Extending Orthogonal Planar Graph Drawings is Fixed-Parameter Tractable

by Sujoy Bhore, Robert Ganian, Liana Khazaliya, Fabrizio Montecchiani, Martin Nöllenburg

Bend-minimal Orthogonal Extension Problem (BMOE)

INPUT: Graph G, an already fixed orthogonal drawing $\Gamma(H)$ for $H \subseteq G, \beta \in \mathbb{Z}$: $\langle G, H \subseteq G, \Gamma(H) \rangle, \beta \in \mathbb{Z}$

TASK: Extend $\Gamma(H)$ to $\Gamma(G)$ using at most $\beta \geq 0$ additional bends

Definitions

The complement $X = V(G) \setminus V(H)$ is the *miss*ing vertex set of G, and $E_X = E(G) \setminus E(H)$ the missing edge set.

A planar orthogonal drawing $\Gamma(G)$ extends $\Gamma(H)$ if its restriction to the vertices and edges of Hcoincides with $\Gamma(H)$.

A feature point of an orthogonal drawing is a point representing either a vertex or a bend.

A vertex $a \in V(H)$ is called an *anchor* if it is incident to an edge in E_X .

A port candidate is a pair (a, d), i.e. for $ax \in E_X$ $a \in V(H), d \in \{\downarrow, \uparrow, \leftarrow, \rightarrow\}.$

A *port-function* \mathcal{P} is an ordered set of port candidates which contains precisely one port candidate for each missing edge $ax \in E_X, a \in V(H)$.

BMOE on just one Face (F-BMOE)

INPUT: Graph G_f (just one face), fixed orthogonal drawing $\Gamma(H_f)$ for $H_f \subseteq G_f$, set of missing vertices X_f , a port function for X_f :

> $\langle G_f, H_f \subseteq G_f, \Gamma(H_f) \rangle,$ $X_f = V(G_f) \setminus V(H_f)$; port-function \mathcal{P} .

Complexity results for an extension problems

(1) planar, linear-time algorithm [Angelini et al., 2015] (2) level planar, NP-hard [Brückner and Rutter, 2017]

TASK: Compute the minimum number of bends needed to extend $\Gamma(H_f)$ to $\Gamma(G_f)$ and

(1) missing edges and vertices are only drawn in the face *f*;

(2) each edge $ax \in E_X$ where $x \in X_f$ connects to $a \in V(H_f)$ via its port candidate defined by \mathcal{P} ; or

(3) determine that no such extension exists.

(3) upward planar, NP-hard [Da Lozzo et al., 2020] (4) bend-minimal orthogonal, NP-hard [Angelini et al., 2021]

Let $\kappa = |V(G) \setminus V(H)| + |E(G) \setminus E(H)|$, i.e. the number of missing elements.

Main contribution. If H is connected, the BMOE problem parameterized by κ is Fixed-Parameter Tractable.

Preprocessing

Branching

There is an algorithm that solves an instance of BMOE in time $2^{\mathcal{O}(\kappa)} \cdot T(|\mathcal{I}|, k)$, where $T(|\mathcal{I}|, k)$ is the time required to solve an instance ${\mathcal I}$ of F-BMOE with instance size $|\mathcal{I}|$ and parameter value k.

Prunning

A reflex corner p, projections ℓ_1 and ℓ_2 .

Non-essential reflex corners and projections (anchors — gray filling, non-anchors — solid).

> The corresponding clean instance.

Outer face

Lemma. BMOE instance admits a solution with no ζ -handles and at most $4k(k+1) \zeta$ -spirals.

Exploiting the Treewidth of Sector Graphs

Sector Graphs Are Tree-Like

Sector graph for the first port candidate.

Sector graph for the second port candidate.

Let $\mathcal{P} = ((a_1, d_1), \dots, (a_q, d_q))$ be the port-function for the considered face $f (q \le 4k)$.

For each $1 \le i \le q$, let $\mathcal{P}_i = ((a_1, d_1), \dots, (a_i, d_i))$ be a prefix of \mathcal{P} ; \mathcal{F}_i be the set of sectors for \mathcal{P}_i . \mathcal{G}_i be the sector graph for \mathcal{P}_i .

Lemma [and an induction base]. The sector graph for a single port is a tree.

