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Branch Decomposition
Applications of Branch Decompositions:

I Introduced by Robertson and Seymour

I Similar to tree decomposition

I Used for decomposing combinatorial objects
I Hypergraphs
I Matroids
I Integer-valued symmetric submodular functions
I Propositional CNF formulas

I Problems solved efficiently using dynamic programming on
branch decomposition

I Traveling salesman problem
I #P-complete problem of propositional model counting
I Generation of resolution refutations for unsatisfiable CNF

formulas
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Branchwidth

bw = min
{all decompositions}

{width of decomposition}

I NP-hard problems with bounded width in time and space
polynomial in input size

I But (usually) exponential in the width parameters

Note: bw ≤ tw − 1 ≤ 3
2bw
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Why small widths?

The following was noted by Kask et al. [2011]

... since inference is exponential in the tree-width, a
small reduction in tree-width (say by even by 1 or 2) can
amount to one or two orders of magnitude reduction in
inference time. Thus, huge computational gains are also
possible by simply finding improved variable orderings.

Task: Finding smallest width efficiently

Note: Finding optimal width is NP-hard
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Existing Algorithms for Branch Decompositions

I Heuristics : splitting graph iteratively along a small cut

I Exact :
I Interger linear program (ILP) developed by Ulusal [2008]
I An exponential-time tangle based algorithm (TANGLES),

suggested by Robertson and Seymour [1991] and implemented
by Hicks [2005]
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Related work

Treewidth (tw)

I Samer and Veith [2009] introduced the first SAT encoding for
treewidth.

I Berg and Järvisalo [2014] improved upon it and used
techniques like incremental and MAX-SAT approach

Clique width (cw)

I Heule and Szeider [2015] introduced the first SAT encoding
for clique width (This is the first exact algorithm for clique
width)
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Our Contribution

I Efficient SAT-encoding based on new partition based
characterization of branch decomposition

I Using local improvement techniques to avail use of SAT for
large instances



First Attempt
Encoding Branch Decomposition Tree

I Encoded the Branch Decomposition Tree to CNF formula

I This method could not solve even up to 30 edges
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SAT Encoding

Tools for encoding partition based characterization

I Equivalence classes s(e, f , i)
To encode refinement as underlying tree is implicitly
represented by refinement of partitions

I Cut along the edges c(e, u, i)

I Cardinality constraints

Output

For a (hyper) graph G and an integer k we produce formula
F (G , k) which is satisfiable iff G has a branch decomposition of
width k.
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Experimental setup

I SAT solver: Glucose 4.0

I System: 4-core Intel Xeon CPU E5649, 2.35GHz, 72GB RAM,
Ubuntu 14.04

I Memory limit: 8GB

I Timeout: 6hours

I Instances: Famous named graphs



First Results

Graph |V | |E | w

Watsin 50 75 6
Kittell 23 63 6
Holt 27 54 9
Shrikhande 16 48 8
Errera 17 45 6
Brinkmann 21 42 8
Clebsch 16 40 8
Folkman 20 40 6
Paley13 13 39 7
Poussin 15 39 6
Robertson 19 38 8



Limits

I We have observed a limit of 70 edges
I Timeout
I The size of encoding (some cases exceeded 1GB)
I Same limit is observed for tw and cw

I But we can provide upper bounds for graphs with up to 150
edges in reasonable time

Branchwidth = 7
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How?

1. Generate heuristic decomposition (we used heuristics provided
by Hicks)

2. Pick local branch decomposition around large cut (using
specialized DSF procedure)

3. Use SAT to improve local branch decomposition and plug it
back in

Repeat till no more improvement possible or timeout
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By Example

Input:
The hypergraph (H) consisting every boundary edge

Theorem

Improved branch decomposition of hypergraph (H) can be plugged
in to the original decomposition.
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Experimental setup

