Upward and Orthogonal Planarity are W[1]-hard by Treewidth

Bart M. P. Jansen, Liana Khazaliya, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, Kirill Simonov

March 5, 2024

Classical variants of planarity

Directed graph \vec{G}

Orthogonal drawing

Upward/Orthogonal Planarity Testing

With fixed embedding:
With variable embedding:
poly-time solvable NP-complete
[Tamassia'87; BBLM'94]
[Garg, Tamassia'01]
> is a framework to deal with NP-hard problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable
With variable embedding:
[Tamassia'87; BBLM'94] [Garg, Tamassia'01]

Fixed-parameter tractability is a framework to deal with NP-hard problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Upward/Orthogonal Planarity Testing

With fixed embedding:	poly-time solvable	[Tamassia'87; BBLM'94]
With variable embedding:	NP-complete	[Garg, Tamassia'01]

Develop algorithms for graphs which are large but simply structured
poly: SP-graphs (both); max deg <4 (RP); single source (UP)
FPT: treedepth (UP), number of triconnected components (UP), number of sources (UP), number of vertices of degree 4 (RP)

Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: $n^{\mathcal{O}(\mathrm{tw})}$-algorithms

$$
\begin{aligned}
& \text { Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] } \\
& \text { Upward: } \\
& \text { [SoCG 2022, S. Chaplick et al.] }
\end{aligned}
$$

Question:
Is Unward Planarity W[1]-hard of FPT when parameterized by tw?

Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: $n^{\mathcal{O}(\mathrm{tw})}$-algorithms

$$
\begin{aligned}
& \text { Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] } \\
& \text { Upward: } \\
& \text { [SoCG 2022, S. Chaplick et al.] }
\end{aligned}
$$

Question:
[SoCG 2022, S. Chaplick et al.]
Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: $n^{\mathcal{O}(\mathrm{tw})}$-algorithms

$$
\begin{aligned}
& \text { Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] } \\
& \text { Upward: } \\
& \text { [SoCG 2022, S. Chaplick et al.] }
\end{aligned}
$$

Our Main Result:
Both Upward and Orthogonal Planarity testing are W[1]-hard.

Upward/Orthogonal Planarity Testing: treewidth

For the variable embedding: $n^{\mathcal{O}(\mathrm{tw})}$-algorithms

$$
\begin{aligned}
& \text { Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani] } \\
& \text { Upward: } \\
& \text { [SoCG 2022, S. Chaplick et al.] }
\end{aligned}
$$

Our Main Result:
Known $n^{\mathcal{O}(\mathrm{tw})}$-algorithms cannot be improved to $n^{\circ(\mathrm{tw})}$ under ETH.

Overview [Key steps]

Outline

Multicolored Clique
All-or-Nothing Flow on Planar graphs
Circulating Orientation on Planar graphs
Orthogonal/Upward Planarity Testing
Concluding Remarks

Multicolored Clique to
 All-or-Nothing Flow

Multicolored Clique (MClique)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_{1}, \ldots, V_{k}, each consisting of N vertices.
Parameter: k.
Question: Does G contain a clique $C \subseteq V(G)$ such that $\left|C \cap V_{i}\right|=1$ for each $i \in[k]$?

Multicolored Clique (MClique)

```
Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k
sets }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{k}{}\mathrm{ , each consisting of }N\mathrm{ vertices.
Parameter: k.
Question: Does G contain a clique C\subseteqV(G) such that }|C\cap\mp@subsup{V}{i}{}|=1\mathrm{ for
each i\in[k]?
```


Multicolored Clique (MClique)

```
Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k
sets }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{k}{}\mathrm{ , each consisting of }N\mathrm{ vertices.
Parameter: k.
Question: Does G contain a clique C\subseteqV(G) such that }|C\cap\mp@subsup{V}{i}{}|=1\mathrm{ for
each i\in[k]?
```


All-or-Nothing Flow ${ }^{1}$ (AoNF)

> All or Nothing Flow
> Input: A flow network (G, c, s, t) and a positive integer \mathcal{F}.
> Question: Does there exist an st-flow of value exactly \mathcal{F}, such that the flow through any arc $u v \in E(G)$ is either 0 or equal to $c(u v)$?

[^0]
All-or-Nothing Flow (AoNF)

```
Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k
sets }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{k}{}\mathrm{ , each consisting of }N\mathrm{ vertices.
Parameter: k.
Question: Does G contain a clique C\subseteqV(G) such that }|C\cap\mp@subsup{V}{i}{}|=1\mathrm{ for
each i\in[k]?
```

All or Nothing Flow
Input: A flow network (G, c, s, t) and a positive integer \mathcal{F}.
Question: Does there exist an st-flow of value exactly \mathcal{F}, such that the flow
through any arc $u v \in E(G)$ is either 0 or equal to $c(u v)$?