Adding the second port to the first and how sectors being subdivided after.

Discretizing the Instances

Sectors and the Sector Graph

For a point $p \in f$, the *bend distance* bd(p, (a, d))to a port candidate (a, d) is the minimum integer qsuch that there exists an orthogonal polyline with q bends connecting p and a in the interior of fwhich arrives to a from direction d.

For each point $p \in f$ and a port-function $\mathcal{P} = ((a_1, d_1), \dots, (a_q, d_q)),$ a bend-vector of the point p is the tuple $vect(p) = (bd(p, (a_1, d_1)), \dots, bd(p, (a_q, d_q))).$

Given a port-function \mathcal{P} , a sector F is a maximal connected set of points with the same bend-vector w.r.t. \mathcal{P} .

Sectors A and B are *adjacent* if there exists a point p in A and a direction $d \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$ such that the first point outside of A hit by the ray starting from p in direction d is in B.

> **Observation.** The number of vertices in \mathcal{G} is upper-bounded by $9x^2$, where x is the number of feature points in $\Gamma(H_F)$.

be solved in time $2^{\mathcal{O}(k^2 \log k)} \cdot T(|\mathcal{I}|, k)$, where $T(|\mathcal{I}|, k)$ is the time to solve an instance of F-BMOE for the inner face.

Red (blue) segments are local maxima (minima); the segment δ is a baseline.

Dynamic Programming

An instance $\mathcal{I} = \langle G_f, H_f, \Gamma(H_f), \mathcal{P} \rangle$ of F-BMOE with $k = |V(G_f) \setminus V(H_f)|$:

A line-segment δ on the boundary of a sector F is a *baseline* if

- (1) each point in F can be reached by a ray starting at and orthogonal to δ , and
- (2) the line-segment δ touches F on one side and points in $f \setminus F$ on the other side.

Lemma. Each sector in \mathcal{F}_t , $1 \le t \le q$, admits at least one baseline.

Lemma. After adding one new port, each existing sector splits to at most the number of its local maxima (up to a constant) many subsectors.

Lemma. For each sector $F \in \mathcal{F}_q$, the number of local maxima is upper-bounded by 4k.

Theorem.

Let \mathcal{G} be a sector graph of a face fof the drawing $\Gamma(G)$. Then $\operatorname{tw}(\mathcal{G}) \le (4+4k)^{4k}.$

Concluding Remarks

The Sector-Grid

Our aim is to construct a "universal" point-set with the property that there exists a solution which places feature points only on these points

A reflex corner is *critical* for a sector S if it is incident to at least two distinct sectors, and (S, d)-critical if it is also can be reached by a ray from some point in S traveling in direction d.

Lemma. For each sector $S \in \mathcal{F}_f$ and for each direction $d \in \{\uparrow, \downarrow, \leftarrow, \rightarrow\}$, there are at most 4k (S, d)-critical reflex corners.

Corollary. Given an instance \mathcal{I} of F-BMOE we can construct a point-set (called a *sector grid*) in time $\mathcal{O}(|\mathcal{I}|)$ with the following properties: (1) \mathcal{I} admits a solution whose feature points all lie on the sector grid, and (2) each sector contains at most gridsize(k) points of the sector grid.

gridsize(k) = subgridsize $^{2}(k) \cdot (8k)^{2}$, subgridsize $(k) = 112k^{3} + 202k^{2} + 85k$

(1) admits a sector graph \mathcal{G} ; (2) treewidth of \mathcal{G} is at most $(4+4k)^{4k}$; (3) a bend-minimal extension of $\Gamma(H_f)$ to $\Gamma(G_f)$ only contain feature points on the sector-grid;

(4) there are at most gridsize(k)sector-grid points per sector; (5) gridsize $(k) = \mathcal{O}(k^6)$.

Lemma. F-BMOE can be solved in time

 $2^{k^{\mathcal{O}(1)}} \cdot |V(G_f)|.$

Theorem. BMOE can be solved in time

where *n* is the number of feature points of $\Gamma(H)$.

The Bend-Minimal Orthogonal Extension Problem is Fixed-Parameter Tractable in the number of missing elements.

• What if H is not connected?

• The approach can be adjusted to minimize the number of bends per edge.

• Can we extend the result to planar drawings using a fixed number of slopes?

