Upward and Orthogonal Planarity are W[1]-hard by Treewidth

Bart M. P. Jansen, **Liana Khazaliya**, Philipp Kindermann, Giuseppe Liotta, Fabrizio Montecchiani, Kirill Simonov

What we are interested in

Directed graph \overrightarrow{G}

Upward planar drawing

Orthogonal drawing

With fixed embedding: poly-time solvable

With variable embedding: NP-complete

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Question:

[SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

With fixed embedding: poly-time solvable

With variable embedding: NP-complete

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Question: [SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?

With fixed embedding: poly-time solvable

With variable embedding: NP-complete

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Both Upward and Orthogonal Planarity testing are W[1]-hard.

With fixed embedding: poly-time solvable

With variable embedding: NP-complete

For the variable embedding: $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms

Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]

Our Main Result:

Known $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms cannot be improved to $n^{o(\mathsf{tw})}$ under ETH.

Overview [Key steps]

Outline

 Multicolored Clique bounded pw All-or-Nothing Flow \swarrow pw' is $\mathcal{O}(pw)$ • All-or-Nothing Flow on Planar graphs • Circulating Orientation on Planar graphs • Orthogonal/Upward Planarity Testing pw of the triangulation + Concluding Remarks

Multicolored Clique to

All-or-Nothing Flow

Multicolored Clique (MClique)

MULTICOLORED CLIQUE

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for

each $i \in [k]$?

Multicolored Clique (MClique)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

Multicolored Clique (MClique)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

All-or-Nothing Flow¹ (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow

 $^{^1}$ XNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al. Problems Hard for Treewidth but Easy for Stable Gonality, WG'22

All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

 $\textbf{Question:} \ \, \text{Does there exist an } \textit{st-} \text{flow of value exactly } \mathcal{F}, \text{ such that the flow}$

All-or-Nothing Flow (AoNF)

Multicolored Clique

Input: An undirected simple graph G and a partition of its vertex set into k sets V_1, \ldots, V_k , each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique $C \subseteq V(G)$ such that $|C \cap V_i| = 1$ for each $i \in [k]$?

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow

AoNF: (G', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

MClique: $(G, (V_1, V_2, ..., V_k)), |V_i| = N$

$$V_i = \{v_{i,1}, v_{i,2}, \dots, v_{i,N}\}.$$

Inflow $\in [2kN + 2, 2kN + 2N]$; Inflow is even.

Non-edge $v_{1,2}v_{k,1}$ of G.

AoNF: (G', c, s, t) and $\overline{F} = k(2kN + 2N)$

Planarization of the AoNF

Observation

Planarizing a crossing of two edges via a degree-4 vertex does not change the answer, when the capacities of the edges differ.

AoNF: (G', c, s, t) and $\overline{F} = k(2kN + 2N)$

Planar AoNF: (G'', c, s, t) and $\mathcal{F} = k(2kN + 2N)$

First remark: bounded pathwidth

to Circulating Orientation

All-or-Nothing Flow (planar)

All-or-Nothing Flow (AoNF)

All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow

All-or-Nothing Flow (AoNF)

All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an st-flow of value exactly \mathcal{F} , such that the flow

Circulating Orientation (CO)

CIRCULATING ORIENTATION

Input: An undirected graph G with an edge-capacity function $c: E(G) \to \mathbb{Z}_{\geq 0}$. **Question:** Is it possible to orient the edges of G, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into v is equal to the total capacity of edges oriented out of v? (Such an orientation is called a circulating orientation.)

Circulating Orientation (CO)

All or Nothing Flow

Input: A flow network (G, c, s, t) and a positive integer \mathcal{F} .

Question: Does there exist an *st*-flow of value exactly \mathcal{F} , such that the flow

through any arc $uv \in E(G)$ is either 0 or equal to c(uv)?

CIRCULATING ORIENTATION

Input: An undirected graph G with an edge-capacity function $c \colon E(G) \to \mathbb{Z}_{\geq 0}$. **Question:** Is it possible to orient the edges of G, such that for each vertex $v \in V(G)$ the total capacity of edges oriented into v is equal to the total capacity

of edges oriented out of v?

AoNF to CO

Second remark: a nice embedding

Circulating Orientation to

Upward Planarity Testing

Black box

Theorem (Biedl'16)

There is a polynomial-time algorithm that, given a simple planar graph G of pathwidth k on at least three vertices, outputs a plane triangulation G' of G such that $pw(G') \in \mathcal{O}(k)$.

Triangulated instance of CO

Dual Graph

Black Box #2

Theorem (Amini, Huc, and Pérennes'09)

For a triconnected planar graph G, $pw(G^*) \leq 3 pw(G) + 2$, where G^* is the dual graph of G.

Testing a Dual Graph for Upward Planarity

Angle Assignment

Tendril² Gadget

 $^{^2}$ A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Reduction Idea: Face Balancing

... and Orthogonal Planarity

Testing

Differences

- Important that we start with a triangulated graph
- Subdivision of edges to allow an orthogonal embedding
- Orthogonal Tendril³

³A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Concluding remarks

Remarks

We have proved that

Known $n^{\mathcal{O}(\mathsf{tw})}$ -algorithms cannot be improved to $n^{o(\mathsf{tw})}$ under ETH.

What other points are also one might find interesting:

- Alternative⁴ proof of NP-completeness
- Hardness extends for cutwidth of the primal

⁴A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear Planarity Testing, SIAM J. Computing, 1994

Further

- Membership in XNLP⁵ of both Upward and Orthogonal Planarity Testing: can be solved nondeterministically in time $f(k)n^{O(1)}$ and space f(k)log(n)?
- FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph
- More restrictive parameterizations may yield FPT algorithms

⁵H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT time and Logarithmic Space, FOCS'21

Thanks for attention!

Further directions

- Membership in XNLP
- Cutwidth of the dual graph
- Other parameterizations

Contents

Overview [Key steps]

MClique to AoNF

Planar AoNF

AoNF-pl to CO

CO to UpPlanarity

CO to OrtPlanarity

Remarks