
29

Discovering Archipelagos of Tractability for Constraint Satisfaction
and Counting

ROBERT GANIAN, M. S. RAMANUJAN, and STEFAN SZEIDER, TU Wien, Vienna, Austria

The Constraint Satisfaction Problem (CSP) is a central and generic computational problem which provides
a common framework for many theoretical and practical applications. A central line of research is concerned
with the identification of classes of instances for which CSP can be solved in polynomial time; such classes
are often called “islands of tractability.” A prominent way of defining islands of tractability for CSP is
to restrict the relations that may occur in the constraints to a fixed set, called a constraint language,
whereas a constraint language is conservative if it contains all unary relations. Schaefer’s famous Dichotomy
Theorem (STOC 1978) identifies all islands of tractability in terms of tractable constraint languages over a
Boolean domain of values. Since then, many extensions and generalizations of this result have been obtained.
Recently, Bulatov (TOCL 2011, JACM 2013) gave a full characterization of all islands of tractability for CSP
and the counting version #CSP that are defined in terms of conservative constraint languages.

This article addresses the general limit of the mentioned tractability results for CSP and #CSP, that they
only apply to instances where all constraints belong to a single tractable language (in general, the union of two
tractable languages is not tractable). We show that we can overcome this limitation as long as we keep some
control of how constraints over the various considered tractable languages interact with each other. For this
purpose, we utilize the notion of a strong backdoor of a CSP instance, as introduced by Williams et al. (IJCAI
2003), which is a set of variables that when instantiated, moves the instance to an island of tractability, that
is, to a tractable class of instances. We consider strong backdoors into scattered classes, consisting of CSP
instances where each connected component belongs entirely to some class from a list of tractable classes.
Figuratively speaking, a scattered class constitutes an archipelago of tractability. The main difficulty lies
in finding a strong backdoor of given size k; once it is found, we can try all possible instantiations of the
backdoor variables and apply the polynomial time algorithms associated with the islands of tractability on
the list component-wise. Our main result is an algorithm that, given a CSP instance with n variables, finds in
time f (k)nO(1) a strong backdoor into a scattered class (associated with a list of finite conservative constraint
languages) of size k or correctly decides that there is not such a backdoor. This also gives the running time for
solving (#)CSP, provided that (#)CSP is polynomial-time tractable for the considered constraint languages.
Our result makes significant progress towards the main goal of the backdoor-based approach to CSPs—the
identification of maximal base classes for which small backdoors can be detected efficiently.

CCS Concepts: � Theory of computation → Fixed parameter tractability;

Additional Key Words and Phrases: Backdoor sets, constraint languages, constraint satisfaction, counting,
islands of tractability

ACM Reference Format:
Robert Ganian, M. S. Ramanujan, and Stefan Szeider. 2017. Discovering archipelagos of tractability for
constraint satisfaction and counting. ACM Trans. Algorithms 13, 2, Article 29 (March 2017), 32 pages.
DOI: http://dx.doi.org/10.1145/3014587

This research was supported by the Austrian Science Fund (FWF), project P26696 X-TRACT. The first author
is also affiliated with FI MU, Brno, Czech Republic. The second author was supported by the Bergen Research
Foundation under the grant “BeHard.”
Authors’ addresses: R. Ganian, M. S. Ramanujan, and S. Szeider, Technische Universität Wien, Institut
für Computergraphik und Algorithmen 186/1, Favoritenstraße 9–11, 1040 Wien, Austria; emails: {rganian,
ramanujan, sz}@ac.tuwien.ac.at.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1549-6325/2017/03-ART29 $15.00
DOI: http://dx.doi.org/10.1145/3014587

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

http://dx.doi.org/10.1145/3014587
http://dx.doi.org/10.1145/3014587

29:2 R. Ganian et al.

1. INTRODUCTION

The Constraint Satisfaction Problem (CSP) is a central and generic computational
problem that provides a common framework for many theoretical and practical appli-
cations [Hell and Nesetril 2008]. An instance of CSP consists of a collection of variables
that must be assigned values subject to constraints, where each constraint is given in
terms of a relation whose tuples specify the allowed combinations of values for spec-
ified variables. The problem was originally formulated by Montanar [1974] and has
been found to be equivalent to the homomorphism problem for relational structures
[Feder and Vardi 1998] and the problem of evaluating conjunctive queries on databases
[Kolaitis 2003]. In general, CSP is NP-complete. A central line of research is concerned
with the identification of classes of instances for which CSP can be solved in polynomial
time. Such classes are often called “islands of tractability” [Kolaitis 2003; Kolaitis and
Vardi 2007].

A prominent way of defining islands of tractability for CSP is to restrict the relations
that may occur in the constraints to a fixed set �, called a constraint language. A finite
constraint language is tractable if CSP restricted to instances using only relations from
�, denoted CSP(�), can be solved in polynomial time. Schaefer’s famous Dichotomy
Theorem [Schaefer 1978] identifies all islands of tractability in terms of tractable
constraint languages over the two-element domain. Since then, many extensions and
generalizations of this result have been obtained [Jeavons et al. 1997; Creignou 1995;
Kolmogorov and Živný 2013; Thapper and Zivny 2013]. The Dichotomy Conjecture
of Feder and Vardi [1993] claims that for every finite constraint language �, CSP(�)
is either NP-complete or solvable in polynomial time. Schaefer’s Dichotomy Theorem
shows that the conjecture holds for two-element domains; more recently, Bulatov [2006]
showed the conjecture to be true for three-element domains. Several papers are devoted
to identifying constraint languages � for which counting CSP, denoted #CSP(�), can
be solved in polynomial time [Bulatov 2013; Creignou and Hermann 1996; Bulatov and
Dalmau 2007], that is, where the number of satisfying assignments can be computed
in polynomial time. Such languages � are called #-tractable.

A constraint language over D is conservative if it contains all possible unary con-
straints over D, and it is semi-conservative if it contains all possible unary constant
constraints (i.e., constraints that fix a variable to a specific domain element). These
properties of constraint languages are very natural, as one would expect in practi-
cal settings that the unary relations are present. Indeed, some authors (e.g., Cooper
et al. [1994]) even define CSP so that every variable can have its own set of domain
values, making conservativeness a built-in property. Recently, Bulatov [2011] gave
a full characterization of all tractable conservative constraint languages over finite
domains. Furthermore, Bulatov [2013] gave a full characterization of all #-tractable
constraint languages over finite domains. Thus, Bulatov’s results identify all islands
of (#-)tractability over finite domains that can be defined in terms of a conservative
constraint language.

A general limit of tractability results for CSP and #CSP based on constraint lan-
guages, such as the mentioned results of Schaefer and Bulatov, is that they only apply
to instances where all constraints belong to a single tractable language. One cannot
arbitrarily combine constraints from two or more tractable languages, as, in general,
the union of two tractable languages iis not tractable (see Section 2). In this article, we
show that we can overcome this limitation as long as constraints over the various con-
sidered tractable languages interact with each other in a controlled manner. For this
purpose, we utilize the notion of a strong backdoor of a CSP instance, as introduced by
Williams et al. [2003a]. A set B of variables of a CSP instance is a strong backdoor into
a tractable class H if for all instantiations of the variables in B, the reduced instance

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:3

belongs to H. In this article, we consider strong backdoors into a scattered class, denoted
H1 ⊕ · · · ⊕ Hd, consisting of all CSP instances I such that each connected component
of I belongs entirely to some class from a list of tractable classes H1, . . . ,Hd. Figura-
tively speaking, H1 ⊕ · · · ⊕ Hd constitutes an archipelago of tractability, consisting of
the islands H1, . . . ,Hd. Our main result is the following:

THEOREM 1.1. Let �1, . . . , �d be semiconservative finite constraint languages over a
domain D, and let D∗ be the language containing all relations over D. If �1, . . . , �d
are tractable (or #-tractable), then CSP(D∗) (or #CSP(D∗), respectively) can be solved in
time 22O(k) · nO(1) for instances with n variables that have a strong backdoor of size k into
CSP(�1) ⊕ · · · ⊕ CSP(�d).

Note that there are natural CSP instances that have a small strong backdoor into
the scattered class CSP(�1) ⊕ · · · ⊕ CSP(�d) but require strong backdoors of arbitrarily
large size into each individual base class CSP(�i). The power of a strong backdoor into
a scattered class over one into a single class stems from the fact that the instantiation
of variables in the backdoor can serve two purposes. The first is to separate constraints
into components, each belonging entirely to some CSP(�i) (possibly even different
CSP(�i)’s for different instantiations), and the second is to modify constraints so that
once modified, the component containing these constraints belongs to some CSP(�i).

When using the backdoor-based approach, the main computational difficulty lies in
detecting small backdoor sets into the chosen base class. This task becomes significantly
harder when the base classes are made more general. However, we show that while
scattered classes are significantly more general than single tractable classes, we can
still detect strong backdoors into such classes in FPT time. The formal statement of
this result, which represents our main technical contribution, is the following.

LEMMA 1.2. There is an algorithm that, given a CSP instance I and a parameter k,
runs in time 22O(k) · nO(1) and either finds a strong backdoor of size at most k in I into
CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d) or correctly decides that none exists.

Here �∗
i ⊇ �i is obtained from �i by taking the closure under partial assignments

and by adding a redundant relation.
We remark that the finitary restriction on the constraint languages is unavoidable,

since otherwise the arity of the relations or the domain size would be unbounded.
However, for unbounded arity, small backdoors cannot be found efficiently even for
the special case of d = 1 unless FPT = W[2] [Gaspers et al. 2014]. That is, there is
a language � of unbounded arity such that if there is any FPT algorithm to detect
a strong backdoor of size at most k into CSP(�), then the class W[2] is contained in
FPT, which is considered to be an unlikely collapse in the parameterized complexity
hierarchy. Similarly, with unbounded domain, a small strong backdoor cannot be used
efficiently. For instance, the natural encoding of the W[1]-hard k-clique problem to
CSP [Papadimitriou and Yannakakis 1999] only has k variables and, therefore, has a
size-k strong backdoor to any base class that contains the trivial constrains with empty
scopes, which is the case for any natural base class; an FPT algorithm solving such
instances would once again imply FPT = W[1].

The following is a brief summary of the algorithm of Lemma 1.2. We will give a more
detailed summary in Section 3.

(1) We begin by using the technique of iterative compression [Reed et al. 2004] to
transform the problem into a structured subproblem, which we call EXT-SBD COMP.
In this technique, the idea is to start with an subinstance and a trivial solution
for this subinstance and iteratively expand the subinstances while compressing
the solutions till we solve the problem on the original instance. Specifically, in

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:4 R. Ganian et al.

EXT-SBD COMP, we are given additional information about the desired solution in
the input: we receive an “old” strong backdoor, which is slightly bigger than our
target size, along with information about how this old backdoor interacts with our
target solution. In order to begin the iteration, we consider the (somewhat trivial)
subinstance induced on a single arbitrarily chosen constraint. We will show that
this constraint must have arity bounded by k plus a constant ρ depending on the
languages �1, . . . , �d. As a result, this subinstance has a trivial backdoor of size at
most k+ρ – simply take all the variables in the scope of this single constraint. This
is the “old” strong backdoor that we use to bootstrap our iterative procedure. The
details of this procedure are presented in Section 3.1.

