''	s'_k	s_k''	s_0'	t_i	f_i							
f_j	s'_k	s'_k	s_k''	s'_k	s_k''	$ s'_0 $	t_i	f_i							

Here $i, j \in [n]$, $k \in [m]$, and $v \in \{t_i, f_i\} \setminus N(s_k^*)$: $\{t_i, f_i\} \setminus N(s_k^*) = t_i$ if $x_i = \text{True satisfies } c_k$; and $\{t_i, f_i\} \setminus N(s_k^*) = f_i$ if $x_i = \text{False satisfies } c_k$. For $k, l \in [m]$, filled cells correspond to the case k = l, and the others to $k \neq l$. Here, v is any vertex in $N(s_l^*) \cap A$. The table for vertices of the variable force-gadgets is defined similarly, interchanging all s and r symbols.

(2) improved near-tight running time upper and lower bounds for the problems on general graphs.

3-SATISFIABILITY (3-SAT)

INPUT: A CNF formula over a set of clauses $C = \{c_1, \ldots, c_m\}$ containing variables from $\mathcal{X} = \{x_1, \ldots, x_n\}$, where each clause has exactly 3 literals. QUESTION: Is there a variable assignment $\tau : \mathcal{X} \rightarrow \{ \text{True}, \text{False} \}$ satisfying each clause in C?

Theorem 1.

STRICT NON-CLASH is NP-hard even when restricted to the case of split graphs with k = 2.

Theorem 2.

Unless the Exponential Time Hypothesis* fails, there is no algorithm solving **STRICT NON-CLASH** in time $2^{o(|V(G)| \cdot d \cdot k)}$, where d and k are the diameter of G and the target positive non-clashing teaching dimension of the instance, respectively.

* The *Exponential Time Hypothesis (ETH)*: There is a constant c > 0 such that there is no 2^{cn} algorithm for 3-SAT.

[Impagliazzo & Paturi, 2001]

Proposition 1.

NON-CLASH can be solved in $2^{\mathcal{O}(|V(G)| \cdot d \cdot k \cdot \log |V(G)|)}$ time.

NAE-INTEGER-3-SAT

INPUT: A set of clauses C over variables X, and an integer d. Any clause $c \in \mathcal{C}$ has the form $x \leq c_x, y \leq c_y$, and $z \leq c_z$, where $c_x, c_y, c_z \in \{1, \dots, d\}.$

QUESTION: Is there a variable assignment $\mathcal{X} \to \{1, \ldots, d\}$ such that for each clause, either one or two of its three inequalities are satisfied?

Notation and Definitions

Hardness for Classical Structural Parameterizations*

Example: the instance (G, \mathcal{B}, k) of **NON-CLASH** obtained by applying our reduction on the NAE-INTEGER-3-SAT formula.

One open question highlighted by our work concerns the tiny remaining gap between the algorithmic lower and upper bounds obtained in Theorem 2 and Proposition 1. In particular, is there a way to improve the running time of the latter algorithm to $2^{\mathcal{O}(|V(G)| \cdot d \cdot k)}$ and make the bounds tight? General directions for future work are to perform a similar complexity analysis in the setting where negative examples are allowed, and to consider approximability.

