Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

by Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, Martin Nöllenburg

Bend-minimal Orthogonal Extension Problem (BMOE)

InPuT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G, \beta \in \mathbb{Z}$:
$\langle G, H \subseteq G, \Gamma(H)\rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

Definitions

The complement $X=V(G) \backslash V(H)$ is the missing vertex set of G, and $E_{X}=E(G) \backslash E(H)$ the missing edge set.
A planar orthogonal drawing $\Gamma(G)$ extends $\Gamma(H)$ if its restriction to the vertices and edges of H coincides with $\Gamma(H)$.
A feature point of an orthogonal drawing is a point representing either a vertex or a bend.
A vertex $a \in V(H)$ is called an anchor if it is incident to an edge in E_{X}
A port candidate is a pair (a, d), i.e. for $a x \in E_{X}$ $a \in V(H), d \in\{\downarrow, \uparrow, \leftarrow, \rightarrow\}$.
A port-function \mathcal{P} is an ordered set of port candidates which contains precisely one port candidate for each missing edge $a x \in E_{X}, a \in V(H)$.

BMOE on just one Face (F-BMOE)

InPut: Graph G_{f} (just one face), fixed orthogonal drawing $\Gamma\left(H_{f}\right)$ for $H_{f} \subseteq G_{f}$, set of missing vertices X_{f}, a port function for X_{f} : $\left\langle G_{f}, H_{f} \subseteq G_{f}, \Gamma\left(H_{f}\right)\right\rangle$,
$X_{f}=V\left(G_{f}\right) \backslash V\left(H_{f}\right)$; port-function \mathcal{P}.

Complexity results for an extension problems

(1) planar, linear-time algorithm
[Angelini et al., 2015]
(2) level planar, NP-hard [Brückner and Rutter, 2017]

TASK: Compute the minimum number of bends needed to extend $\Gamma\left(H_{f}\right)$ to $\Gamma\left(G_{f}\right)$ and
(1) missing edges and vertices are only drawn in the face f;
(2) each edge $a x \in E_{X}$ where $x \in X_{f}$ connects to $a \in V\left(H_{f}\right)$ via its port candidate defined by \mathcal{P}; or
(3) determine that no such extension exists.
[Da Lozzo et al., 2020]
(4) bend-minimal orthogonal, NP-hard
[Angelini et al., 2021]

Let $\kappa=|V(G) \backslash V(H)|+|E(G) \backslash E(H)|$, i.e. the number of missing elements.
Main contribution. If H is connected, the BMOE problem parameterized by κ is Fixed-Parameter Tractable.

Preprocessing

Branching

There is an algorithm that solves an instance of BMOE in time $2^{\mathcal{O}(\kappa)} \cdot T(|\mathcal{I}|, k)$, where $T(|\mathcal{I}|, k)$ is the time required to solve an instance \mathcal{I} of F-BMOE with instance size $|\mathcal{I}|$ and parameter value k.

Prunning

A reflex corner p, projections ℓ_{1} and ℓ_{2}.

Non-essential reflex corners and projections (anchors - gray filling, non-anchors - solid).

The corresponding clean instance.

Discretizing the Instances

Sectors and the Sector Graph

For a point $p \in f$, the bend distance $\operatorname{bd}(p,(a, d))$ to a port candidate (a, d) is the minimum integer q such that there exists an orthogonal polyline with q bends connecting p and a in the interior of f which arrives to a from direction d.

Outer face

Lemma. BMOE instance admits a solution with no ζ-handles and at most $4 k(k+1) \zeta$-spirals.

Lemma. F-BMOE for an outer face could be solved in time $2^{\mathcal{O}\left(k^{2} \log k\right)} \cdot T(|\mathcal{I}|, k)$, where $T(|\mathcal{I}|, k)$ is the time to solve an instance of F BMOE for the inner face.

For each point $p \in f$ and
a port-function $\mathcal{P}=\left(\left(a_{1}, d_{1}\right), \ldots,\left(a_{q}, d_{q}\right)\right)$,
a bend-vector of the point p is the tuple
$\operatorname{vect}(p)=\left(\operatorname{bd}\left(p,\left(a_{1}, d_{1}\right)\right), \ldots, \operatorname{bd}\left(p,\left(a_{q}, d_{q}\right)\right)\right)$.
Given a port-function \mathcal{P},
a sector F is a maximal connected set of points with the same bend-vector w.r.t. \mathcal{P}.