(2) In Section 3.2, we consider only solutions for EXT-SBD COMP instances that have a
certain “inseparability property” and give an FPT algorithm to test for the presence
of such solutions. To be more precise, here we only look for solutions of EXT-SBD
COMP that leave the omitted part of the old strong backdoor in a single connected
component. We handle this case separately at the beginning because it serves as
a base case in our algorithm to solve general instances. Interestingly, even this
base case requires the extension of state of the art separator techniques to the CSP
setting.

(3) Finally, in Section 3.3, we show how to handle general instances of EXT-SBD COMP.
This part of the algorithm relies on a new pattern replacement technique, which
shares certain superficial similarities with protrusion replacement [Bodlaender
et al. 2009] but allows the preservation of a much larger set of structural properties
(such as containment of disconnected forbidden structures and connectivity across
the boundary). We interleave our pattern replacement procedure with the approach
of “tight separator sequences” [Lokshtanov and Ramanujan 2012] as well as the
algorithm designed in the previous subsection for “inseparable” instances in order
to solve the problem on general instances. Before we conclude the summary, we
would like to point out an interesting feature of our algorithm. At its very core, it
is a branching algorithm; in FPT time, we identify a bounded set of variables that
intersects some solution and then branch on this set. Note that this approach does
not always result in an FPT-algorithm for computing strong backdoor sets. In fact,
depending on the base class it might only imply an FPT-approximation algorithm
(see Gaspers and Szeider [2013]). This is because we need to explore all possible
assignments for the chosen variable. However, we develop a notion of forbidden
sets of constraints, which allows us to succinctly describe when a particular set is
not already a solution. Therefore, when we branch on a supposed strong backdoor
variable, we simply add it to a partial solution that we maintain, and then we can
at any point easily check whether the partial solution is already a solution or not.
This is a crucial component of our FPT algorithm.

Related work. Williams et al. [2003a, 2003b] introduced the notion of backdoors for
the runtime analysis of algorithms for CSP and SAT; see also Hemaspaandra and
Williams [2012] for a more recent discussion of backdoors for SAT. A backdoor is a
small set of variables whose instantiation puts the instance into a fixed tractable class.
One distinguishes between strong and weak backdoors, where for the former all in-
stantiations lead to an instance in the base class, and for the latter at least one leads
to a satisfiable instance in the base class. Backdoors have been studied under a dif-
ferent name by Crama et al. [1997]. The study of the parameterized complexity of
finding small backdoors was initiated by Nishimura et al. [2004] for SAT, who con-
sidered backdoors into the classes of Horn and Krom CNF formulas. Further results
cover the classes of renamable Horn formulas [Razgon and O’Sullivan 2009], q-Horn
formulas [Gaspers et al. 2013] and classes of formulas of bounded treewidth [Gaspers

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:5

and Szeider 2013; Fomin et al. 2015]. The detection of backdoors for CSP has been
studied for instance in Bessiere et al. [2013] and Carbonnel et al. [2014]. Gaspers
et al. [2014] recently obtained results on the detection of strong backdoors into hetero-
geneous base classes of the form CSP(�1) ∪ · · · ∪ CSP(�d) where for each instantiation
of the backdoor variables, the reduced instance belongs entirely to some CSP(�i) (pos-
sibly to different CSP(�i)’s for different instantiations). Our setting is more general
becuase CSP(�1) ⊕ · · · ⊕ CSP(�d) ⊇ CSP(�1) ∪ · · · ∪ CSP(�d), and the size of a smallest
strong backdoor into CSP(�1) ∪ · · · ∪ CSP(�d) can be arbitrarily larger than the size of
a smallest strong backdoor into CSP(�1) ⊕ · · · ⊕ CSP(�d).

2. PRELIMINARIES

2.1. Constraint Satisfaction

Let V be an infinite set of variables and D a finite set of values. A constraint of arity
ρ over D is a pair (S, R), where S = (x1, . . . , xρ) is a sequence of variables from V, and
R ⊆ Dρ is a ρ-ary relation. The set var(C) = {x1, . . . , xρ} is called the scope of C. A
value assignment (or assignment, for short) α : X → D is a mapping defined on a set
X ⊆ V of variables. An assignment α : X → D satisfies a constraint C = ((x1, . . . , xρ), R)
if var(C) ⊆ X and (α(x1), . . . , α(xρ)) ∈ R. For a set I of constraints, we write var(I) =⋃

C∈I var(C) and rel(I) = { R : (S, R) ∈ C, C ∈ I }. Unless otherwise specified, we use
m and n to denote the number of constraints and variables in the instance under
consideration.

A finite set I of constraints is satisfiable if there exists an assignment that simulta-
neously satisfies all the constraints in I. The Constraint Satisfaction Problem (CSP, for
short) asks, given a finite set I of constraints, whether I is satisfiable. The Counting
Constraint Satisfaction Problem (#CSP, for short) asks, given a finite set I of constraints,
to determine the number of assignments to var(I) that satisfy I. CSP is NP-complete
and #CSP is # P-complete (see, e.g., Bulatov [2013]).

Let α : X → D be an assignment. For a ρ-ary constraint C = (S, R) with S =
(x1, . . . , xρ), we denote by C|α the constraint (S′, R′) obtained from C as follows. R′ is
obtained from R by (i) deleting all tuples (d1, . . . , dρ) from R for which there is some
1 ≤ i ≤ ρ such that xi ∈ X and α(xi) �= di and (ii) removing from all remaining tuples
all coordinates di with xi ∈ X. S′ is obtained from S by deleting all variables xi with
xi ∈ X. For a set I of constraints, we define I|α as { C|α : C ∈ I }.

A constraint language (or language, for short) � over a finite domain D is a set � of
relations (of possibly various arities) over D. By CSP(�), we denote CSP restricted to
instances I with rel(I) ⊆ �. A constraint language � is tractable if for every finite subset
�′ ⊆ �, the problem CSP(�′) can be solved in polynomial time. A constraint language
� is #-tractable if for every finite subset �′ ⊆ �, the problem #CSP(�′) can be solved in
polynomial time.

In his seminal paper, Schaefer [1978] showed that for all constraint languages �
over the Boolean domain {0, 1}, CSP(�) is either NP-complete or solvable in polynomial
time. In fact, he showed that a Boolean constraint language � is tractable if and only if
at least one of the following properties holds for each relation R ∈ �: (i) (0, . . . , 0) ∈ R,
(ii) (1, . . . , 1) ∈ R, (iii) R is equivalent to a conjunction of binary clauses, (iv) R is
equivalent to a conjunction of Horn clauses, (v) R is equivalent to a conjunction of dual-
Horn clauses, and (vi) R is equivalent to a conjunction of affine formulas; � is then
called 1-valid, 0-valid, bijunctive, Horn, dual-Horn, or affine, respectively. A Boolean
language that satisfies any of these six properties is called a Schaefer language. A
constraint language � over domain D is conservative if � contains all unary relations
over D. Except for the somewhat trivial 0-valid and 1-valid languages, all Schaefer
languages are conservative. � is semi-conservative if it contains all unary relations

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:6 R. Ganian et al.

over D that are singletons (i.e., constraints that fix the value of a variable to some
element of D).

A constraint language � is closed under assignments if for every C = (S, R) such
that R ∈ � and every assignment α, it holds that R′ ∈ � where C|α = (S′, R′). For
a constraint language � over a domain D, we denote by �∗ the smallest constraint
language over D that contains � ∪ {D2} and is closed under assignments; notice that
�∗ is uniquely determined by �. Evidently, if a language � is tractable (or #-tractable,
respectively) and semiconservative, then so is �∗: first, all constraints of the form
(S,D2|α) can be detected in polynomial time and removed from the instance without
changing the solution, and then each constraint C ′ = (S′, R′) with R′ ∈ �∗ \ � can be
expressed in terms of the conjunction of a constraint C = (S, R) with R ∈ � and unary
constraints over variables in var(C) \ var(C ′).

As mentioned in the introduction, the union of two tractable constraint languages is
in general not tractable. Take for instance the conservative languages �1 = {{0, 1}3 \
{(1, 1, 1)}} ∪ 2{0,1} and �2 = {{0, 1}3 \ {(0, 0, 0)}} ∪ 2{0,1}. Using the characterization of
Schaefer languages in terms of closure properties (see, e.g., Gopalan et al. [2009]), it
is easy to check that �1 is Horn and has none of the five other Schaefer properties;
similarly, �2 is dual-Horn and has none of the five other Schaefer properties. Hence, if
follows by Schaefer’s Theorem that CSP(�1) and CSP(�2) are tractable, but CSP(�1 ∪ �2)
is NP-complete. One can find similar examples for other pairs of Schaefer languages.

2.2. Parameterized Complexity

A parameterized problem P is a problem whose instances are tuples (I, k), where
k ∈ N is called the parameter. We say that a parameterized problem is fixed parameter
tractable (FPT in short) if it can be solved by an algorithm that runs in time f (k) · |I|O(1)

for some computable function f ; algorithms with running time of this form are called
FPT algorithms. The notions of W[i]-hardness (for i ∈ N) are frequently used to show
that a parameterized problem is not likely to be FPT; an FPT algorithm for a W[i]-hard
problem would imply that the Exponential Time Hypothesis fails [Chen et al. 2006].
We refer the reader to other sources [Downey and Fellows 1999, 2013; Flum and Grohe
2006] for an in-depth introduction into parameterized complexity.

2.3. Backdoors, Incidence Graphs, and Scattered Classes

Let I be an instance of CSP over D and let H be a class of CSP instances. A set B of vari-
ables of I is called a strong backdoor into H if for every assignment α : B → D it holds
that I|α ∈ H. Notice that if we are given a strong backdoor B of size k into a tractable (or
#-tractable) class H, then it is possible to solve CSP (or #CSP) in time |D|k · nO(1). It is
thus natural to ask for which tractable classes we can find a small backdoor efficiently.

STRONG BACKDOOR DETECTION INTO H (SBD(H))
Setting: A class H of CSP instances over a finite domain D.
Instance: A CSP instance I over D and a non-negative integer k.
Task: Find a strong backdoor in I into H of cardinality at most k, ordetermine
that no such strong backdoor exists.
Parameter: k.

We remark that for any finite constraint language �, the problem SBD(CSP(�)) is
fixed parameter tractable due to a simple folklore branching algorithm. Let ρ be the
arity of the language �. It is clear that if there is a single constraint in the input instance
whose arity exceeds k + ρ, then the instance has no strong backdoor into CSP(�). This
is because, no matter which k variables we instantiate, the resulting constraint is still
not in �. As a result, all interesting instances have a bound of k+ρ on the arity of every

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:7

constraint. The branching algorithm now simply does the following. At any step, it
maintains a set Z of at most k variables which has to be extended to a strong backdoor
of size at most k. As long as there is an instantiation of the variables in Z such that
the resulting instance contains at least one constraint which is not in �, it selects an
arbitrary such constraint, and branches on the at most k + ρ variables in its scope by
adding one of these variables to the set Z. Since at least one of these variables must be
in any strong backdoor containing Z, this branching is exhaustive. Furthermore, since
we begin by setting Z = ∅, and the size of Z increases at each branching step with a
bound of k on its size, the depth of the search tree is bounded by k. This implies a bound
of (ρ + k)k on the number of leaves of the search tree and hence an FPT algorithm for
SBD(CSP(�)).

On the other hand, SBD(CSP(�)) is known to be W[2]-hard for a wide range of infinite
tractable constraint languages � [Gaspers et al. 2014].

