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Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable [Tamassia’87; BBLM’94]
With variable embedding: NP-complete [Garg, Tamassia’01]

Fixed-parameter tractability is a framework to deal with NP-hard problems:

• Choose a complexity parameter k independent of the input size n

• Find an OPT solution in time f (k) · nO(1) for some function f
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Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable [Tamassia’87; BBLM’94]
With variable embedding: NP-complete [Garg, Tamassia’01]

Develop algorithms for graphs which are large but simply structured

poly: SP-graphs (both); max deg < 4 (RP); single source (UP)

FPT: treedepth (UP), number of triconnected components (UP), number of
sources (UP), number of vertices of degree 4 (RP)
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Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: nO(tw)-algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]
Upward: [SoCG 2022, S. Chaplick et al.]

Question: [SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?
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Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: nO(tw)-algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]
Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Both Upward and Orthogonal Planarity testing are W[1]-hard.
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Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: nO(tw)-algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]
Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Known nO(tw)-algorithms cannot be improved to no(tw) under ETH.
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Overview [Key steps]



Outline

Multicolored Clique

All-or-Nothing Flow on Planar graphs

Circulating Orientation on Planar graphs

Orthogonal/Upward Planarity Testing

Concluding Remarks
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Multicolored Clique to
All-or-Nothing Flow



Multicolored Clique (MClique)

Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k

sets V1, . . . ,Vk , each consisting of N vertices.
Parameter: k .
Question: Does G contain a clique C ⊆ V (G ) such that |C ∩ Vi | = 1 for
each i ∈ [k]?
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All-or-Nothing Flow1 (AoNF)

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?

1XNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al.
Problems Hard for Treewidth but Easy for Stable Gonality, WG’22

7



All-or-Nothing Flow (AoNF)

Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k

sets V1, . . . ,Vk , each consisting of N vertices.
Parameter: k .
Question: Does G contain a clique C ⊆ V (G ) such that |C ∩ Vi | = 1 for
each i ∈ [k]?

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?
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All-or-Nothing Flow (AoNF)

Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k

sets V1, . . . ,Vk , each consisting of N vertices.
Parameter: k .
Question: Does G contain a clique C ⊆ V (G ) such that |C ∩ Vi | = 1 for
each i ∈ [k]?

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?
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AoNF: (G ′, c , s, t) and F = k(2kN + 2N)
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MClique: (G , (V1,V2, . . . ,Vk)), |Vi | = N

Vi = {vi ,1, vi ,2, . . . , vi ,N}.
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AoNF: (G ′, c , s, t) and F = k(2kN + 2N)
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Planarization of the AoNF



Observation
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Planarizing a crossing of two edges via a
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AoNF: (G ′, c , s, t) and F = k(2kN + 2N)
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Planar AoNF: (G ′′, c , s, t) and F = k(2kN + 2N)
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First remark: bounded pathwidth
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All-or-Nothing Flow (planar)
to Circulating Orientation



All-or-Nothing Flow (AoNF)

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?
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All-or-Nothing Flow (AoNF)

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?
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Circulating Orientation (CO)

Circulating Orientation
Input: An undirected graph G with an edge-capacity function c : E (G ) → Z≥0.
Question: Is it possible to orient the edges of G , such that for each vertex v ∈
V (G ) the total capacity of edges oriented into v is equal to the total capacity of
edges oriented out of v? (Such an orientation is called a circulating orientation.)
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Circulating Orientation (CO)

All or Nothing Flow
Input: A flow network (G , c , s, t) and a positive integer F .
Question: Does there exist an st-flow of value exactly F , such that the flow
through any arc uv ∈ E (G ) is either 0 or equal to c(uv)?