I SAT solver: Glucose 4.0

I System: 4-core Intel Xeon CPU E5649, 2.35GHz, 72GB RAM,
Ubuntu 14.04

I Memory limit: 8GB

I Timeout: 6hours

I Timeout per SAT call: 600sec

I Size of local branch decomposition: 80edges

I Instances: TreewidthLIB



Results

Graph |V | |E | iw w diff

inithx.i.2-pp 363 8897 55 45 10
fpsol2.i.2-pp 333 7910 48 39 9
graph13 458 1877 141 134 7
bn 31-pp 1148 3317 40 36 4
bn 4 100 574 42 38 4
celar08-pp-003 76 421 20 16 4
fpsol2.i.2 451 8691 53 49 4
graph05-wpp 94 397 28 24 4
graph04-pp 179 678 52 48 4
u724.tsp 724 2117 29 26 3
water-wpp 22 96 11 8 3
celar05-pp 80 426 18 15 3
mulsol.i.2-pp 116 2468 62 59 3



How are we compared to others?

Exact Encodings:
I TANGLES1

I Exponential time and space algorithm (O(mk))
I Limit of branchwidth 8
I Cannot deal with large graphs

I Cannot be used for local improvements

I ILP1

I Limit of 13 edges for hypergraphs

1These results are based on older hardware and software, thus the
comparison can not be concrete



How are we compared to others?

Exact Encodings:
I TANGLES1

I Exponential time and space algorithm (O(mk))
I Limit of branchwidth 8
I Cannot deal with large graphs
I Cannot be used for local improvements

I ILP1

I Limit of 13 edges for hypergraphs

1These results are based on older hardware and software, thus the
comparison can not be concrete



How are we compared to others?

Exact Encodings:
I TANGLES1

I Exponential time and space algorithm (O(mk))
I Limit of branchwidth 8
I Cannot deal with large graphs
I Cannot be used for local improvements

I ILP1

I Limit of 13 edges for hypergraphs

1These results are based on older hardware and software, thus the
comparison can not be concrete



The SAT-based local improvement

I Scales to large instance with several thousands edges

I High branchwidth upper bounds



Future Work

1. Extending the encoding to obtain specialized decomposition
to aid local improvement

2. Encoding various other parameters such as boolean width,
rank width (similar decomposition scheme)

3. Extending the branch decomposition approach to apply in
field of knowledge compilation

4. Extending current approach with incremental and MAXSAT
solving



Summary

I SAT encoding for branchwidth based on new partition based
characterization

I SAT-based local improvements for branch decompositions
I Provides the means for scaling the SAT-approach to much

larger instances
I New application field of SAT solvers

Thank you.



Summary

I SAT encoding for branchwidth based on new partition based
characterization

I SAT-based local improvements for branch decompositions
I Provides the means for scaling the SAT-approach to much

larger instances
I New application field of SAT solvers

Thank you.



Summary

I SAT encoding for branchwidth based on new partition based
characterization

I SAT-based local improvements for branch decompositions
I Provides the means for scaling the SAT-approach to much

larger instances
I New application field of SAT solvers

Thank you.



References

[1] Berg, J. and Järvisalo, M. (2014). SAT-Based Approaches to Treewidth Computation: An Evaluation. In
ICTAI 2014.

[2] Heule, M. and Szeider, S. (2015). A SAT Approach to Clique-Width. ACM Trans. Comput. Log. 16.

[3] Hicks, I. V. (2005). Graphs, branchwidth, and tangles! Oh my! Networks 45.

[4] Kask, K., Gelfand, A., Otten, L. and Dechter, R. (2011). Pushing the Power of Stochastic Greedy Ordering
Schemes for Inference in Graphical Models. In AAAI 2011.

[5] Robertson, N. and Seymour, P. D. (1991). Graph minors X. Obstructions to tree-decomposition. J. Combin.
Theory Ser. B 52.

[6] Samer, M. and Veith, H. (2009). Encoding Treewidth into SAT. In SAT 2009.

[7] Ulusal, E. (2008). Integer Programming Models for the Branchwidth Problem. PhD thesis, Texas
A&M University.


	Motivation
	Our Contribution