Given a CSP instance I, we use B(I) = (var(I) ∪ I, E) to denote the incidence graph
of I; specifically, I contains an edge {x, Y } for x ∈ var(I), Y ∈ I if and only if x ∈ var(Y).
We denote this graph by B when I is clear from the context. Furthermore, for a set S of
variables of I, we denote by BS(I) the graph obtained by deleting from B(I) the vertices
corresponding to the variables in S; we may also use BS in short if I is clear from the
context. W For standard graph terminology, we refer to the book by Diestel [2011].

Two CSP instances I, I′ are variable disjoint if var(I) ∩ var(I′) = ∅. Let H1, . . .Hd be
classes of CSP instances. Then the scattered class H1 ⊕ · · · ⊕ Hd is the class of all CSP
instances I that may be partitioned into pairwise variable disjoint subinstances I1, . . . Id
such that Ii ∈ Hi for each i ∈ [d]. Notice that this implies that B(I) can be partitioned
into pairwise disconnected subgraphs B(I1), . . .B(Id). If H1, . . .Hd are tractable, then
H1 ⊕ · · · ⊕ Hd is also tractable, since each Ii can be solved independently. Similarly, if
H1, . . .Hd are #-tractable, then H1 ⊕ · · · ⊕ Hd is also #-tractable, since the number of
satisfying assignments in each Ii can be computed independently and then multiplied
to obtain the solution.

We conclude this section by showcasing that a strong backdoor to a scattered class
can be arbitrarily smaller than a strong backdoor to any of its component classes.
Consider once again the tractable languages �1 = {{0, 1}3 \ {(1, 1, 1)}} ∪ 2{0,1} (Horn)
and �2 = {{0, 1}3 \ {(0, 0, 0)}} ∪ 2{0,1} (dual-Horn). Then, for any k ∈ N, one can find
I ∈ CSP(�1) ⊕ CSP(�2) such that I does not have a strong backdoor of size k to either of
CSP(�1), CSP(�2).

3. STRONG-BACKDOORS TO SCATTERED CLASSES

This section is dedicated to proving our main technical lemma, restated in the following
text. We would like to point out that the assumption regarding the existence of the
tautological binary relation D2 in the languages is made purely for ease of description
in the later stages of the algorithm.

LEMMA 3.1. Let �1, . . . �d be finite languages over a finite domain D that are closed
under partial assignments and contain D2. Then SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d)) can be
solved in time 22O(k) |I|O(1).

Before proceeding further, we show how Lemma 3.1 is used to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let I be an instance of CSP(D∗). Recalling the defi-
nition of �∗, we use Lemma 3.1 to find a strong backdoor X of size at most k
into CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d) in time 22O(k) |I|O(1). Since CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d) ⊇

CSP(�1)⊕· · ·⊕CSP(�d), it follows that any strong backdoor into CSP(�1)⊕· · ·⊕CSP(�d)
is also a strong backdoor into CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d). We branch over all the at

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:8 R. Ganian et al.

most |D|k assignments α : X → D, and for each such α, we solve the instance I|α in
polynomial time since CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d) is tractable.

For the second case, let I be an instance of #CSP(D∗). As before, we also use Lemma 3.1
to compute a strong backdoor X into CSP(�∗

1) ⊕ · · ·⊕ CSP(�∗
d) of size at most k. We then

branch over all the at most |D|k assignments α : X → D, and for each such α, we solve
the #CSP instance I|α in polynomial time since CSP(�∗

1) ⊕ · · · ⊕ CSP(�∗
d) is #-tractable.

Let cost(α) denote the number of satisfying assignments of I|α for each α. We then
output

∑
α:X→D cost(α).

We begin our path toward a proof of Lemma 3.1 by stating the following assumption
on the input instance, which can be guaranteed by simple preprocessing. Let ρ be the
maximum arity of any relation in �1, . . . , �d.

OBSERVATION 1. Any instance (I′, k) of SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d)) either contains
only constraints of arity at most ρ + k, or can be correctly rejected.

PROOF. Assume that I′ contains a constraint C = (S, R) of arity ρ ′ > ρ + k. Then for
every set X of at most k variables, there exists an assignment α : X → D such that C|α
has arity ρ ′ > ρ, and hence C|α �∈ CSP(�1) ⊕ · · · ⊕ CSP(�d). Hence, any such (I′, k) is
clearly a NO-instance of SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d)).

Organization of the rest of the section. The rest of this section is structured into
three subsections. In Section 3.1, we use iterative compression to transform the SBD
problem targeted by Lemma 3.1 into its compressed version EXT-SBD COMP. Section 3.2
develops an algorithm that correctly solves any instance of EXT-SBD COMP that has a
certain inseparability property. Finally, in Section 3.3, we give a general algorithm for
EXT-SBD COMP, which uses the algorithm developed in Section 3.2 as a subroutine.

3.1. Iterative Compression

We first describe a way to reduce the input instance of SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d))
to multiple (but a bounded number of) structured instances, such that solving these
instances will lead to a solution for the input instance. To do this, we use the technique
of iterative compression [Reed et al. 2004]. Given an instance (I, k) of SBD(CSP(�1)
⊕ · · · ⊕ CSP(�d)) where I = {C1, . . . , Cm}, for i ∈ [m] we define Ci = {C1, . . . , Ci}. We
iterate through the instances (Ci, k) starting from i = 1, and for each i-th instance
we use a known solution Xi of size at most k + ρ to try to find a solution X̂i of size at
most k. This problem, usually referred to as the compression problem, is the following.

SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d)) COMPRESSION

Setting: Languages �1, . . . , �d of maximum arity ρ over a domain D.
Instance: A CSP instance I, a non-negative integer k and a strong backdoor
set X ⊆ var(I) into CSP(�1) ⊕ · · · ⊕ CSP(�d) of size at most 2k + ρ.
Task: Find a strong backdoor in I into CSP(�1)⊕· · ·⊕CSP(�d) of size at most
k, or correctly determine that no such set exists.
Parameter: k.

When �1, . . . , �d are clear from the context, we abbreviate SBD(CSP(�1) ⊕ · · · ⊕
CSP(�d)) as SBD and SBD(CSP(�1) ⊕ · · · ⊕ CSP(�d)) COMPRESSION as SBD COMP. We
reduce the SBD problem to m instances of the SBD COMP problem as follows. Let I′
be an instance of SBD. The set var(C1) is clearly a strong backdoor of size at most
ρ for the instance I1 = (C1, k,∅) of SBD COMP. We construct and solve a sequence of
SBD COMP instances I2, . . . Im by letting Ii = (Ci, k, Xi−1 ∪ var(Ci)), where Xi−1 is the
required strong backdoor of Ii−1. If some such Ii is found to have no solution, then we
can correctly reject for I′, since Ci ⊆ I′. On the other hand, if a solution Xm is obtained

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:9

for Im, then Xm is also a solution for I′. Since there are m such iterations, the total time
taken is bounded by m times the time required to solve the SBD COMP problem.

Moving from the compression problem to the extension version. We now show
how to convert an instance of the SBD COMP problem into a bounded number of in-
stances of the same problem where we may additionally assume the solution we are
looking for extends part of the given strong backdoor. Formally, an instance of the
EXTENDED SBD COMP problem is a tuple (I, k, S, W) where I is a CSP instance, k is a
nonnegative integer such that |S| ≤ k, |W | ≤ 2k+ ρ and W ∪ S is a strong backdoor set
of I into CSP(�1) ⊕ · · · ⊕ CSP(�d). The objective here is to compute a strong backdoor
into CSP(�1)⊕· · ·⊕CSP(�d) of size at most k, which contains S and is disjoint from W .

EXT-SBD COMP

Setting: Languages �1, . . . , �d of maximum arity ρ over a domain D.
Instance: A CSP instance I, a nonnegative integer k and disjoint variable
sets S and W such that |S| ≤ k, |W | ≤ 2k+ ρ and W ∪ S is a strong backdoor
set of I into CSP(�1) ⊕ · · · ⊕ CSP(�d).
Task: Find a strong backdoor in I into CSP(�1)⊕· · ·⊕CSP(�d) of size at most
k that extends S and is disjoint from W , or determine that no such strong
backdoor set exists.
Parameter: k.

We now reduce SBD COMP to
(|X|
≤k

)
-many instances of EXT-SBD COMP as follows. Let

I′ = (I, k, X) be an instance of SBD COMP. We construct
(|X|
≤k

)
-many instances of EXT-SBD

COMP as follows. For every S ∈ (X
≤k

)
, we construct the instance I′

S = (I, k, S, X \ S).
Clearly, the original instance I′ is a YES instance of SBD COMP if and only if for some
S ∈ (X

≤k

)
, the instance I′

S is a YES instance of EXT-SBD COMP. Therefore, the time to solve
the instance I′ is bounded by

(|X|
≤k

) ≤ 23k+ρ times the time required to solve an instance
of EXT-SBD COMP. In the rest of the article, we give an FPT algorithm to solve EXT-SBD
COMP, which, following our earlier discussion, implies Lemma 3.1.

LEMMA 3.2. EXT-SBD COMP can be solved in time 22O(k) |I|O(1).

We first focus on solving a special case of EXT-SBD COMP and then show how this
helps to solve the problem in its full generality.

3.2. Solving Nonseparating Instances

In this subsection, we restrict our attention to input instances with a certain promise
on the structure of a solution. We refer to these special instances as nonseparating
instances. These instances are formally defined as follows.

Definition 3.3. Let (I, k, S, W) be an instance of EXT-SBD COMP and let Z ⊇ S be
a solution for this instance. We call Z a separating solution (see Figure 1) for this
instance if W is not contained in a single connected component of BZ and a nonsepa-
rating solution otherwise. An instance is called a separating instance if it only has
separating solutions, and it is called a nonseparating instance otherwise.

Having formally defined nonseparating instances, we now give an overview of the
algorithm we design to solve such instances. We begin by developing the notion of a
forbidden set of constraints. The main motivation behind the introduction of this object
is that it provides us with a succinct certificate that a particular set is not a strong
backdoor of the required kind, immediately giving us a small structure, which we must

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:10 R. Ganian et al.

Fig. 1. An illustration of separating and nonseparating solutions. In both cases, S = {s1, s2, s3} is the
hypothetical solution under consideration, while {w1, w2, w3} is the old solution. In the first figure, S is a
nonseparating solution, while in the second, it is a separating solution.

exclude. However, the exclusion in this context can occur not just by instantiating a
variable in the scope of one of these constraints in the solution but also due to the
backdoor disconnecting these constraints. This is significantly different from standard
graph problems where once we have a small violating structure, a straightforward
branching algorithm can be used to eliminate this structure. However, in our case,
even if we have a small violating structure, it is not at all clear how such a structure
can be utilized. For this, we first set up appropriate separator machinery for CSP
instances. We then argue that for any forbidden set of constraints, if a variable in the
scope of these constraints is not in the solution, then one of these constraints must
in fact be separated from the rest of the old strong backdoor set by the hypothetical
solution. Following this, we argue that the notion of important separators introduced
by Marx [2006] can be used to essentially narrow down the search space of separators
where we must search for a solution variable. Finally, we use a branching algorithm
in this significantly pruned search space of separators in order to compute a solution
(if one exists). We reiterate that the notion of forbidden sets is critical in obtaining
an FPT algorithm as opposed to an FPT-approximation algorithm. Now that we have
given a slightly more detailed overview of this subsection, we proceed to describe our
algorithm for solving nonseparating instances. We begin with the definition of forbidden
constraints and then set up the separator machinery required in this as well as the
next subsection.

3.2.1. Forbidden Constraints and Separator Machinery. In subsequent discussions, we deal
with a fixed instance of EXT-SBD COMP, which we denote by (I, k, S, W).

