Problems in NP can Admit Double-Exponential Lower Bounds when Parameterized by Treewidth or Vertex Cover

Florent Foucaud, Esther Galby, Liana Khazaliya, Shaohua Li, Fionn Mc Inerney, Roohani Sharma, Prafullkumar Tale

July 9, 2024
Part 1.
(In)tractability and Treewidth
Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{O(1)}$ for some function f

Develop algorithms for graphs which are large but have a small solution size

...or simply structured
Intractable problems and approaches

Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{O(1)}$ for some function f

Develop algorithms for graphs which are *large* but have a *small solution size*

...or simply *structured*
Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{O(1)}$ for some function f

Develop algorithms for graphs which are large but have a small solution size

...or simply structured
Def. A tree decomposition of G is a pair $\mathcal{T} = (T, \{X_t\}_{t \in V(T)})$, where T is a tree whose every node t is assigned a vertex subset $X_t \subseteq V(G)$, called a bag, with following conditions:

$\mathcal{T}1$. $\bigcup_{t \in V(T)} X_t = V(G)$;

$\mathcal{T}2$. For every $vw \in E(G)$, there exists a node t of T such that bag X_t contains both v and w;

$\mathcal{T}3$. For every $v \in V(G)$, the set $T_v = \{t \in V(T) | v \in X_t\}$ induces a connected subtree of T.

Def. The width of \mathcal{T} is $\max_{t \in V(T)} |X_t| - 1$.

Def. The treewidth $tw(G)$ is the minimum width over all tree decompositions of G.
The treewidth of a graph G is

$$\min \{ \omega(G^+) - 1 : G^+ \supseteq G \text{ and } G^+ \text{ is chordal} \}$$

The Cops-and-Robber Game

Treewidth is at most t if and only if $t + 1$ cops can always catch the robber in G in a monotone game if the robber is visible (to the cop player)

$$\text{tw}(K_n) = n - 1 \quad \text{tw}(P_n \times P_m) = \min(m, n) \quad \text{tw}(T) = 1$$
Many **NP-hard** problems are **FPT** parameterized by **treewidth** via dynamic programming on the tree decomposition.

For a given signature τ, **monadic second order logic** has

- element-variables (x, y, z, \ldots) and set-variables (X, Y, Z, \ldots)
- relations $=$ (equation) and $x \in X$ (membership), as well as relations from τ
- quantifiers \exists and \forall, as well as operators \land, \lor, \neg

If φ is a sentence, we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ)

Theorem [[Courcelle’90]]

For a MSO$_1$ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(tw(G), |\varphi|)n$ for some function f.
Conditional Lower Bounds

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{o(tw)}$, $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively Π^p_2-complete and Σ^p_3-complete [Marx, Mitsou, 2016]
- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number Σ^p_2-complete [Lampis, Mitsou, 2017]
Conditional Lower Bounds

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{o(tw)}$, $2^{o(tw \log tw)}$ or $2^{o(poly(tw))}$.

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020]

- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively [Marx, Mitsou, 2016]

- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number [Lampis, Mitsou, 2017]
Conditional Lower Bounds

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on \(n \) variables cannot be solved in time \(2^{o(n)} \).

Conditional lower bounds for \(\text{tw} \) are usually \(2^{o(\text{tw})} \), \(2^{o(\text{tw} \log \text{tw})} \) or \(2^{o(\text{poly}(\text{tw}))} \).

Rarer results: Unless the ETH fails,

- **QSAT** with \(k \) alternations admits a lower bound of a tower of exponents of height \(k \) in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]

- **\(k \)-Choosability** and **\(k \)-Choosability Deletion** admit double- and triple-exponential lower bounds in treewidth, respectively \(\Pi^p_2 \)-complete and \(\Sigma^p_3 \)-complete [Marx, Mitsou, 2016]

- **\(\exists \forall \)-CSP** admits a double-exponential lower bound in the vertex cover number \(\Sigma^p_2 \)-complete [Lampis, Mitsou, 2017]
Question.
Does any NP-complete problem require at least double-exponential running time?

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph \(\text{PSPACE-complete} \) \cite{fichte2020}

- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively \(\Pi^P_2 \text{-complete} \) and \(\Sigma^P_3 \text{-complete} \) \cite{marx2016}

- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number \(\Sigma^P_2 \text{-complete} \) \cite{lampis2017}
Part 2.

Metric Graph Problem(s)
Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$.

Def. The minimum size of a resolving set of G is the metric dimension of G.

![Graph with vertices and edges]
Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$.

Def. The minimum size of a resolving set of G is the metric dimension of G.

![Diagram](attachment:image.png)
Metric Dimension

[Slater '75, Harary, Melter '76]

Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with $d(z, u) \neq d(z, v)$.