All-or-Nothing Flow (AoNF)

```
Multicolored Clique
Input: An undirected simple graph G and a partition of its vertex set into k
sets }\mp@subsup{V}{1}{},\ldots,\mp@subsup{V}{k}{}\mathrm{ , each consisting of }N\mathrm{ vertices.
Parameter: k.
Question: Does G contain a clique C\subseteqV(G) such that }|C\cap\mp@subsup{V}{i}{}|=1\mathrm{ for
each i\in[k]?
```


All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F}.
Question: Does there exist an st-flow of value exactly \mathcal{F}, such that the flow through any arc $u v \in E(G)$ is either 0 or equal to $c(u v)$?

AoNF: $\left(G^{\prime}, c, s, t\right)$ and $\mathcal{F}=k(2 k N+2 N)$

MClique: $\left(G,\left(V_{1}, V_{2}, \ldots, V_{k}\right)\right),\left|V_{i}\right|=N$

$$
V_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, N}\right\}
$$

Non-edge $v_{1,2} v_{k, 1}$ of G.

Inflow $\in[2 k N+2,2 k N+2 N] ;$
Inflow is even.

MClique: $\left(G,\left(V_{1}, V_{2}, \ldots, V_{k}\right)\right),\left|V_{i}\right|=N$

$$
V_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, N}\right\}
$$

Inflow $\in[2 k N+2,2 k N+2 N] ;$
Inflow is even.
Non-edge $v_{1,2} v_{k, 1}$ of G.

MClique: $\left(G,\left(V_{1}, V_{2}, \ldots, V_{k}\right)\right),\left|V_{i}\right|=N$

$$
V_{i}=\left\{v_{i, 1}, v_{i, 2}, \ldots, v_{i, N}\right\}
$$

Non-edge $v_{1,2} v_{k, 1}$ of G.

Inflow $\in[2 k N+2,2 k N+2 N] ;$
Inflow is even.

AoNF: $\left(G^{\prime}, c, s, t\right)$ and $\mathcal{F}=k(2 k N+2 N)$

Planarization of the AoNF

Observation

Planarizing a crossing of two edges via a degree-4 vertex does not change the answer, when the capacities of the edges differ.

AoNF: $\left(G^{\prime}, c, s, t\right)$ and $\mathcal{F}=k(2 k N+2 N)$

Planar AoNF: $\left(G^{\prime \prime}, c, s, t\right)$ and $\mathcal{F}=k(2 k N+2 N)$

First remark: bounded pathwidth

All-or-Nothing Flow (planar) to Circulating Orientation

All-or-Nothing Flow (AoNF)

```
All or Nothing Flow
Input: A flow network ( \(G, c, s, t\) ) and a positive integer \(\mathcal{F}\).
Question: Does there exist an st-flow of value exactly \(\mathcal{F}\), such that the flow
through any arc \(u v \in E(G)\) is either 0 or equal to \(c(u v)\) ?
```


All-or-Nothing Flow (AoNF)

```
All or Nothing Flow
Input: A flow network ( \(G, c, s, t\) ) and a positive integer \(\mathcal{F}\).
Question: Does there exist an st-flow of value exactly \(\mathcal{F}\), such that the flow through any arc \(u v \in E(G)\) is either 0 or equal to \(c(u v)\) ?
```


Circulating Orientation (CO)

Circulating Orientation

Input: An undirected graph G with an edge-capacity function $c: E(G) \rightarrow \mathbb{Z}_{\geq 0}$. Question: Is it possible to orient the edges of G, such that for each vertex $v \in$ $V(G)$ the total capacity of edges oriented into v is equal to the total capacity of edges oriented out of v ? (Such an orientation is called a circulating orientation.)

Circulating Orientation (CO)

```
All or Nothing Flow
Input: A flow network ( }G,c,s,t)\mathrm{ and a positive integer }\mathcal{F
Question: Does there exist an st-flow of value exactly }\mathcal{F}\mathrm{ , such that the flow
through any arc uv \inE (G) is either 0 or equal to c(uv)?
```

```
Circulating Orientation
Input: An undirected graph G with an edge-capacity function c: }E(G)->\mp@subsup{\mathbb{Z}}{\geq0}{}\mathrm{ .
Question: Is it possible to orient the edges of G, such that for each vertex }v
V(G) the total capacity of edges oriented into v}\mathrm{ is equal to the total capacity
of edges oriented out of v?
```


AoNF to CO

Second remark: a nice embedding

Circulating Orientation to
Upward Planarity Testing

Black box

Theorem (Biedl'16)

There is a polynomial-time algorithm that, given a simple planar graph G of pathwidth k on at least three vertices, outputs a plane triangulation G^{\prime} of G such that $\mathrm{pw}\left(\mathrm{G}^{\prime}\right) \in \mathcal{O}(k)$.