Definition 3.4. Let S ⊆ var(I), let C = {C1, . . . , C�} be a set of at most d constraints
and J be a subset of [d]. We say that C is J-forbidden with respect to S if there is
an assignment τ : S → D such that for every i ∈ J there is a t ∈ [�] such that Ct|τ /∈ �i.
If J = [d], then we simply say that C is forbidden with respect to S. Furthermore,
we call τ an assignment certifying that C is J-forbidden (forbidden if J = [d]) with
respect to S.

The following observation is a consequence of the languages being closed under
partial assignments.

OBSERVATION 2. Let S ⊆ var(I) and let C = {C1, . . . , C�} be a set of at most d constraints.
Then, the following statements hold.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:11

—If C is forbidden with respect to S, then C is also forbidden with respect to every subset
of S and in particular with respect to the set S ∩ var(C).

—If C is forbidden with respect to S and S′ is a set of variables disjoint from var(C),
then C is also forbidden with respect to S ∪ S′ and with respect to S′.

The intuition behind the definition of forbidden sets is that it allows us to have suc-
cinct certificates for nonsolutions. This intuition is formalized in the following lemma.

LEMMA 3.5. Given a CSP instance I, a set X ⊆ var(I) is a strong backdoor set into
CSP(�1) ⊕ · · ·⊕ CSP(�d) if and only if there is no connected component of BX containing
a set of constraints forbidden with respect to X.

PROOF. Suppose that there is a connected component of BX containing a set C that
is forbidden with respect to X. By definition of forbidden sets, there is an instantiation
τ : X → D such that for every i ∈ [d], this connected component of BX contains a
constraint C ∈ C with the property that C|τ /∈ �i. Hence, X is by definition not a strong
backdoor of I into CSP(�1) ⊕ · · · ⊕ CSP(�d).

Conversely, suppose that X is not a strong backdoor of I into CSP(�1)⊕· · ·⊕CSP(�d).
This implies that for some connected component ofBX, for some instantiation τ : X → D,
and for every i ∈ [d], there is a constraint Ci in this connected component such that
Ci|τ /∈ �i. Consider the set C = {C1, . . . , Cd}. Clearly, C is a set of constraints forbidden
with respect to X. This completes the proof of the lemma.

Now that we have defined the notion of forbidden sets and formally described its
utility, we argue that one can in fact efficiently check whether forbidden sets exist with
respect to a given variable set.

LEMMA 3.6. Given a CSP instance I and a set S of variables, we can check in time
O(|D||S| · |I|O(1)) if there is a set of constraints forbidden with respect to S.

PROOF. Clearly, it is sufficient to run over all the at most d-sized sets of constraints
and all assignments to the variables in S and examine the reduced constraints if they
belong to each of the languages �1, . . . , �d. Since these languages are finite, the final
check can be done in time O(1). This completes the proof of the lemma.

We say that a variable set X disconnects a set C of constraints if the graph BX has at
least two connected components containing constraints from C. Otherwise, we say that
X does not disconnect C. The following lemma argues that if there is a forbidden set
of constraints with respect to some variable set, then this set has to be affected by the
solution. This happens either by disconnecting the forbidden set or by directly picking
(into the solution) a variable in the scope of a constraint in the forbidden set.

LEMMA 3.7. Let I be a CSP instance, and let C be a set of constraints contained in a
connected component of I and forbidden (with respect to some variable set). Let Z be a
strong backdoor set of I into CSP(�1) ⊕ · · · ⊕ CSP(�d). Then, either Z disconnects C or
Z ∩ var(C) �= ∅.

PROOF. Suppose to the contrary that Z does not disconnect C, and Z is disjoint
from var(C). Since Z does not disconnect C, it must the case that C occurs in a single
component of BZ. Observation 2 implies that C is also forbidden with respect to any set
of variables disjoint from var(C), and in particular with respect to Z. By Lemma 3.5,
this contradicts our assumption that Z is a strong backdoor set of I into CSP(�1)⊕· · ·⊕
CSP(�d). This completes the proof of the lemma.

Separators in general graphs. In order to extend the notion of separators in general
graphs to those in incidence graphs of CSP instances, we need to set up some notation.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:12 R. Ganian et al.

In order to distinguish between notions in standard graph terminology and those which
we introduce for the purpose of this work, we will use the prefix standard to signify
that we are referring to standard graph notation. We remark that the use of this prefix
is restricted to the next subsection and so will not create a notational overhead for the
reader in subsequent parts of the article.

Definition 3.8. Let G be a graph, and let X, S ⊆ V (G) be disjoint vertex sets. We
denote by RG(X, S) the set of vertices in connected components of G− S which intersect
X. For a set Y ⊆ V (G) \ (X ∪ S), we say that S is a standard X-Y separator in G.
We say that S is a minimal standard X-Y separator if no proper subset of it is also a
standard X-Y separator.

Definition 3.9. Let G be a graph, and let X, Y ⊆ V (G) be disjoint vertex sets with
S being a standard X-Y separator. We say that S covers a standard X-Y separator S′
with respect to X if R(X, S) ⊇ R(X, S′), and we say that S and S′ are incomparable if
neither covers the other.

Definition 3.10. Let G be a graph, and let X, Y ⊆ V (G) be disjoint vertex sets with
S being a standard X-Y separator. We say that S is an important standard X-Y
separator if there is no other standard X-Y separator S′ such that |S′| ≤ |S| and S′
covers S.

The following lemma is a fundamental component of all important separator based
algorithms. This lemma was first proved by Chen et al. [2009] and guarantees a bound
on the number of all “small” important standard X-Y separators and gives an FPT
algorithm to enumerate all such standard separators. Since the proof for this statement
given by Chen et al. is “hidden” within another proof in the cited paper, we point the
reader to Cygan et al. [2015], which contains a detailed exposition of the same.

LEMMA 3.11 (CYAN ET AL. [2015]). Let G be a graph, let X, Y ⊆ V (G) be disjoint
vertex sets, and let k ≥ 0. Then, G has at most 4k important standard X-Y separators of
size at most k. Furthermore, there is an algorithm that, given the graph G and the sets
X, Y ⊆ V (G), runs in time O(4k(m+n)) and either concludes that G has no standard X-Y
separator of size at most k or enumerates all important standard X-Y separators of size
at most k, and there is an algorithm that runs in time nO(1), which outputs one arbitrary
standard X-Y separator which is not covered by any other standard X-Y separator.
Here, m and n are the number of edges and vertices in the graph G, respectively.

Separators in CSP instances. Here, we extend the notion of separators in graphs to
those in incidence graphs of CSP instances. Although the majority of the definitions
have a very natural extension save for minor technical alterations, we repeat most of
them for the sake of completeness. For a variable set X, we denote by C(X) the set
of all constraints whose scope has a nonempty intersection with X (equivalently, C(X)
contains the neighbors of X in B).

Definition 3.12. Let I be an instance of CSP. Let X, S ⊆ var(I) be disjoint sets
of variables, where X ∪ C(X) induces a connected subgraph of B = B(I). We denote
by RB(X, S) the set of variables and constraints that lie in the connected component
containing X in B − S and by RB[X, S] the set RB(X, S) ∪ S. Similarly, we denote by
NRB(X, S) the set (var(I) ∪ I) \ RB[X, S] and by NRB[X, S] the set NRB(X, S) ∪ S. We
drop the subscript B if it is clear from the context.

Note that in the case of incidence graphs, X-Y separators are defined only when
X ∪ C(X) induces a connected subgraph of B = B(I). This is done simply to make the
presentation of proofs easier in the latter part of the section.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:13

Definition 3.13. Let I be an instance of CSP, and let B = B(I). Let X and Y be disjoint
variable sets.

—A variable set S disjoint from X and Y is said to disconnect X and Y (in B) if
RB(X, S) ∩ Y = ∅.

—If X ∪ C(X) induces a connected subgraph of B and S disconnects X and Y , then we
say that S is an X-Y separator (in B).

—An X-Y separator is said to be minimal if none of its proper subsets is an X-Y
separator.

—An X-Y separator S1 is said to cover an X-Y separator S with respect to X if
R(X, S1) ⊃ R(X, S). If the set X is clear from the context, we just say that S1 covers
S.

—Two X-Y separators S and S1 are said to be incomparable if neither covers the
other.

—In a set H of X-Y separators, a separator S is said to be component-maximal if
there is no separator S′ in H which covers S. Similarly, a separator S is said to be
component-minimal if there is no separator S′ in H which is covered by S.

—An X-Y separator S1 is said to dominate an X-Y separator S with respect to X if
|S1| ≤ |S| and S1 covers S with respect to X. If the set X is clear from the context, we
just say that S1 dominates S.

—An X-Y separator S is said to be an important X-Y separator if it is minimal and
there is no X-Y separator dominating S with respect to X.

Note that we require separators to only occur in the variable set of B, as is reflected
in the preceding definitions; this differs from the standard graph setting where the
separators are not restricted to a strict subset of the vertex set. However, we will argue
that the required results also carry over to this more general setting with a simple
“path-preserving” modification of the graph under consideration.

Definition 3.14. For a graph G and any A, X, Y ⊆ V (G) that are pairwise disjoint,
we denote by ζ (G, A) the graph obtained from G by adding an edge between all those
pairs u, v ∈ V (G) \ A that lie in the neighborhood of the same connected component of
G[A] and then deleting the vertices in A.

LEMMA 3.15. Let G be a graph, let A, X, Y ⊆ V (G) be pairwise disjoint vertex sets,
and let G′ = ζ (G, A). Then the following statements hold.

—A set S ⊆ V (G) \ A is a standard X-Y separator in G if and only if it is a standard
X-Y separator in G′.

—If G = B(I) for some CSP instance I, X and Y are disjoint variable sets of I and A is
the set of all constraint vertices in B(I), then S ⊆ V (G) is an X-Y separator in B(I) if
and only if it is a standard X-Y separator in G′.

—If G and A are as defined earlier, then S ⊆ V (G) \ A is an important X-Y separator in
G if and only if it is an important standard X-Y separator in G′.

PROOF. For the forward direction of the first statement, suppose that S is a standard
X-Y separator in G disjoint from A and it is not a standard X-Y separator in G′. Let
P be an X-Y path in G′ − S. We can replace every edge (u, v) in P that is not in E(G)
with a u-v path in G whose internal vertices are all in A. As a result, we obtain an
X-Y walk in G − S, implying an X-Y path in G − S, a contradiction. For the converse
direction, let S be a standard X-Y separator in G′. By the definition of G′, it follows
that S ⊆ V (G) \ A. It remains to argue that it is a standard X-Y separator in G as well.
Suppose that this is not the case, and let P be an X-Y path in G disjoint from S. If P
is disjoint from A, then it is also present in G′, a contradiction. Hence, P intersects A.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:14 R. Ganian et al.

Let P ′ be an arbitrary maximal subpath of P whose endpoints x, y are not in A and all
internal vertices are in A. Since the endpoints of P itself are disjoint from A, such a
subpath exists. By the definition of G′, it must be the case that (x, y) ∈ E(G′). This is
because the path P ′ clearly ensures that x and y are both neighbors of some connected
component of G[A]. Now, we can replace the path P ′ (and all such subpaths of P) with
the corresponding edge in G′ to obtain an X-Y path in G′ that is disjoint from S, a
contradiction. This completes the proof of the first statement.