Def. The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8.
Def. A **resolving set** is a $S \subseteq V(G)$ such that $\forall u, v \in V$, $\exists z \in S$ with $d(z, u) \neq d(z, v)$.

Def. The **minimum size** of a resolving set of G is the **metric dimension** of G.

Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.
Metric Dimension (MDim)

Metric Dimension

Input: An undirected simple graph G and a positive integer k

Question: Is $\text{md}(G) \leq k$?

<table>
<thead>
<tr>
<th>Polynomial-time</th>
<th>NP-complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trees</td>
<td>Arbitrary</td>
</tr>
<tr>
<td>Cographs</td>
<td>[Garey, Johnson'79]</td>
</tr>
<tr>
<td>Outerplanar</td>
<td>Split</td>
</tr>
<tr>
<td></td>
<td>[Epstein et al'15]</td>
</tr>
<tr>
<td></td>
<td>Bipartite</td>
</tr>
<tr>
<td></td>
<td>[Epstein et al'15]</td>
</tr>
<tr>
<td></td>
<td>Co-bipartite</td>
</tr>
<tr>
<td></td>
<td>[Epstein et al'15]</td>
</tr>
<tr>
<td></td>
<td>Planar</td>
</tr>
<tr>
<td></td>
<td>[Diaz et al'17]</td>
</tr>
<tr>
<td></td>
<td>Interval</td>
</tr>
<tr>
<td></td>
<td>[Foucaud et al'17]</td>
</tr>
</tbody>
</table>
Parameterized complexity of Metric Dimension

A lower parameter is upper bounded by a function of the higher one

- FPT $(f(k) \cdot n^{O(1)})$-time algorithm
- XP (n^k)-time algorithm
- W[1]-hard (not FPT unless FPT = W[1])
- para-NP-hard (not XP unless P = NP)

n: size of input
k: size of parameter
Parameterized complexity of Metric Dimension

From NP-hardness results on previous slide
Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set?

Q2: Complexity parameterised by treewidth?

W[2]-hard parameterised by solution size [Hartung, Nichterlein '13]

FPT \(f(k) \cdot n^{O(1)} \)-time algorithm

XP \(n^f(k) \)-time algorithm

W[1]-hard (not FPT unless FPT = W[1])

para-NP-hard (not XP unless P = NP)

\(n \): size of input

\(k \): size of parameter
Parameterized complexity of Metric Dimension

- **Minimum Clique Cover**
 - Distance to Clique
 - Distance to Co-Cluster
 - Distance to Cluster
 - Distance to Disjoint Paths
 - Feedback Edge Set
 - Treedepth
 - Bandwidth
 - Treewidth

- **Maximum Independent Set**
 - Distance to Cograph
 - Distance to Interval
 - Feedback Vertex Set
 - Pathwidth
 - Maximum Degree

- **Max Leaf Number**
 - Vertex Cover

- **Q1**: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

- **Q2**: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Diaz et al '17]

 Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]

- **Q1** answered for the combined parameter Feedback Vertex Set + Pathwidth [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

- **FPT** \((f(k) \cdot n^{O(1)})\)-time algorithm
- **XP** \((n^k)\)-time algorithm
- **W[1]-hard** (not FPT unless \(\text{FPT} = \text{W}[1]\))
- **para-NP-hard** (not XP unless \(\text{P} = \text{NP}\))

\(n\): size of input
\(k\): size of parameter

[Eppstein '15]
Parameterized complexity of Metric Dimension

- Distance to Clique
- Distance to Co-Cluster
- Distance to Cluster
- Distance to Disjoint Paths
- Feedback Edge Set
- Treedepth
- Bandwidth
- Pathwidth
- Maximum Degree
- Treewidth
- Minimum Clique Cover
- Maximum Independent Set
- Distance to Perfect
- Distance to Co-Cluster
- Distance to Cluster
- Feedback Vertex Set
- Maximum

- FPT \(f(k) \cdot n^{O(1)}\)-time algorithm
- XP \(n^{f(k)}\)-time algorithm
- W[1]-hard (not FPT unless FPT = W[1])
- para-NP-hard (not XP unless P = NP)

\(n \): size of input
\(k \): size of parameter

Q1: Complexity parameterised by Feedback Vertex Set?
Q2: Complexity parameterised by treewidth?

Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22].

Q1 answered for the combined parameter Feedback Vertex Set + Pathwidth [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23].

