Upward and Orthogonal Planarity are W[1]-hard by Treewidth

Bart M. P. Jansen, **Liana Khazaliya**, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, Kirill Simonov

March 5, 2024

Classical variants of planarity

Directed graph \vec{G}

Upward planar drawing

Orthogonal drawing

With fixed embedding: With variable embedding: poly-time solvable NP-complete [Tamassia'87; BBLM'94] [Garg, Tamassia'01]

Fixed-parameter tractability is a framework to deal with NP-hard problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

With fixed embedding: With variable embedding: poly-time solvable NP-complete [Tamassia'87; BBLM'94] [Garg, Tamassia'01]

Fixed-parameter tractability is a framework to deal with NP-hard problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

With fixed embedding:poly-time solvable[Tamassia'87; BBLM'94]With variable embedding:NP-complete[Garg, Tamassia'01]

Develop algorithms for graphs which are large but simply structured

poly: SP-graphs (both); max deg < 4 (RP); single source (UP)

FPT: treedepth (UP), number of triconnected components (UP), number of sources (UP), number of vertices of degree 4 (RP)

For the variable embedding: $n^{O(tw)}$ -algorithms Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] Upward: [SoCG 2022, S. Chaplick et al.]

Question:

[SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

For the variable embedding: $n^{O(tw)}$ -algorithms Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] Upward: [SoCG 2022, S. Chaplick et al.]

Question:

[SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

For the variable embedding: $n^{O(tw)}$ -algorithms Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Both Upward and Orthogonal Planarity testing are W[1]-hard.

For the variable embedding: $n^{\mathcal{O}(tw)}$ -algorithms Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Known $n^{\mathcal{O}(tw)}$ -algorithms cannot be improved to $n^{o(tw)}$ under ETH.

Overview [Key steps]

Multicolored Clique

All-or-Nothing Flow on Planar graphs

Circulating Orientation on Planar graphs

Orthogonal/Upward Planarity Testing

Concluding Remarks

Multicolored Clique to All-or-Nothing Flow

```
MULTICOLORED CLIQUE

Input: An undirected simple graph G and a partition of its vertex set into k

sets V_1, \ldots, V_k, each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique C \subseteq V(G) such that |C \cap V_i| = 1 for

each i \in [k]?
```

Multicolored Clique (MClique)

MULTICOLORED CLIQUE Input: An undirected simple graph *G* and a partition of its vertex set into *k* sets V_1, \ldots, V_k , each consisting of *N* vertices. Parameter: *k*. Question: Does *G* contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

Multicolored Clique (MClique)

MULTICOLORED CLIQUE Input: An undirected simple graph *G* and a partition of its vertex set into *k* sets V_1, \ldots, V_k , each consisting of *N* vertices. Parameter: *k*. Question: Does *G* contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

¹XNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al. Problems Hard for Treewidth but Easy for Stable Gonality, WG'22

All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

AoNF: (G', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even. <u>Non</u>-edge $v_{1,2}v_{k,1}$ of G.

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even. <u>Non</u>-edge $v_{1,2}v_{k,1}$ of G.

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even. <u>Non</u>-edge $v_{1,2}v_{k,1}$ of G.

AoNF: (G', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

Planarization of the AoNF

Observation

Planarizing a crossing of two edges via a degree-4 vertex does not change the answer, when the capacities of the edges differ.

AoNF: (G', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

Planar AoNF: (G'', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

First remark: bounded pathwidth

All-or-Nothing Flow (planar) to Circulating Orientation

All-or-Nothing Flow (AoNF)

All-or-Nothing Flow (AoNF)

CIRCULATING ORIENTATION Input: An undirected graph G with an edge-capacity function $c \colon E(G) \to \mathbb{Z}_{\geq 0}$. Question: Is it possible to orient the edges of G, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into v is equal to the total capacity of edges oriented out of v? (Such an orientation is called a circulating orientation.)

Circulating Orientation (CO)

All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an *st*-flow of value exactly \mathcal{F} , such that the flow through any arc $uv \in E(G)$ is either 0 or equal to c(uv)?

CIRCULATING ORIENTATION

Input: An undirected graph *G* with an edge-capacity function $c: E(G) \to \mathbb{Z}_{\geq 0}$. **Question:** Is it possible to orient the edges of *G*, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into *v* is equal to the total capacity of edges oriented out of *v*?