The second statement is a direct consequence of the first and the definition of the
graph G′. Hence, it only remains to prove the final statement. In order to prove this
statement, it suffices to prove that for any two X-Y separators S1 and S2 in G, S1 covers
S2 in the incidence graph G if and only if S1 covers S2 in G′. Observe that by the defini-
tion of G′, it must be the case that RG(X, S) ∩ var(I) = RG′ (X, S) for all X-Y separators
S. Now, suppose that S1 covers S2 in G but not in G′. That is, RG(X, S1) ⊇ RG(X, S2) and
RG′(X, S1) � RG′(X, S2). But this is not possible because RG(X, S1) ∩ var(I) = RG′(X, S1)
and RG(X, S2) ∩ var(I) = RG′ (X, S2), and by our assumption, RG(X, S1) ⊇ RG(X, S2).

We now consider the other direction. That is, suppose that S1 covers S2 in G′ but not
in G. Then, using the same argument as before, we conclude that there is a constraint
vertex c ∈ V (G) such that c ∈ RG(X, S2) \ RG(X, S1). But this implies that a vertex
v1 corresponding to a variable in the scope of c is in the set RG(X, S2) and no vertex
corresponding to a variable in the scope of c is in RG(X, S1). But this contradicts our
assumption that S1 covers S2 in G′. Therefore, we conclude that S1 also covers S2 in G.
This completes the proof of the lemma.

As an immediate consequence of Lemmas 3.11 and 3.15, we obtain the following
lemma, which plays a crucial role in our algorithm to compute nonseparating solutions.

LEMMA 3.16 (CYGAN ET AL. [2015]). For every k ≥ 0, there are at most 4k important
X-Y separators of size at most k. Furthermore, there is an algorithm that runs in time
O(4kk|I|) that enumerates all such important X-Y separators, and there is an algorithm
that runs in time |I|O(1) that outputs one arbitrary component-maximal X-Y separator.

Before we proceed to the description of our algorithm to solve nonseparating in-
stances, we make the following observation.

OBSERVATION 3. Let S1 and S2 be two minimal X-Y separators in an incidence graph
B where S2 dominates S1. Then, S2 disconnects (S1 \ S2) and Y .

PROOF. Note that in order to prove the statement, it suffices to prove that every
vertex in S1 \ S2 is in the set R(X, S2). Since no vertex in Y is in the same component
as a vertex of R(X, S2) in the graph G − S2, the statement follows.

Now, suppose to the contrary that some vertex u ∈ S1 \ S2 is not in the set R(X, S2).
Since S1 is a minimal X-Y separator, it must be the case that every vertex of S1 is
adjacent to some vertex of R(X, S1). In particular, u is adjacent to a vertex v ∈ R(X, S1).
However, since S2 dominates S1, it must be the case that S2 covers S1. By definition, we
infer that R(X, S2) ⊇ R(X, S1), implying that v ∈ R(X, S2) and hence u is also adjacent
to a vertex in R(X, S2). Since u /∈ S2, this implies that u ∈ R(X, S2), a contradiction to
our assumption that u ∈ S1 \ S2. This completes the proof of the statement.

3.2.2. Computing Nonseparating Solutions. We begin with the following preprocessing
rule, which can be applied irrespectively of the existence of a nonseparating solution.

PREPROCESSING RULE 1. Let (I, k, S, W) be an instance of EXT-SBD COMP, and let Z be
a connected component in BS that does not contain a set of constraints forbidden with
respect to S. Let var(Z) denote the set of variables in Z, and let C(Z) denote the set of

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:15

constraints in Z. Construct the instance I′ = C \ C(Z) with variable set var(I) \ var(Z),
set W ′ = W \ Z, and return the instance (I′, k, S, W ′).

A preprocessing rule is said to be correct if the instance of EXT-SBD COMP returned by
an execution of said rule is equivalent to the input instance of EXT-SBD COMP. That is,
both the given instance and the returned instance are YES instances or they are both NO

instances. For an instance (I, k, S, W) and a set Z satisfying the property mentioned in
the description of the above Preprocessing Rule, the phrase apply Preprocessing Rule 1
on (I, k, S, W), Z refers to the action of executing Preprocessing Rule 1 with input
(I, k, S, W) and Z. Similarly, for an instance (I, k, S, W), the preceding preprocessing
rule is said to be applicable if there is a connected component Z in BS, which satisfies
the properties required by Preprocessing Rule 1.

LEMMA 3.17. Preprocessing Rule 1 is correct. Furthermore, it can be decided in time
O(|D||S||I|O(1)) whether this rule is applicable and, if so, applied. Finally, if the rule is
not applicable, then every connected component of BS intersects W.

PROOF. We first argue the correctness of the rule. Let X be the component of BS
removed by an application of the reduction rule, and let (I′, k, S, W ′) be the resulting
reduced instance of EXT-SBD COMP. We claim that (I, k, S, W) is a YES instance if and
only if (I′, k, S, W ′) is a YES instance of EXT-SBD COMP.

Since I′ is an induced subinstance of I, any solution Z for (I, k, S, W) also represents
a solution Z \ X for (I′, k, S, W ′). For the converse direction, consider a solution Z′ ⊇ S
of (I′, k, S, W ′). By Lemma 3.5, this implies that there is no component in B(I′)Z′ that
contains a set of constraints forbidden with respect to Z′. But X also contains no set
of constraints forbidden with respect to Z′. This is because S ⊆ Z′. Hence, we conclude
that Z′ is also a solution for (I, k, S, W). This completes the proof of correctness of the
preprocessing rule.

It follows from Lemma 3.6 that the applicability of the rule can be decided in time
O(|D||S||I|O(1)). It is straightforward to infer from the description of the rule that it can
be applied in polynomial time given the instance I and the connected component Z.

We now prove the final statement of the lemma. Suppose that the rule is not applica-
ble and there is a component X of BS disjoint from W . Since the rule is not applicable,
there is a set C of constraints in X forbidden with respect to S. Since X is disjoint from
W , it must be the case that C is contained in a single component of BW∪S. Furthermore,
since W ∩ var(C) = ∅, it must be the case that C is also forbidden with respect to W ∪ S
(by Observation 2), a contradiction to the assumption that W ∪ S is a strong backdoor
set for the given CSP instance. This completes the proof of the lemma.

Note that checking for applicability and applying the preceding rule requires time
O(|D||S||I|O(1)), where |S| ≤ k. Since this running time is subsumed by the time stated
in Lemma 3.2, we will henceforth assume without loss of generality that we have
exhaustively applied Preprocessing Rule 1 on any given instance and it is no longer
applicable. The next lemma shows that if the given instance has a (not necessarily
nonseparating) solution that is known to separate a singleton variable set say {v} and
the set W , then there is a set of important separators which contain some solution
vertex.

LEMMA 3.18. Let (I, k, S, W) be an instance of EXT-SBD COMP and let Z be a solution for
this instance. Furthermore, let v be a variable such that Z disconnects {v} and W. Then
there is a solution which contains an important v-W separator of size at most k in BS.

PROOF. By Lemma 3.17, since Preprocessing Rule 1 is not applicable, it must be the
case that every connected component of BS intersects W . In particular, the connected

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:16 R. Ganian et al.

component of BS which contains v intersects W . However, Z disconnects {v} and W .
Therefore, it must be the case that Z \ S contains a nonempty set, say A which is a
minimal v-W separator of size at most k in the graph BS. If A is also an important v-W
separator in BS, then we are done. Suppose that this is not the case. Then there is a
v-W separator in BS, say B, which dominates A. We claim that the set Z′ = (Z \ A) ∪ B
is also a solution for the given instance.

Clearly, Z′ is no larger than Z, contains S and is disjoint from W . It remains to show
that Z′ is also a strong backdoor for I. By Lemma 3.5, it suffices to show that there is no
connected component of BZ′ that contains a set of constraints forbidden with respect to
Z′. Suppose to the contrary that there is a component X in BZ′ containing a set of con-
straints forbidden with respect to Z′, and let C be this set. We now consider two cases.

Case 1: X is disjoint from W . Since X is already disjoint from Z′, it follows that it is
also disjoint from S. Hence, it is disjoint from W ∪ S and there is a component Y in
BW∪S such that X ⊆ Y. Furthermore, since Z′ is disjoint from W by definition and
by assumption, var(C) ⊆ X ∪ Z′ we conclude that var(C) is also disjoint from W .
Therefore, we conclude that C is forbidden with respect to W ∪ S (by Observation 2).
Since we have already argued that C is contained in a single component of BW∪S, we
infer that W ∪ S is not a strong backdoor for the given instance, a contradiction to
the assumption that (I, k, S, W) is a valid instance of EXT-SBD COMP. This completes
the argument for this case.

Case 2: X intersects W . Due to Observation 3, it must be the case that B disconnects
A\ B and W . This is because B dominates A. Furthermore, the proof of Observation 3
shows that A\ B is contained in R(v, B). Also note that it follows from the definition
of Z′ that Z \ Z′ = A\ B.

We now argue that A \ B and hence Z \ Z′ is disjoint from the component X . If
this were not the case, then there is a path in B from a vertex of A \ B to a vertex
of W, which is disjoint from Z′. But we have already argued that A\ B is contained
in R(v, B), which is disjoint from W and B ⊆ Z′, implying a contradiction. Hence, we
conclude that Z\Z′ is disjoint from the componentX . This inference has two important
immediate consequences. First, var(C) is disjoint from Z \ Z′, and secondly, X (and
hence C) is contained within a connected component of BZ.

Finally, we argue that C is forbidden with respect to Z. By the first statement of
Observation 2, since C is forbidden with respect to Z′, it is forbidden with respect to
every subset of Z′. Hence, we infer that C is forbidden with respect to Z ∩ Z′. Since
we know that Z \ Z′ is disjoint from var(C), the second statement of Observation 2
implies that C is also forbidden with respect to (Z ∩ Z′) ∪ (Z \ Z′) = Z. Since we
have already concluded that C lies in a connected component of BZ, we can invoke
Lemma 3.5 to contradict our assumption that Z is a strong backdoor for I. This
completes the argument for the second case and hence the proof of the lemma.

We use the above lemma along with Lemma 3.16 to obtain our algorithm for nonsep-
arating instances.

LEMMA 3.19. Let (I, k, S, W) be a nonseparating instance of EXT-SBD COMP. Then it
can be solved in time 2O(k2)|I|O(1).

PROOF. We first check using the algorithm of Lemma 3.6 whether there is a set of
constraints forbidden with respect to S contained in a single component of BS. If there
is no such set, then we correctly conclude using Lemma 3.5 that the given instance is a
YES instance and return YES. On the other hand, if we detect such a set of constraints
and |S| = k, then we can correctly conclude using Lemma 3.5 that the given instance
is a NO instance and return NO.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:17

We are now left with the case when |S| < k and C is a set of constraints forbidden
with respect to S and contained in a component of BS. We construct |var(C) \ S| new
instances of EXT-SBD COMP, one corresponding to each variable in var(C)\ S as follows.
For a variable x ∈ var(C) \ S, we construct the instance (I, k, Sx, W) where Sx = S ∪{x}.
We recursively run this algorithm on these instances and return YES if at least one of
the recursive calls returned YES. Otherwise, we proceed to the next step.

In this step, for every v ∈ var(C), important v-W separator A of size at most k in BS
and variable u ∈ A, we construct an instance (I, k, Sv,A,u, W), where Sv,A,u = S ∪ {u}.
We recursively run this algorithm on these instances and return YES if at least one of
the recursive calls returned YES. If none of these recursive calls returned NO, then we
return NO. This completes the description of the algorithm.

