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What we are interested in

Directed graph G Upward planar drawing Orthogonal drawing
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Upward/Orthogonal Planarity Testing

With fixed embedding: poly-time solvable
With variable embedding: NP-complete

O(w)_algorithms

For the variable embedding: n
Orthogonal: [GD 2019, E. Di Giacomo, G. Liotta, F. Montecchiani]

Upward: [SoCG 2022, S. Chaplick et al.]
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For the variable embedding: n
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Question: [SoCG 2022, S. Chaplick et al.]

Is Upward Planarity W[1]-hard of FPT when parameterized by tw?
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Our Main Result:

Both Upward and Orthogonal Planarity testing are W/[1]-hard.
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Our Main Result:
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Known n -algorithms cannot be improved to n°™) under ETH.




Overview [Key steps]



e Multicolored Clique

bounded pw N

e All-or-Nothing Flow
% pw’ is O(pw)

e All-or-Nothing Flow on Planar graphs
e Circulating Orientation on Planar graphs
e Orthogonal/Upward Planarity Testing

pw of the triangulation

+ Concluding Remarks



Multicolored Clique to
All-or-Nothing Flow



Multicolored Clique (MClique)

MULTICOLORED CLIQUE
Input: An undirected simple graph G and a partition of its vertex set into k
sets V4, ..., Vj, each consisting of N vertices.

Parameter: k.
Question: Does G contain a clique C C V/(G) such that |[C N V;| = 1 for

each i € [k]?
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All-or-Nothing Flow! (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c,s, t) and a positive integer F.

Question: Does there exist an st-flow of value exactly F, such that the flow
through any arc uv € E(G) is either 0 or equal to c(uv)?

IXNLP (at least W[1]-hard) when parameterized by tw: H. L. Bodlaender et al.
Problems Hard for Treewidth but Easy for Stable Gonality, WG'22



All-or-Nothing Flow (AoNF)

MULTICOLORED CLIQUE

Input: An undirected simple graph G and a partition of its vertex set into k
sets V4, ..., Vi, each consisting of N vertices.

Parameter: k.

Question: Does G contain a clique C C V(G) such that [C N V| = 1 for
each i € [k]?

ALL OR NOTHING FLOW
Input: A flow network (G, ¢, s, t) and a positive integer F.
Question: Does there exist an st-flow of value exactly F, such that the flow

through any arc uv € E(G) is either 0 or equal to c(uv)?
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AoNF: (G, c,s,t)
,s,t) and F = k(2kN + 2N)
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MCquue: (G,(Vl, VQ, 500 Vk)), V,‘ =N
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MCquue: (G,(Vl, VQ, 500 Vk)), V,‘ =N

Vi = {Vi,1, Vioy, .., Vi,N}- Non-edge Vi2Vk1 of G.
2kN+2 Xj
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Inflow € [2kN + 2,2kN + 2N];

Inflow is even.
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MCquue: (G,(Vl, VQ, 500 Vk)), V,‘ =N

\/,' = {Vi,17 Vio, ..., Vi,N}- Non—edge V1,2Vk1 of G.

2kN+2
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2kN+2N

Inflow € [2kN + 2,2kN + 2N];

Inflow is even.




AoNF: (G, c,s,t)
,s,t) and F = k(2kN + 2N)
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Planarization of the AoNF
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Planarizing a crossing of two edges via a
degree-4 vertex does not change the answer,
when the capacities of the edges differ.

11



2kN +2
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AoNF: (G, c,s,t)
,s,t) and F = k(2kN + 2N)
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Planar AoNF: (G” c,s,t) and F = k(2kN + 2N)




First remark: bounded pathwidth




All-or-Nothing Flow (planar)

to Circulating Orientation




All-or-Nothing Flow (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer F.

Question: Does there exist an st-flow of value exactly F, such that the flow
through any arc uv € E(G) is either 0 or equal to c(uv)?
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All-or-Nothing Flow (AoNF)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer F.

Question: Does there exist an st-flow of value exactly F, such that the flow
through any arc uv € E(G) is either 0 or equal to c(uv)?

17



Circulating Orientation (CO)

CIRCULATING ORIENTATION

Input: An undirected graph G with an edge-capacity function c¢: E(G) — Zxo.
Question: Is it possible to orient the edges of G, such that for each vertex v €
V(G) the total capacity of edges oriented into v is equal to the total capacity of
edges oriented out of v? (Such an orientation is called a circulating orientation.)
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Circulating Orientation (CO)

ALL OR NOTHING FLOW

Input: A flow network (G, c, s, t) and a positive integer F.

Question: Does there exist an st-flow of value exactly F, such that the flow
through any arc uv € E(G) is either 0 or equal to c(uv)?

CIRCULATING ORIENTATION
Input: An undirected graph G with an edge-capacity function c: E(G) — Zx.
Question: Is it possible to orient the edges of G, such that for each vertex v € 19
V(G) the total capacity of edges oriented into v is equal to the total capacity
of edges oriented out of v?
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AoNF to CO
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VveV(G)\{s t}: di(v)=d:(v),
the source has no incoming arcs,
the sink has no outgoing arcs,
and F = df(s)/2 = d;(t)/2.
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Second remark: a nice embedding




Circulating Orientation to

Upward Planarity Testing




Black box

Theorem (Biedl’'16)

There is a polynomial-time algorithm that, given a simple planar graph G of
pathwidth k on at least three vertices, outputs a plane triangulation G' of G
such that pw(G’) € O(k).
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Triangulated instance of CO
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Black Box #2

Theorem (Amini, Huc, and Pérennes’09)
For a triconnected planar graph G, pw(G*) < 3pw(G) + 2, where G* is the
dual graph of G.
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Testing a Dual Graph for Upward Planarity
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Angle Assignment
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Tendril’> Gadget

s

2A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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Reduction Idea: Face Balancing
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. and Orthogonal Planarity
Testing




e Important that we start with a triangulated graph
e Subdivision of edges to allow an orthogonal embedding

e Orthogonal Tendril®

3A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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Concluding remarks




We have proved that

O(t

Known n®®)_algorithms cannot be improved to n°™) under ETH.

What other points are also one might find interesting:

o Alternative* proof of NP-completeness

e Hardness extends for cutwidth of the primal

#A. Garg and R. Tamassia, On the Computational Complexity of Upward and Rectilinear
Planarity Testing, SIAM J. Computing, 1994
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e Membership in XNLP® of both Upward and Orthogonal Planarity Testing:
can be solved nondeterministically in time f(k)n®®) and space f(k)log(n)?

e FPT or W[1]-hard for taking as a parameter the cutwidth of the dual graph

e More restrictive parameterizations may yield FPT algorithms

°H. L. Bodlaender et al. Parameterized Problems Complete for Nondeterministic FPT
time and Logarithmic Space, FOCS'21
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Thanks for attention!
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