AoNF to CO

 $\forall v \in V(G) \setminus \{s, t\}: \ d_G^+(v) = d_G^-(v),$ the source has no incoming arcs,
the sink has no outgoing arcs,
and $\mathcal{F} = d_G^+(s)/2 = d_G^-(t)/2.$

Second remark: a nice embedding

Circulating Orientation to Upward Planarity Testing

Theorem (Biedl'16)

There is a polynomial-time algorithm that, given a simple planar graph G of pathwidth k on at least three vertices, outputs a plane triangulation G' of G such that $pw(G') \in O(k)$.

Triangulated instance of CO

Dual Graph

Theorem (Amini, Huc, and Pérennes'09)

For a triconnected planar graph G, $pw(G^*) \leq 3 pw(G) + 2$, where G^* is the dual graph of G.

st-Planar graph

A digraph *G* is an <u>st-planar graph</u> if it admits a planar embedding such that:

(1) it contains no directed cycle;

(2) it contains a single source vertex *s* and a single sink vertex *t*;

(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an *st*-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

st-Planar graph

A digraph *G* is an <u>st-planar graph</u> if it admits a planar embedding such that:

(1) it contains no directed cycle;

(2) it contains a single source vertex *s* and a single sink vertex *t*;

(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

st-Planar graph

A digraph *G* is an <u>st-planar graph</u> if it admits a planar embedding such that:

(1) it contains no directed cycle;

(2) it contains a single source vertex *s* and a single sink vertex *t*;

(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

Orienting the Dual Graph

Angle Assignment

Theorem (BBLM'94, DGL'09)

Let \mathcal{E} be a planar embedding of the underlying graph of G, and λ be an assignment of each angle of each face in \mathcal{E} to a value in $\{-1, 0, 1\}$. Then \mathcal{E} and λ define an upward planar embedding of G if and only if the following properties hold:

UP3 If f is a face of G, then

$$n_1(f) - n_{-1}(f) = \begin{cases} -2 & \text{if } f \text{ is an internal face} \\ +2 & \text{if } f \text{ is the outer face.} \end{cases}$$

Tendril² Gadget

²A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Orienting the Dual Graph

Reduction Idea: Face Balancing

... and Orthogonal Planarity Testing

- Important that we start with a triangulated graph
- Subdivision of edges to allow an orthogonal embedding
- Orthogonal Tendril³

 $^{^{3}\}mbox{A}.$ Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Concluding remarks

We have proved that

Known $n^{\mathcal{O}(tw)}$ -algorithms cannot be improved to $n^{o(tw)}$ under ETH.

What other points are also one might find interesting:

- Alternative⁴ proof of NP-completeness
- Hardness extends for cutwidth of the primal

⁴A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

- Membership in XNLP⁵ of both Upward and Orthogonal Planarity Testing:
 can be solved nondeterministically in time f(k)n^{O(1)} and space f(k)log(n)?
- $\bullet\,$ FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph
- More restrictive parameterizations may yield FPT algorithms

⁵H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT time and Logarithmic Space, FOCS'21

Further directions

- Membership in XNLP
- Cutwidth of the dual graph
- Other parameterizations

<u>Contents</u>

Overview [Key steps] MClique to AoNF Planar AoNF AoNF-pl to CO CO to UpPlanarity CO to OrtPlanarity Remarks

(Parameterized) Space Complexity Classes

XNLP was introduced as $N[fpoly, f \log]$ by [Elberfeld et al., IPEC 2012]

L NL	deterministic space $\mathcal{O}(\log n)$ nondeterministic space $\mathcal{O}(\log n)$	time $n^{\mathcal{O}(1)}$ time $n^{\mathcal{O}(1)}$
XL XNL	deterministic space $f(k) \cdot \log n$ nondeterministic space $f(k) \cdot \log n$	$\underline{\text{no}} f(k) \cdot n^{\mathcal{O}(1)}$ time $\underline{\text{no}} f(k) \cdot n^{\mathcal{O}(1)}$ time
XNLP	nondeterministic space $f(k) \cdot \log n$	and time $f(k) \cdot n^c$

Slice-wise Polynomial Space Conjecture [Pilipczuk and Wrochna 2018] XNLP-hard problems do not have an algorithm that runs in $n^{f(k)}$ time and $f(k) \cdot n^{\mathcal{O}(1)}$ space.