[Epstein et al '15]
Parameterized complexity of Metric Dimension

- **FPT** $(f(k) \cdot n^{O(1)}$-time algorithm)
- **XP** $(n^k$-time algorithm)
- **W[1]-hard** (not FPT unless FPT = W[1])
- **para-NP-hard** (not XP unless P = NP)

- n: size of input
- k: size of parameter

Q1: Complexity parameterised by Feedback Vertex Set?

Q2: Complexity parameterised by treewidth?

Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22].

Q1 answered for the combined parameter Feedback Vertex Set + Pathwidth [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]
Parameterized complexity of Metric Dimension

- **FPT** \((f(k) \cdot n^{O(1)}\)-time algorithm)
- **XP** \((n^k\)-time algorithm)
- **W[1]-hard** (not FPT unless FPT = W[1])
- **para-NP-hard** (not XP unless P = NP)

- **n**: size of input
- **k**: size of parameter

Complexity Parameterised by

- **Feedback Vertex Set**
 - Q1: [Hartung, Nichterlein '13]
- **treewidth**
 - Q2: [Eppstein '15], [Belmonte et al '17], [Diaz et al '17]

 Q2 answered first by [Bonnet, Purohit '21].

 Then, improved by [Li, Pilipczuk '22].

- **Feedback Vertex Set + Pathwidth** [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

FPT parameterised by

- treelength + max degree [Belmonte et al '17]
- and clique-width + diameter [Gima et al '21]
Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein ’13]
Q2: Complexity parameterised by treewidth? [Eppstein ’15], [Belmonte et al ’17], [Díaz et al ’17]
Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q2 answered first by [Bonnet, Purohit '21].
Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]

Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]
Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Q1 answered for the combined parameter Feedback Vertex Set + Pathwidth [Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]
Part 3.
Our Technique and MDim
Results

Theorem

Metric Dimension and Geodetic Set

- can be solved in $2^{\text{diam}O(tw)} \cdot n^{O(1)}$ time
- no $2^{f(\text{diam})o(tw)} \cdot n^{O(1)}$ time algorithm assuming ETH

Strong Metric Dimension

- can be solved in $2^{2^{O(vc)}} \cdot n^{O(1)}$ time, admits $2^{O(vc)}$ kernel
- no $2^{2^{o(vc)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

Source: [FGKLMST, 2024]
Theorem

Metric Dimension and Geodetic Set

- can be solved in $2^{\text{diam}^O(tw)} \cdot n^O(1)$ time
- no $2^{f(\text{diam})^o(tw)} \cdot n^O(1)$ time algorithm assuming ETH

Reduction.

3-Partitioned 3-SAT: $\varphi \rightarrow$ Metric Dimension: (G, k)

- $\text{tw}(G) = \log(n)$
- $\text{diam}(G) = \text{const}$
3-Partitioned 3-SAT

Input: 3-CNF formula φ with a partition of its variables into 3 disjoint sets X^α, X^β, and X^γ such that $|X^\alpha| = |X^\beta| = |X^\gamma| = n$ and each clause contains at most one variable from each of X^α, X^β, and X^γ.

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

3-Partitioned 3-SAT: no $2^{o(n)}$ time algorithm assuming ETH
Encode SAT with small separator

\[(x_1^\alpha \lor x_3^\beta \lor \overline{x_4^\gamma}) \land ((x_1^\alpha \lor x_4^\gamma) \land (x_3^\beta \lor \overline{x_4^\gamma}))\]

\[t_{2i}^\alpha \text{ represents } x_i^\alpha\]

\[f_{2i-1}^\alpha \text{ represents } \overline{x_i^\alpha}\]
Set-Representation Gadget

\((x_1^\alpha \lor x_3^\beta \lor x_4^\gamma) \land (\overline{x_1^\alpha} \lor x_4^\gamma) \land (\overline{x_3^\beta} \lor \overline{x_4^\gamma})\)
Let F_p be the collection of subsets of \{1, \ldots, 2p\} that contain exactly p integers.

No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$.

We define a 1-to-1 function $\text{set-rep} : \{1, \ldots, 2n\} \rightarrow F_p$.

t_2^α is the only vertex in A^α that does not share a common neighbour with $c_1 = (x_1^\alpha \lor x_3^\beta \lor \overline{x_4}^\gamma)$.
Let F_p be the collection of subsets of $\{1, \ldots, 2p\}$ that contain exactly p integers.

No set in F_p is contained in another set in F_p (Sperner family).

There exists $p = O(\log n)$ s.t. $\binom{2p}{p} \geq 2n$.

We define a 1-to-1 function

$$\text{set-rep} : \{1, \ldots, 2n\} \rightarrow F_p.$$

t_2^α is the only vertex in A^α that does not share a common neighbour with $c_1 = (x_1^\alpha \lor x_3^\beta \lor \overline{x_4}^\gamma)$.
Observation. For any twins $u, v \in V(G)$ and any resolving set S of G, $S \cap \{u, v\} \neq \emptyset$.