We now prove the correctness of the algorithm by induction on k − |S|. In the base
case, when |S| = k, the correctness of the algorithm is clear. Hence, we consider the
case when |S| < k. In order to prove the correctness of the algorithm in this case, we
argue that there is always a solution that intersects either var(C) or an important
v-W separator for some v ∈ var(C). Let Z ⊇ S be a nonseparating solution for the
given instance. By Lemma 3.7, either C is disconnected by Z or Z intersects var(C).
Suppose that C is not disconnected by Z. Observe that it cannot be the case that
Z∩var(C) = S since this would then imply that C is also forbidden with respect to Z, a
contradiction. Therefore, if C is not disconnected by Z, then there is a variable, say x,
in Z ∩ var(C) which is not in S. Hence, the instance (I, k, Sx, W) is a YES instance, and
since k − |Sx| < k − |S|, by the induction hypothesis we will have correctly concluded
that (I, k, Sx, W) is a YES instance and hence that (I, k, S, W) is a YES instance.

We now describe how the algorithm accounts for the case when Z does not intersect
var(C). In this case, C is disconnected by Z. By Lemma 3.17, the connected component
of BS containing C also intersects W in BS. Since Z is a nonseparating solution, there
is a connected component of BZ which contains W . However, since Z must necessarily
disconnect C, it must be the case that at least one constraint, say C ∈ C is not contained
in this connected component. Since var(C)∩ Z is empty, it follows that var(C)∩ Z is also
empty. As a result, var(C) is disjoint from the connected component of BZ containing
W . Let v ∈ var(C) be an arbitrary variable.

Then by Lemma 3.18, we know that there is a solution Y for the given instance
that contains an important v-W separator of size at most k in BS. Since the connected
component of BS containing v also intersects W , the solution Y contains a vertex u,
which is in an important v-W separator of size at most k, say A such that u /∈ S. This
implies that the instance (I, k, Sv,A,u, W) is a YES instance, and since k−|Sv,A,u| < k−|S|,
by the induction hypothesis, we will have correctly concluded that (I, k, Sv,A,u, W) is a
YES instance and hence that (I, k, S, W) is a YES instance. This completes the proof of
correctness of the algorithm, and we move on to the running time analysis.

We now bound the running time as follows. Observe that in all, we recurse on at most
(ρ+k)d+(ρ+k)d·k·4k. The first term is due to the bound of (ρ+k)d on the size of the set
|var(C)| and the second term is due to the size of |var(C)| and the bound on the number
of important separators given by Lemma 3.16). Since |S| strictly increases in each
recursive call, the depth of the resulting search tree is bounded by k. We spend time
2O(k)|I|O(1) (due to Lemma 3.17 and Lemma 3.16) at each node of the search tree, and
hence the bound on the running time follows. This completes the proof of the lemma.

3.3. Solving General Instances

In this subsection, we describe our algorithm to solve general instances of EXT-SBD
COMP by using the algorithm to check for nonseparating solutions as a subroutine.
Essentially, this phase of our algorithm is a more powerful version of the algorithm

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:18 R. Ganian et al.

described in the previous subsection. The main idea behind this part of the algorithm
is the following. Since W (the old solution) has size bounded by 2k+ρ, we can efficiently
“guess” a partition of W as (W1, W2), where W1 ⊂ W is exactly the subset of W which
occurs in a particular connected component after removing some hypothetical solution
S. Once we guess W1 and W2, we know that the solution we are looking for separates W1
and W2. However, while it is tempting to narrow our search space down to important
W1-W2 separators at this point, it is fairly easy to see that such an approach would be
incorrect. Indeed, consider the following hypothetical example. Let k = 2, and let S1
and S2 both be W1-W2 separators of size 2 such that S2 dominates S1. Hence, S1 cannot
be an important W1-W2 separator. Furthermore, we can easily ensure that these are the
only 2 W1-W2 separators of size at most 2 in the entire graph. We will now describe the
constraints in the instance in such a way that S1 is in fact the only possible solution.
Suppose that RBS (W1, S1) and RBS (W1, S2) both induced connected subgraphs of B.
Let C1 and C2 be sets of constraints that are forbidden with respect to both S1 and S2.
Furthermore, C2∩RBS (W1, S1), C2∩RBS (W1, S2), C2\RBS (W1, S1), C2\RBS (W1, S2) are all
nonempty. That is, S1 and S2 both disconnect the set C2. However, C1 ∩ RBS (W1, S1) �= ∅,
C1 \ RBS (W1, S1) �= ∅, and C1 ⊆ RBS (W1, S2). That is, only S1 disconnects C1 and C1 lies
within a connected component of BS2 . Finally, suppose that these are the only forbidden
sets of constraints with respect to S1 or S2. Now, due to Lemma 3.5, only S1 can be
a solution for this instance. Hence, computing the set of important W1-W2 separators
alone does not help us in solving general instances.

However, while we are not able to narrow our search space of W1-W2 separators
to only important W1-W2 separators, we show that it is indeed possible to prune the
search space down to a set of separators that is much larger than the set of important
separators, but whose size is bounded by a function of k nevertheless. Once we do that,
the rest of the algorithm is a branching algorithm searching through this space. The
main technical content in this part of our algorithm lies in showing that it is sufficient
to restrict our search to an efficiently computable bounded set of separators. We next
give a brief description of the approach we follow to achieve this objective.

At a high level, we use the approach introduced in Lokshtanov and Ramanujan
[2012]. However, there are significant obstacles that arise due to the fact that we are
dealing with scattered classes of CSPs. The crux of the idea is the following. We define
a laminar family of W1-W2 separators that have a certain monotonicity property. Infor-
mally speaking, we partition the separators into “good” and “bad” separators so that
(under some ordering) all the good separators occur continuously followed by all the
bad separators. Following this, we pick the middle separators in this family—the “last”
good separator and the “first” bad separator—and show that deleting either of these
separators must necessarily disconnect the hypothetical solution we are attempting to
find. Roughly speaking, once we have computed the laminar family of separators, we
delete the middle separators and perform the same procedure recursively on the con-
nected component intersecting W1. Since the solution has size bounded by k, it cannot
be broken up more than k times and hence the number of levels in the recursion is also
bounded by k. We then show that essentially the union of the middle separators com-
puted at the various levels of recursion of this algorithm has size f (k) and furthermore
it is sufficient to restrict our search for a W1-W2 separator to this set.

We begin by defining a connecting gadget that consists of redundant constraints and
whose purpose is purely to encode connectivity at crucial points of the algorithm.

Definition 3.20. Let I be a CSP instance, and let X = {x1, . . . , x�} be a set of variables.
Let I′ be the instance obtained from I as follows. Add � − 1 new tautological binary
constraints T1, . . . , T�−1, and for each i ∈ [� − 1], define the scope of Ti as {xi, xi+1}. We
refer to I′ as the instance obtained from I by adding the connecting gadget on X.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:19

LEMMA 3.21. Let (I, k, S, W) be an instance of EXT-SBD COMP and let Z be a separating
solution for this instance. Let X be a component of BZ and let W1 = W ∩X . Let I′ be the
CSP instance obtained from I be adding the connecting gadget on W1. Then Z is also a
solution for (I′, k, S, W).

PROOF. Let B′ be the incidence graph of the CSP instance I′. If Z is not a solution
for the instance (I′, k, S, W), then there must be a component of B′

Z containing a set
C of constraints forbidden with respect to Z. Observe that since by assumption the
languages �1, . . . , �d all contain the tautological binary relation, C is disjoint from the
constraints that were added to I to construct I′. Finally, any set of constraints from
I which occur together in the same component of BZ also occur together in the same
component of B′

Z and vice versa. This implies that C is a set of constraints forbidden
with respect to Z and is contained in a single component of BZ, a contradiction. This
completes the proof of the lemma.

From this point on, we assume that if an instance (I, k, S, W) of EXT-SBD COMP is
a separating instance, then it will be represented as a tuple (I, k, S, W1, W2), where
W1 ⊂ W and W2 = W \ W1 with the connecting gadget added on W1. Note that, since
|W | ≤ 2k+ ρ, we will later on be allowed to branch over all partitions of W into W1 and
W2 in time 22k+ρ . Our objective now is to check if there is a strong backdoor set for I
extending S, disjoint from W and separating W1 from W2. For this, we need to introduce
the notions of tight separator sequences and pattern replacement procedures.

3.3.1. Tight Separator Sequences. Let I be a set of constraints and let Y be a subgraph
of B = B(I). We use I[Y] to denote I∩Y . For expositional clarity, we will usually enforce
var(I ∩ Y) to also lie in Y . That is, the variables in the scope of all constraints whose
corresponding vertex is in Y , are also present in Y .

Definition 3.22. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP. We call a W1-W2
separator X in BS �-good if there is a variable set K ⊆ RBS (W1, X) of size at most � such
that K∪ X∪ S is a strong backdoor set of I[RBS [W1, X]∪ S] into CSP(�1)⊕· · ·⊕CSP(�d),
and we call it �-bad otherwise.

LEMMA 3.23 (MONOTONOCITY LEMMA). Let (I, k, S, W1, W2) be an instance of EXT-SBD
COMP, and let X and Y be disjoint W1-W2 separators in BS such that X covers Y . If X is
�-good, then so is Y . Consequently, if Y is �-bad, then so is X.

PROOF. Suppose that X is �-good, and let K be a variable set of size at most � such
that K ∪ X∪ S is a strong backdoor set into CSP(�1)⊕· · ·⊕CSP(�d) for the subinstance
I′ = I[RBS [W1, X] ∪ S]. Let K′ = K ∩ RBS [W1, Y]. We claim that Y is �-good and that
P = K′ ∪ Y ∪ S is a strong backdoor set for the subinstance Î = I[RBS [W1, Y] ∪ S].

If this were not the case, then there is a set C of constraints that are contained in a
single component of B(Î) − P and are forbidden with respect to the set P. By the first
statement of Observation 2, we conclude that C is also forbidden with respect to K′ ∪ S.

Now, we observe that since C lies in the set RBS [W1, Y], no constraint in C can have
in its scope a variable in X ∪ (K \ K′). This is because otherwise at least one vertex in
X or K \ K′ would be contained in the set RBS [W1, Y]. But in the former case, we obtain
a contradiction to the assumption in the premise of the lemma that X covers Y and
in the latter case, we obtain a contradiction to the definition of K′, which is defined
to be the set of all vertices in K that are also in RBS [W1, Y]. Therefore, by the second
statement of Observation 2, C being forbidden with respect to K′ ∪ S implies that it is
also forbidden with respect to (K′ ∪ S)

⋃
(X ∪ (K \ K′)) = X ∪ K ∪ S.

Finally, since C lies in a single component of B(Î) − P and (K \ K′) ∪ X is disjoint
from RBS [W1, Y] ∪ S, it must be the case that C also lies in a single component of

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:20 R. Ganian et al.

B(I′) − (K ∪ X∪ S). But this results in a contradiction to our assumption that K ∪ X∪ S
is a strong backdoor set for the instance I′. This completes the proof of the lemma.

Definition 3.24. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP, and let B =
B(I). Let X and Y be W1-W2 separators in BS such that Y dominates X. Let � be the
smallest i for which X is i-good. If Y is �-good, then we say that Ywell-dominates X. If
X is �-good and there is no Y �= X that well-dominates X, then we call X �-important.

The following lemma is a analogous to (indeed a strengthening of) Lemma 3.18 and
describes when one W1-W2 separator is at least as good as another W1-W2 separator
with respect to the solution.

