Backdoors and modulators

Eduard Eiben and Robert Ganian Retreat

The islands of tractability 3-colorability

Modulators

to a graph class \mathcal{H}

A graph with a small modulator to forests

- Finding size k modulators $(XP(n^k) \text{ if } \mathcal{H} \text{ is polynomially recognizable; aim for } FPT)$
- Using modulators (aim for FPT)

Backdoors into a tractable class \mathcal{H}

Given a CNF formula F and set X of k variables. Let t_1, \ldots, t_{2^k} be the truth assignments on X.

 $F[t_1]$

 $F[t_i]$ belong to \mathcal{H} .

X is a strong backdoor if all the X is a weak backdoor if some $F[t_i]$ belongs to \mathcal{H} and is satisfiable.

If we know a backdoor of size k, then we can decide F in time $2^k poly.$

Backdoors complexity of BD detection

Base class	strong bd	weak bd	weak bd on r - CNF
Horn	FPT	W[2]-h	FPT
2CNF	FPT	W[2]-h	FPT
UP	W[P]-c	W[P]- c	W[P]-c
renamable Horn	W[2]-h	W[2]-h	W[2]- h
Acyclic	FPT-apx	W[2]-h	FPT
$\mathrm{Treewidth}[t]$	FPT-apx	W[2]-h	FPT

Relation to our work FWF project "X-TRACT"

Backdoors which "disconnect" instance into several islands of tractability

• great for CSPs, but also works well on SAT and graphs

Using "community structure" to solve SAT instances

- real-world SAT instances seem to have community structure
- a more restricted notion is required to have rigorous algorithmic results

Well-structured modulators FWF project "X-TRACT"

Basic idea: what if the graph has a large but well-structured modulator to \mathcal{H} ?

A graph with a 2-well-structured modulator to forests