- For any resolving set S, $|S \cap \text{bits}(X)| \geq \log(|X|) + 1$
- $|S \cap \text{bits}(X)|$ distinguishes each vertex in $X \cup \text{bit-rep}(X)$ from every other vertex in G
- $\text{nullifier}(X)$ guarantees that the rest part of $V(G)$ does not affected by the gadget

Purple edges represent all possible edges
Lower bound for Metric Dimension parameterized by tw

nullifier(X^α) nullifier(A^α) nullifier(V^α) nullifier(C)

bit-rep(X^α) bit-rep(A^α) bit-rep(V^α) bit-rep(C)

X^α A^α V^α C

Purple — all possible edges
Blue — set-rep
Red — complementary to blue

Note: $tw(G) = \log(n)$
$diam(G) = \text{const}$

Theorem [FGKLMST, 2024]

Metric Dimension: no $2^{f(diam)^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming ETH
Lower bound for Metric Dimension parameterized by tw

Theorem [FGKLMST, 2024]

Metric Dimension: no $2^{f(diam)^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming ETH
Lower bound for Metric Dimension parameterized by tw

Theorem

Metric Dimension: no $2^{f(diam)^{o(tw)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Note: $tw(G) = \log(n)$

$diam(G) = \text{const}$
Part 4.
Other Results and Applications
Geodetic Set

Input: An undirected simple graph G

Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_1, s_2 \in S$ such that a shortest path from s_1 to s_2 contains u?

Theorem [FGKLMST, 2024]

Geodetic Set

- no $2^{f(\text{diam})^{o(\text{tw})}} \cdot n^{O(1)}$ time algorithm assuming ETH
Strong Metric Dimension

Input: An undirected simple graph G

Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any pair of vertices $u, v \in V(G)$, there exists a vertex $w \in S$ such that either u lies on some shortest path between v and w, or v lies on some shortest path between u and w?

Theorem [FGKLMST, 2024]

Strong Metric Dimension

- no $2^{\omega(v_c)} \cdot n^{O(1)}$ time algorithm, or $2^{o(v_c)}$ kernel, assuming ETH
Theorem

Metric Dimension and Geodetic Set

- Can be solved in $2^{\text{diam}O(^{tw})} \cdot n^{O(1)}$ time
- No $2^{f(\text{diam})o(^{tw})} \cdot n^{O(1)}$ time algorithm assuming ETH

Theorem

Strong Metric Dimension

- Can be solved in $2^{2O(^{vc})} \cdot n^{O(1)}$ time, admits $2^{O(^{vc})}$ kernel
- No $2^{2o(^{vc})} \cdot n^{O(1)}$ time algorithm, or $2^{o(^{vc})}$ kernel, assuming ETH
Applications of the Technique

Theorem
[Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

Positive Non-Clashing Teaching Dimension for Balls in Graphs

- no $2^{o(vc)} \cdot n^{O(1)}$ time algorithm, or $2^{o(vc)}$ kernel, assuming ETH

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Theorem</th>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications of the Technique</td>
<td>Applications of the Technique</td>
<td>Applications of the Technique</td>
</tr>
<tr>
<td>Theorem</td>
<td>Theorem</td>
<td>Theorem</td>
</tr>
<tr>
<td>[Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]</td>
<td>[Chakraborty, Foucaud, Majumdar, Tale, 2024]</td>
<td>[Chakraborty, Foucaud, Majumdar, Tale, 2024]</td>
</tr>
<tr>
<td>Positive Non-Clashing Teaching Dimension for Balls in Graphs</td>
<td>Locating-Dominating Set (resp., Test Cover)</td>
<td>Locating-Dominating Set (resp., Test Cover)</td>
</tr>
<tr>
<td>- no $2^{o(tc)} \cdot n^{O(1)}$ time algorithm, or $2^{o(tc)}$ kernel, assuming ETH</td>
<td>- no $2^{o(tc)} \cdot n^{O(1)}$ (resp., $2^{o(tc)}(</td>
<td>U</td>
</tr>
</tbody>
</table>
Part 5.
Open Problems
Open Questions

Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.

Q2: For which classic problems in NP are the best known FPT algorithms parameterized by tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?
... and for Metric Dimension

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?

Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?

Q6: Distance to Disjoint Paths? Bandwidth?
Further directions

Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.

Q2: For which classic problems in NP are the best known FPT algorithms parameterized by tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms output a kernel with $2^{O(vc)}$ vertices?

For Metric Dimension:

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?

Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?

Q6: Distance to Disjoint Paths? Bandwidth?