LEMMA 3.25. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP, let B = B(I), and
let Z be a solution for this instance. Let P ⊆ Z \ S be a nonempty minimal W1-W2
separator in BS, and let P ′ be a W1-W2 separator in BS well-dominating P. Then there
is also a solution for the given instance containing P ′.

PROOF. Let K ⊆ RBS (W1, P) be a minimal subset of Z such that K ∪ P ∪ S is a strong
backdoor set of the instance I′ = I[RBS [W1, P] ∪ S]] into CSP(�1) ⊕ · · · ⊕ CSP(�d). Let
� = |K|, and let Q = (Z ∩ [RBS [W1, P]) ∪ S. We first argue that Q = K ∪ P ∪ S. That is,
there is no other vertex of Z in K ⊆ RBS [W1, P] other than those in K ∪ P.

CLAIM 1. Q = K ∪ P ∪ S.

PROOF. Suppose to the contrary that there is a vertex z ∈ (Z \ Q) ∩ RBS [W1, P]. Since
P ⊆ Q, it must be the case that z ∈ (Z \ Q) ∩ RBS (W1, P). We now argue that Ẑ = Z \ {z}
is a strong backdoor of I into CSP(�1) ⊕ · · · ⊕ CSP(�d), contradicting the minimality
of Z.

Suppose to the contrary that Ẑ is not a strong backdoor of I into CSP(�1) ⊕ · · · ⊕
CSP(�d), and let X be a component of BẐ containing a set C of constraints forbidden
with respect to Ẑ. Clearly, it cannot be the case that X is disjoint from RBS (W1, P)
because that would imply that X is also a component of BZ which contains a set of
constraints forbidden with respect to Z. Hence, it must be the case that X intersects
RBS (W1, P). Furthermore, since P ⊆ Ẑ, it must be the case that X ⊆ R(W1, P) and hence
var(C) ⊆ RBS [W1, P]. By the first statement of Observation 2, this implies that C is
forbidden with respect to (Ẑ∩ RBS [W1, P]) ∪ S = ((Z∩ (RBS [W1, P])) \ {z}) ∪ S. However,
by the definition of z, we know that ((Z ∩ (RBS [W1, P])) \ {z}) ∪ S ⊇ K ∪ P ∪ S. Hence,
by the first statement of Observation 2, we conclude that C is forbidden with respect
to K ∪ P ∪ S. But this contradicts the definition of K as a minimal subset of Z such
that K ∪ P ∪ S is a strong backdoor of I[RBS [W1, P] ∪ S] into CSP(�1) ⊕ · · · ⊕ CSP(�d).
Hence, we conclude that Q = K ∪ P ∪ S, completing the proof of the claim.

From the preceding claim, it follows that Q is a strong backdoor set of the instance
I′ = I[RBS [W1, P] ∪ S]] into CSP(�1) ⊕ · · · ⊕ CSP(�d). Now, since P is �-good and P ′
well-dominates P, it follows that P ′ dominates P and P ′ is also �-good. That is, there is
a set K′ ⊆ RBS (W1, P ′) of size at most � such that Q′ = K′ ∪ P ′ ∪ S is a strong backdoor
of the instance I′ = I[RBS [W1, P ′] ∪ S]] into CSP(�1) ⊕ · · · ⊕ CSP(�d).

We claim that Z′ = (Z \ Q) ∪ Q′ is a solution for the instance (I, k, S, W1, W2). Since
|Q| = |K| + |P| + |S|, |Q′| = |K′| + |P ′| + |S|, |K′| ≤ |K|, and |P ′| ≤ |P|, it follows
that |Q′| ≤ |Q|. Hence, Z′ is no larger than Z. It now remains to prove that Z′ is a
strong backdoor set of I into CSP(�1) ⊕ · · · ⊕ CSP(�d). Suppose that Z′ is not a strong
backdoor set, and letX be a connected component ofBZ′ containing a set C of constraints
forbidden with respect to Z′. We now break into the following two cases.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:21

Case 1: X ∩RBS (W1, P ′) = ∅. In this case, X is also disjoint from RBS [W1, P ′] and var(C)∩
RBS (W1, P ′) = ∅. That is, no constraint in C has in its scope a variable in RBS (W1, P ′).
By the first statement of Observation 2, C is also forbidden with respect to every
subset of Z′ and in particular with respect to the subset J = (Z′\RBS [W1, P ′])∪(P ′∩Z).
But by the definition of Z′, we know that J ⊆ Z and furthermore, Z\ J ⊆ RBS (W1, P),
which is in turn disjoint from var(C). Hence, by the second statement of Observation 2,
we conclude that C is also forbidden with respect to J ∪ (Z \ J) = Z.

Finally, since P ′ dominates P, it follows that RBS (W1, P) ⊂ RBS (W1, P ′). Hence, it
must be the case that there is a connected component Y in BZ such that X ⊆ Y.
Therefore, we conclude that C is a set of constraints forbidden with respect to Z and
occurring inside a connected component of BZ. This contradicts our assumption that
Z is a strong backdoor of I into CSP(�1) ⊕ · · · ⊕ CSP(�d).

Case 2: X ∩ RBS (W1, P ′) �= ∅. By the definition of Z′, it must be the case that X is
contained in the set RBS (W1, P ′). Then, var(C)\ RBS [W1, P ′] = ∅. That is, no constraint
in C has in its scope a variable outside RBS [W1, P ′], and hence Z′ \ Q′ is disjoint
from RBS (W1, P ′). By the first statement of Observation 2, it follows that C is also
forbidden with respect to every subset of Z′ and in particular, with respect to the
subset J = (Z′ ∩ RBS [W1, P ′]) ∪ S, which is by definition equal to Q′.

Finally, since X is contained in the set RBS (W1, P ′), it follows that X is also a
connected component in the graph B(I′′)S − Q′. Hence, we conclude that C is forbidden
with respect to Q′ and lies in a connected component of B′

S − Q′ where B′ = B(I′),
contradicting our assumption that Q′ is a strong backdoor set of I′ into CSP(�1)
⊕ · · · ⊕ CSP(�d).

Having obtained a contradiction in either case, we conclude that Z′ is indeed a solution
for the instance (I, k, S, W1, W2), and since Z′ ⊆ P ′, the lemma follows.

Lemmas 3.18 and 3.25 imply that it is sufficient to compute either a variable sep-
arated from W by some solution or a separator well-dominating (the separating part
of) some solution. Furthermore, Lemma 3.25 allows us to restrict our attention to �-
important separators for values of � ≤ k. In the rest of this section, we describe a
subroutine that runs in FPT time and always achieves one of the aforementioned ob-
jectives. We use the notion of tight separator sequences (defined later in the text) to
streamline our search for this variable/separator.

Definition 3.26. For every k ≥ 1, a tight X-Y separator sequence of order k is a set
H of X-Y separators with the following properties.

—Every separator has size at most k.
—The separators are pairwise disjoint.
—For any pair of separators in the set, one covers the other.
—The set is maximal with respect to the above properties.

See Figure 2 for an illustration of a tight separator sequence.

LEMMA 3.27. Given a CSP instance I, disjoint variable sets X, Y , and an integer k, a
tight X-Y separator sequence H of order k can be computed in time |I|O(1).

PROOF. If there is no X-Y separator of size at most k, then we stop the procedure.
Otherwise, we compute an arbitrary component-maximal X-Y separator S of size at
most k. This can be done in polynomial time by the algorithm of Lemma 3.16. We add
this separator to the family H, set Y := S, and iterate this process. We claim that
the resulting set is a tight X-Y separator sequence of order k. It is clear that the first
three properties of a tight separator sequence are always satisfied in any iteration.
As for the maximality of the set H that is finally computed, observe that if there is a

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:22 R. Ganian et al.

Fig. 2. An illustration of a tight w1-{w2, w3} separator sequence. Each shaded layer corresponds to a sepa-
rator in the sequence.

separator, say P, that can be added to the H without violating maximality, then it either
contradicts the component-maximality of at least one separator in H or it contradicts
the termination of the process. The former case occurs if P covers at least one separator
in H and the latter occurs if P is covered by all separators in H. This completes the
proof of the lemma.

3.3.2. Boundaried CSPs and Replacements.

Definition 3.28. A t-boundaried CSP instance is a CSP instance I with t distinguished
labeled variables. The set ∂(I) of labeled variables is called the boundary of I and the
variables in ∂(I) are referred to as the terminal variables. Let I1 and I2 be two t-
boundaried CSP instances and let μ : ∂(I1) → ∂(I2) be a bijection. We denote by I1 ⊗μ I2
the t-boundaried CSP instance obtained by the following gluing operation. We take the
disjoint union of the constraints in I1 and I2 and then identify each variable x ∈ ∂(I1)
with the corresponding variable μ(x) ∈ ∂(I2).

We also define the notion of boundaried CSP instances with an annotated set of
variables. The key difference between the boundary and the annotation is that the
annotated set of variables plays no part in gluing operations. Formally,

Definition 3.29. A t-boundaried CSP instance with an annotated set is a t-
boundaried CSP instance I with a second set of distinguished but unlabeled vertices
disjoint from the boundary. The set of annotated vertices is denoted by 	(I).

Before proceeding to the technical Lemma 3.30, we give an informal outline of its
claim and intended use. Consider an instance of EXT-SBD COMP with a solution Z that
is disjoint from and incomparable to some �-good separator P. Then some part of Z\ S,
say K, lies in RBS [W1, P] ∪ S. We show that, by carefully replacing parts outside of
RBS [W1, P] ∪ S with a small gadget, we can obtain an instance I′, which preserves the
part of K inside RBS [W1, P] ∪ S. We also show that some part of K had to lie outside of
RBS [W1, P]∪S, and hence the solution we seek in I′ is strictly smaller than in I; once we
find a solution in I′, we can use it to find one in I. Furthermore, the number of possible

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:23

boundaried instances that need to be considered for this replacement is bounded by a
function of k, which allows exhaustive branching.

OBSERVATION 4. Let S1 and S2 be two disjoint and incomparable X-Y separators. Then,
Sr

2 = R(X, S1) ∩ S2, Sr
1 = R(X, S2) ∩ S1 are both nonempty. Furthermore, Snr

2 = S2 \ Sr
2

and Sr
1 = S1 \ Sr

1 are also both nonempty.

LEMMA 3.30. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP, and let Z be a
solution for this instance. Let Q be a minimal part of Z\ S separating W1 from W2 in BS,
let K = (Z∩ RBS [W1, Q]), and let � = |K \ Q|. Let P be a minimal W1-W2 separator in BS
that is disjoint from K and incomparable with Q, let Qr be Q∩ RBS (W1, P) and Qnr =
Q\ Qr. Similarly, let Pr be P ∩ RBS (W1, Q) and Pnr = P \ Pr, and suppose that W1 ∪ Pr

has the connecting gadget on it. Let K r = (K ∩ RBS [W1, P]). Let I1 = I[RBS [W1, P] ∪ S]
be a boundaried CSP instance with Pr ∪ S as the boundary.

Then, there exists a |Pr ∪ S|-boundaried CSP instance Î with an annotated set of
variables, and a bijection μ : ∂(I) → Pr ∪ S such that the glued CSP instance I′ = I1 ⊗μ Î
has the following properties.

(1) The set W1 ∪ Pnr ∪ S is a strong backdoor set into CSP(�1) ⊕ · · · ⊕ CSP(�d) in the
CSP instance I′.