Triangulated instance of CO

Dual Graph

Black Box \#2

Theorem (Amini, Huc, and Pérennes'09)
For a triconnected planar graph $G, \operatorname{pw}\left(G^{*}\right) \leq 3 \mathrm{pw}(G)+2$, where G^{*} is the dual graph of G.

st-Planar graph

A digraph G is an st-planar graph if it admits a planar embedding such that:
(1) it contains no directed cycle;
(2) it contains a single source vertex s and a single sink vertex t;
(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph
A triconnected st-planar graph has a unique upward planar embedding
(up to its outer face).

st-Planar graph

A digraph G is an st-planar graph if it admits a planar embedding such that:
(1) it contains no directed cycle;
(2) it contains a single source vertex s and a single sink vertex t;
(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.

A triconnected st-planar graph has a unique upward planar embedding
(up to its outer face).

st-Planar graph

A digraph G is an st-planar graph if it admits a planar embedding such that:
(1) it contains no directed cycle;
(2) it contains a single source vertex s and a single sink vertex t;
(3) s and t both belong to the external face of the planar embedding.

A digraph G is upward if and only if G is a subgraph of an st-planar graph.
A triconnected st-planar graph has a unique upward planar embedding (up to its outer face).

Orienting the Dual Graph

Angle Assignment

Characterization of UP-graphs

Theorem (BBLM'94, DGL'09)

Let \mathcal{E} be a planar embedding of the underlying graph of G, and λ be an assignment of each angle of each face in \mathcal{E} to a value in
$\{-1,0,1\}$. Then \mathcal{E} and λ define an upward planar embedding of G if and only if the following properties hold:
UPO If α is a switch angle, then $\lambda(\alpha) \in\{-1,1\}$, and if α is a flat angle, then $\lambda(\alpha)=0$.
UP1 If v is a switch vertex of G, then $n_{1}(v)=1, n_{-1}(v)=\operatorname{deg}(v)-1, n_{0}(v)=0$.
UP2 If v is a non-switch vertex of G, then $n_{1}(v)=0, n_{-1}(v)=\operatorname{deg}(v)-2, n_{0}(v)=2$.
UP3 If f is a face of G, then

$$
n_{1}(f)-n_{-1}(f)= \begin{cases}-2 & \text { if } f \text { is an internal face } \\ +2 & \text { if } f \text { is the outer face }\end{cases}
$$

Tendri² ${ }^{2}$ Gadget

[^1]
Orienting the Dual Graph

Reduction Idea: Face Balancing

... and Orthogonal Planarity

Testing

Differences

- Important that we start with a triangulated graph
- Subdivision of edges to allow an orthogonal embedding
- Orthogonal Tendril ${ }^{3}$

[^2]
Concluding remarks

Remarks

We have proved that

$$
\text { Known } n^{\mathcal{O}(\mathrm{tw}) \text {-algorithms cannot be improved to } n^{\circ(\mathrm{tw})} \text { under ETH. } . \text {. }{ }^{\text {. }} \text {. }}
$$

What other points are also one might find interesting:

- Alternative ${ }^{4}$ proof of NP-completeness
- Hardness extends for cutwidth of the primal

[^3]
Further

- Membership in XNLP ${ }^{5}$ of both Upward and Orthogonal Planarity Testing: can be solved nondeterministically in time $f(k) n^{\mathcal{O}(1)}$ and space $f(k) \log (n)$?
- FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph
- More restrictive parameterizations may yield FPT algorithms

[^4]
Thank you for your attention!

Contents

Overview [Key steps]
MClique to AoNF
Planar AoNF
AoNF-pl to CO
CO to UpPlanarity CO to OrtPlanarity
Remarks

(Parameterized) Space Complexity Classes

XNLP was introduced as $N[f$ poly, f log] by [Elberfeld et al., IPEC 2012]

L
NL
XL
XNL
XNLP
deterministic space $\mathcal{O}(\log n)$ nondeterministic space $\mathcal{O}(\log n)$ deterministic space $f(k) \cdot \log n$ nondeterministic space $f(k) \cdot \log n$ nondeterministic space $f(k) \cdot \log n$
time $n^{\mathcal{O}(1)}$ time $n^{\mathcal{O}(1)}$ no $f(k) \cdot n^{\mathcal{O}(1)}$ time no $f(k) \cdot n^{\mathcal{O}(1)}$ time and time $f(k) \cdot n^{c}$

Slice-wise Polynomial Space Conjecture [Pilipczuk and Wrochna 2018]

XNLP-hard problems do not have an algorithm that runs in $n^{f(k)}$ time and $f(k) \cdot n^{\mathcal{O}(1)}$ space.

[^0]: ${ }^{1}$ XNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al. Problems Hard for Treewidth but Easy for Stable Gonality, WG'22

[^1]: ${ }^{2}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

[^2]: ${ }^{3}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

[^3]: ${ }^{4}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

[^4]: ${ }^{5}$ H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT time and Logarithmic Space, FOCS'21