Circulating Orientation
Input: An undirected graph G with an edge-capacity function c : E (G ) → Z≥0.
Question: Is it possible to orient the edges of G , such that for each vertex v ∈
V (G ) the total capacity of edges oriented into v is equal to the total capacity
of edges oriented out of v?
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AoNF to CO

∀ v ∈ V (G ) \ {s, t}: d+
G (v) = d−

G (v),
the source has no incoming arcs,

the sink has no outgoing arcs,
and F = d+

G (s)/2 = d−
G (t)/2.7
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AoNF to CO
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AoNF to CO
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Second remark: a nice embedding
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Circulating Orientation to
Upward Planarity Testing



Black box

Theorem (Biedl’16)
There is a polynomial-time algorithm that, given a simple planar graph G of
pathwidth k on at least three vertices, outputs a plane triangulation G ′ of G
such that pw(G ′) ∈ O(k).
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Triangulated instance of CO
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Dual Graph
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Black Box #2

Theorem (Amini, Huc, and Pérennes’09)

For a triconnected planar graph G , pw(G ∗) ≤ 3 pw(G ) + 2, where G ∗ is the
dual graph of G .
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st-Planar graph

A digraph G is an st-planar graph if it admits a
planar embedding such that:

(1) it contains no directed cycle;
(2) it contains a single source vertex s and a single

sink vertex t;
(3) s and t both belong to the external face of the

planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding
(up to its outer face).
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Orienting the Dual Graph
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Angle Assignment
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Characterization of UP-graphs

Theorem (BBLM’94, DGL’09)
Let E be a planar embedding of the underlying graph of G , and λ be an assignment of each angle of each face in E to a value in
{−1, 0, 1}. Then E and λ define an upward planar embedding of G if and only if the following properties hold:

UP0 If α is a switch angle, then λ(α) ∈ {−1, 1}, and if α is a flat angle, then λ(α) = 0.
UP1 If v is a switch vertex of G , then n1(v) = 1, n−1(v) = deg(v) − 1, n0(v) = 0.
UP2 If v is a non-switch vertex of G , then n1(v) = 0, n−1(v) = deg(v) − 2, n0(v) = 2.

UP3 If f is a face of G , then

n1(f )− n−1(f ) =

−2 if f is an internal face,

+2 if f is the outer face.
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Tendril2 Gadget

s

t

s

t

T3

2A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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Orienting the Dual Graph
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Reduction Idea: Face Balancing

u
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... and Orthogonal Planarity
Testing



Differences

• Important that we start with a triangulated graph

• Subdivision of edges to allow an orthogonal embedding

• Orthogonal Tendril3

3A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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Concluding remarks



Remarks

We have proved that

Known nO(tw)-algorithms cannot be improved to no(tw) under ETH.

What other points are also one might find interesting:

• Alternative4 proof of NP-completeness

• Hardness extends for cutwidth of the primal

4A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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Further

• Membership in XNLP5 of both Upward and Orthogonal Planarity Testing:
can be solved nondeterministically in time f (k)nO(1) and space f (k)log(n)?

• FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph

• More restrictive parameterizations may yield FPT algorithms

5H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT
time and Logarithmic Space, FOCS’21
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Thank you for your attention!

Further directions

• Membership in XNLP

• Cutwidth of the dual graph

• Other parameterizations

Сontents
Overview [Key steps]
MClique to AoNF
Planar AoNF
AoNF-pl to CO
CO to UpPlanarity
CO to OrtPlanarity
Remarks
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(Parameterized) Space Complexity Classes

XNLP was introduced as N[f poly, f log] by [Elberfeld et al., IPEC 2012]

L
NL

XL
XNL

XNLP

deterministic space O(log n)

nondeterministic space O(log n)

deterministic space f (k) · log n
nondeterministic space f (k) · log n

nondeterministic space f (k) · log n

time nO(1)

time nO(1)

no f (k) · nO(1) time
no f (k) · nO(1) time

and time f (k) · nc

Slice-wise Polynomial Space Conjecture [Pilipczuk and Wrochna 2018]

XNLP-hard problems do not have an algorithm that runs in nf (k) time and
f (k) · nO(1) space.
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