- Let G be a simple, finite, and undirected graph.
- For an integer $r \ge 0$ and a vertex $v \in V(G)$, the ball $B_r(v)$ is the set of all vertices at distance at most r from its center v.
- Let \mathcal{B} be a set of balls of G.
- A positive teaching map T for \mathcal{B} is a mapping which assigns to each ball $B \in \mathcal{B}$ a teaching set $T(B) \subseteq B$, i.e., a subset of the vertices of *B*.
- The *dimension* of T is $\max_{B \in \mathcal{B}} |T(B)|$.
- A positive teaching map T is *non-clashing* for \mathcal{B} if, for each pair of distinct balls $B_1, B_2 \in \mathcal{B}$, there exists a vertex $w \in T(B_1) \cup T(B_2)$ such that $w \notin B_1 \cap B_2$.
- The vertex w distinguishes B_1 and B_2 , or distinguishes B_1 from B_2 (or vice versa).
- If a teaching map is not non-clashing, there is a *conflict* between any two balls for which there is no element distinguishing them.
 - (3) fixed-parameter tractability for **NON-CLASH** parameterized by the vertex integrity of G.
- fvs(G): the *feedback vertex number* of G is the cardinality of a smallest vertex subset $X \subset V(G)$ such that G X is acyclic. pw(G): the *pathwidth* of G has an involved definition based on the notion of *path decompositions*. However, it is well-known that deleting one vertex from each connected component of G will decrease the pathwidth by at most one, and that a graph consisting of a disjoint union of paths and *subdivided caterpillars* (*i.e.*, graphs consisting of a central path with pendent paths) has pathwidth 2.
- vi(G): the vertex integrity of G is the smallest integer b such that there exists a vertex subset $X \subset V(G)$ with the property that, for every connected component H of G - X, $|V(H) \cup X| \le b$.

Theorem 3.

NON-CLASH is W[1]-hard when parameterized by fvs(G) + pw(G) + k.

Concluding Remarks

Fixed-Parameter Tractability* via Vertex Integrity Theorem 4. NON-CLASH is FPT parameterized by the vertex integrity of the input graph G.

Consider an instance (G, \mathcal{B}, k) of **NON-CLASH** and let p be the vertex integrity of G.

Two subgraphs $H, H' \in \mathcal{H}$ are *twin-blocks* with respect to \mathcal{B} , denoted $H \sim_{\mathcal{B}} H'$, if there exists an isomorphism $\alpha_{H,H'}$ from H to H' with the following properties: (1) for each $u \in V(H)$ and $v \in X$, $uv \in E(G)$ if and only if $\alpha_{H,H'}(u)v \in E(G)$, and (2) for each $u \in V(H)$ and $r \in \mathbb{N}$, $B_r(u) \in \mathcal{B}$ if and only if $B_r(\alpha_{H,H'}(u)) \in \mathcal{B}$.

Proof Sketch.

Compute the witness $X \subset V(G)$ for the vertex integrity and the corresponding set \mathcal{H} of connected components. Classify the elements of \mathcal{H} w.r.t. the equivalence classes defined by $\sim_{\mathcal{B}}$.

Observation 1. There are at most $2^{\mathcal{O}(p^3)}$ equivalence classes, and the equivalence between two components can be tested in $p^{\mathcal{O}(p)}$ time,

Lemma 1.

The equivalence classes can be computed in $|V(G)| \cdot 2^{\mathcal{O}(p^3)} \cdot p^{\mathcal{O}(p)}$ time with brute force. Compute the equivalent reduced graph G' of G by removing some components of \mathcal{H} whose equivalence class is larger than some f(p). This is the crux of the algorithm, which is made possible by carefully analyzing hypothetical solutions.

Lemma 2. The set \mathcal{B}' induced by \mathcal{B} on G' can be computed in $|V(G')| \cdot \mathcal{O}(p^2) \cdot |V(G)| \cdot |V(G')|$ time.

The size of the instance (G', \mathcal{B}', k) is a function of p. Thus, we can compute a positive non-clashing teaching map of dimension at most k for \mathcal{B}' in time depending only on p.

* In *parameterized complexity*, the running-times of algorithms are studied with respect to a parameter $p \in \mathbb{N}$ and input size n. A parameterized problem is *fixed-parameter tractable* (FPT) if it can be solved by an algorithm running in time $f(p) \cdot n^{\mathcal{O}(1)}$, where f is a computable function. [Downey & Fellows, 1999; Cygan et al., 2015]

(4) lower bound excluding fixed-parameter tractability for NON-CLASH parameterized by k plus the feedback vertex number and pathwidth of G.