Sectors A and B are adjacent if there exists a point p in A and a direction $d \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray
 starting from p in direction d is in B.

> Observation. The number of vertices in \mathcal{G} is upper-bounded by $9 x^{2}$, where x is the number of feature points in $\Gamma\left(H_{F}\right)$.

The Sector-Grid

Our aim is to construct a "universal" point-set with the property that there exists a solution which places feature points only on these points

A reflex corner is critical for a sector S if it is incident to at least two distinct sectors, and (S, d)-critical if it is also can be reached by a ray from some point in S traveling in direction d.

Lemma. For each sector $S \in \mathcal{F}_{f}$ and for each
direction $d \in\{\uparrow, \downarrow, \leftarrow, \rightarrow\}$, there are at most $4 k(S, d)$-critical reflex corners.
Corollary. Given an instance \mathcal{I} of F-BMOE we can construct a point-set (called a sector grid) in time $\mathcal{O}(|\mathcal{I}|)$ with the following properties:
(1) \mathcal{I} admits a solution whose feature points all lie on the sector grid, and
(2) each sector contains at most gridsize (k) points of the sector grid.

Exploiting the Treewidth of Sector Graphs

Sector Graphs Are Tree-Like

Sector graph for the first port candidate.

Sector graph for the second port candidate

Baseline Argument

Red (blue) segments are local maxima (minima); the segment δ is a baseline.

Dynamic Programming

An instance $\mathcal{I}=\left\langle G_{f}, H_{f}, \Gamma\left(H_{f}\right), \mathcal{P}\right\rangle$ of F-BMOE with $k=\left|V\left(G_{f}\right) \backslash V\left(H_{f}\right)\right|$:
(1) admits a sector graph \mathcal{G};
(2) treewidth of \mathcal{G} is at most $(4+4 k)^{4 k}$;
(3) a bend-minimal extension of $\Gamma\left(H_{f}\right)$ to
$\Gamma\left(G_{f}\right)$ only contain feature points on the sector-grid;
(4) there are at most gridsize (k) sector-grid points per sector;
(5) gridsize $(k)=\mathcal{O}\left(k^{6}\right)$.

Lemma. F-BMOE can be solved in time

$$
2^{k^{\mathcal{O}(1)}} \cdot\left|V\left(G_{f}\right)\right| .
$$

Theorem.

BMOE can be solved in time

Let $\mathcal{P}=\left(\left(a_{1}, d_{1}\right), \ldots,\left(a_{q}, d_{q}\right)\right)$ be the port-function for the considered face $f(q \leq 4 k)$.

For each $1 \leq i \leq q$, let
$\mathcal{P}_{i}=\left(\left(a_{1}, d_{1}\right), \ldots,\left(a_{i}, d_{i}\right)\right)$ be a prefix of \mathcal{P};
\mathcal{F}_{i} be the set of sectors for \mathcal{P}_{i}.
\mathcal{G}_{i} be the sector graph for \mathcal{P}_{i}.
Lemma [and an induction base]
The sector graph for a single port is a tree.

$\left(a_{1}, d_{1}\right)$

Adding the second port to the first and
how sectors being subdivided after.

> A line-segment δ on the boundary of a sector F is a baseline if
> (1) each point in F can be reached by a ray starting at and orthogonal to δ, and
> (2) the line-segment δ touches F on one side and points in $f \backslash F$ on the other side.

[^0]
Concluding Remarks

The Bend-Minimal Orthogonal Extension Problem is Fixed-Parameter Tractable in the number of missing elements

- What if H is not connected?
- The approach can be adjusted to minimize the number of bends per edge
- Can we extend the result to planar drawings using a fixed number of slopes?

[^0]: Lemma. Each sector in $\mathcal{F}_{t}, 1 \leq t \leq q$,
 admits at least one baseline.
 Lemma. After adding one new port,
 each existing sector splits to at most the number of its local maxima (up to a constant) many subsectors.

 Lemma. For each sector $F \in \mathcal{F}_{q}$,
 the number of local maxima is upper-bounded by $4 k$

 ## Theorem.

 Let \mathcal{G} be a sector graph of a face f
 of the drawing $\Gamma(G)$. Then
 $\operatorname{tw}(\mathcal{G}) \leq(4+4 k)^{4 k}$