(2) The set Qr is a |K r \ Qr|-good W1-Pnr separator in BS∪	(Î)(I
′) = B′

S∪	(Î)
.

(3) For any Q′ that is a W1-Pnr separator in B′
S∪	(Î)

well dominating Qr in I′, the set
Q′ ∪ Qnr well dominates the W1-W2 separator Q in BS.

(4) If v is a variable disconnected from W1 ∪ Pnr by K r in B′
S∪	(Î)

, then v is in R(W1, P)
and v is disconnected from W1 ∪ W2 by K in BS.

(5) There is a constant η and a family H of boundaried CSP instances with an annotated
variable set such that H contains Î, has size bounded by 22ηk

and can be computed
in time 22ηk

kO(1).

PROOF. We first describe the instance Î and then prove that it has the properties
claimed by the lemma. Let Knr = (K \ K r) ∪ Qnr. Consider the subinstance I2 = { C ∈
I : var(C) ⊆ (NRBS (W1, P) ∩ RBS (W1, Q)) ∪ Pr ∪ Knr }. In other words, we take the set
of constraints containing variables that are either disconnected from W1 by P but not
disconnected from W1 by Q, or occur in Pr ∪ Knr. Two vertices v,w ∈ BS∪Knr (I2) are
I2-connected if they are connected in BS∪Knr (I2); similarly, a vertex set A of BS∪Knr (I2)
is I2-connected if A is a connected vertex set in the graph BS∪Knr (I2). Notice that Pr is
I2-connected by assumption.

We now perform the following marking scheme on this hypothetical subinstance I2.
For every assignment τ of S ∪ Knr, and for each J ⊆ [d], if there exists a set C of
constraints such that

(1) C|τ is J-forbidden (w.r.t. ∅), and
(2) C ∪ Pr is I2-connected,

then we mark the constraints in one such set C. Since Q is �-good and in particular
since Q ∪ K ∪ S is a strong backdoor set in I[RBS [W1, Q] ∪ S], every relation occurring
in C belongs to one of the finite languages �1, . . . , �d, and hence |C| does not depend on
k. Since the number of possible assignments τ is bounded by 2O(k), we observe that the
set M of all marked constraints has cardinality 2O(k).

To complete our construction of Î, we begin by setting Î = I2[M ∪ var(M) ∪ Pr ∪ S ∪
Knr ∪ Qnr]. We then add the connecting gadget on the set (var(M) ∪ Pr) \ (S ∪ Knr).
Finally, we define the boundary of Î to be Pr ∪ S and define the annotated set 	(I) to

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:24 R. Ganian et al.

be the set Knr. From the bound on |M|, it is readily observed that |Î| ≤ 2O(k). We now
prove that I′ = I1 ⊗identity Î satisfies the properties claimed by the lemma.

CLAIM 2. The set W1 ∪ Pnr ∪ S is a strong backdoor set into CSP(�1) ⊕ · · · ⊕ CSP(�d)
in the CSP instance I′.

We actually prove a stronger claim, specifically that already W1 ∪ S is a strong
backdoor set (into CSP(�1)⊕· · ·⊕CSP(�d)) in I′. Assume the converse; then there exists
a set C of forbidden constraints in I′ with respect to W1 ∪ S that occur in a connected
component of BW1∪S(I′). We first show that C must also be connected in BW1∪S∪W2 (I).
Consider any path between v,w ∈ var(C) in BW1∪S(I′), and some constraint T = (S,D2)
on this path that is not present in BW1∪S∪W2 (I); observe that T must be a connecting
gadget. Let v′, w′ be the neighbors of T . By construction, v′, w′ are I2-connected and
hence also connected in BS(I). Since (W1 ∪ S ∪ W2) ∩BS(I′) = ∅, it follows that any such
v′, w′ and consequently also v,w are connected in BW1∪S∪W2 (I).

So, C is also connected in BW1∪S∪W2 (I). Since var(C) ∩ W2 = ∅, we conclude that C is
also forbidden with respect to W1 ∪ S ∪ W2. This contradicts the fact that W1 ∪ W2 ∪ S
is a solution to our initial instance of EXT-SBD COMP.

CLAIM 3. The set Qr is a |K r \ Qr|-good W1-Pnr separator in BS∪	(Î)(I
′) = B′

S∪	(Î)
.

We first prove that Qr is indeed a separator as claimed. Suppose for a contradiction
that there exists a path α in B′

S between v ∈ W1 and w ∈ Pnr. By definition, Qr is a
W1-Pnr separator in BS, and so α must necessarily contain an edge v′w′ in B′

S∪	(Î)
− Qr,

which is not in BS − Qr; by construction, this implies that v′w′ are I2-connected. For
any such v′w′, there hence exists some path α′ in BS(I2) ⊆ BS, and from this it follows
that v,w are also connected in BS − Qr. This contradicts the fact that Qr is a W1-Pnr

separator in BS, and so Qr must also be a W1-Pnr separator in B′
S∪	(Î)

.
Next, we argue that Qr is |K r \Qr|-good in B′

S∪Knr , and that this is in fact witnessed by
K r \ Qr. Indeed, assume for a contradiction that there exists a set C of constraints in I′
that are connected and forbidden with respect to S∪Knr ∪Qr ∪(K r \Qr) = S∪K. Clearly,
none of the constraints in C contain the relation D2, and hence C ⊆ I. Furthermore,
C is also connected in I by the same path argument as in Claim 2: any path between
c1, c2 ∈ C that contains edges either exists in BS∪K or can be replaced by a new path
in BS∪K that uses I2-connectivity to circumvent connectivity constraints. But since
var(C) ∩ (S ∪ K) is the same in I and I′, we conclude that var(C) is forbidden with
respect to S ∪ K in I. This yields a contradiction with Q being �-good in I as witnessed
by K \ Q.

CLAIM 4. For any Q′ that is a W1-Pnr separator in B′
S∪	(Î)

well dominating Qr in I′,
the set Q′ ∪ Qnr well dominates the W1-W2 separator Q in BS.

The set Q̂ = Q′ ∪ Qnr dominates Q in BS by definition; therefore, it suffices to prove
that Q̂ is �-good in BS. Let Y ′ be the variable set certifying that Q′ is |K r \ Qr|-good in
B′

S∪Knr . We claim that Y = Y ′ ∪ (Knr \ Qnr) certifies that Q̂ is �-good in BS, and argue
that |Y | ≤ �. Since |Y ′| ≤ |K r \ Qr| by assumption and both Y ′ and |K r \ Qr| are disjoint
from Knr \ Qnr, it follows that |Y | ≤ |(Kr \ Qr) ∪ (Knr \ Qnr)| = |(K \ Q)| = �.

Now, assume for a contradiction that there exists a set C of constraints in
I[RBS [W1, Q̂]∪ S] which are connected and forbidden with respect to Q̂∪ S∪Y . Observe
that C �⊆ I1, since then C would also be forbidden with respect S ∪ Knr ∪ Q′ ∪ Y ′ and
connected in B′

S, which would contradict our assumption on Q′. So it must be the case
that C2 = C ∩ I2 is nonempty. First, we consider the simpler case where C2 ⊆ Î; by the

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:25

construction of Î and in particular the addition of the connectivity gadgets, it follows
that C would then also be connected in I′ and hence forbidden in I′ with respect to
S ∪ Knr ∪ Q′ ∪ Y ′. This excludes the existence of any set C of forbidden constraints with
respect to Q̂∪ S ∪ Y such that C ⊆ I′.

Next, we proceed the general case where C2 contains a subset of constraints, say
C+

2 , which are not contained in I′ and which are pairwise I2-connected; we refer to any
such set C+

2 as a leftover of C. Let us now fix C to be some set of forbidden constraints
in I, which has a minimum number of leftovers; in the previous paragraph, we have
argued that C must contain at least one leftover, and we will reach a contradiction by
showing that there exists a set C′ of forbidden constraints with respect Q̂∪ S ∪ Y with
less leftovers than C.

Let τ be the assignment of S ∪ Q̂∪ Y certifying that C is forbidden in I, and let τ ′ be
the restriction of τ to Knr ∪ S. Let C+

2 be some leftover of C, and let J ⊆ [d] be such that
C+

2 |τ is J-forbidden with respect to S ∪ Y ′
2 in I. Since C+

2 was not marked during our
construction of Î, there must exist another “marked” set of constraints CM

2 in Î with
the following properties:

—CM
2 |τ ′ is also J-forbidden (w.r.t. ∅), and

—CM
2 ∪ Pr is I2-connected.

To finish the argument, let CM = (C \ C+
2) ∪ CM

2 . By construction, CM is connected in
BS∪Q̂∪Y (I); indeed, CM

2 is pairwise I2-connected and is connected to at least one variable
p ∈ Pr, which was I2-connected to C+

2 , which in turn guarantees connectivity to the
rest of C. Furthermore, by the construction of CM we observe that CM \ CM

2 is ([d] \ J)-
forbidden with respect to S ∪ Q̂ ∪ Y and CM

2 is J-forbidden with respect to S ∪ Q̂ ∪ Y
(because (S ∪ Q̂∪Y)∩ I2 = Knr ∪ S); so, CM must be forbidden with respect to S ∪ Q̂∪Y
in I. Since CM has one less leftover than C, we have reached a contradiction to the
existence of C.

CLAIM 5. If v is a variable disconnected from W1 ∪ Pnr by K r in B′
S∪	(Î)

, then v is in
R(W1, P) and v is disconnected from W1 ∪ W2 by K in BS.

By construction of Î, it is easy to see that v is not separated from Pr by K r in B′
S∪	(Î)

,
and due to the connecting gadget on W1∪ Pr, v is not separated from W1 as well. We now
prove the second part of the claim. Assume for a contradiction that there exists a path α
from v to W1 ∪W2 in BS∪K. First, consider the case where α does not intersect I2. Then α
must exist in I1 and in particular also in B′

S∪Knr , which contradicts our assumption on v.
On the other hand, assume α does intersect I2. Since Pr is by definition a W1-(I2 \ Pr)

separator in BS, this means that α must intersect Pr; let a be the first vertex in Pr on
the path α from v. Since α ends in W1 ∪ W2, neither of which intersect with BS∪Knr (I2),
there must be a last vertex b in B(I2) on α (in other words, the path leaves BS∪Knr (I2)
from b and does not return there). Since b �∈ Q ⊆ K by assumption, it must follow that
b ∈ Pr. But then a, b are connected by a connectivity gadget in I′, and hence there
is a path of length 2 between a and b in B′

S∪Knr which guarantees the existence of a
v-(W1 ∪ W2) path α′ in B′

S∪Knr , a contradiction.

CLAIM 6. There is a constant η and a family H of boundaried CSP instances such
that H contains Î, has size bounded by 22ηk

and can be computed in time 22ηk
kO(1).

For the proof of the final statement, observe that Î is an instance containing 2O(k)

constraints and variables, at most k of which are marked. Since the number of such

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:26 R. Ganian et al.

marked instances is bounded by 22O(k)
and these can be enumerated in time 22O(k)

, the
proof of the lemma is complete.

3.3.3. The Algorithm for General Instances. The goal of this section is to show how our al-
gorithm handles general instances. Our first order of business is proving Lemma 3.31.
This lemma shows that when solving an instance (I, k, S, W1, W2) of EXT-SBD COMP, if
S already intersects all W1-W2 paths, then we can simply focus on solving a nonsepa-
rating instance induced on a carefully chosen subset of variables and constraints. This
immediately leads to Preprocessing Rule 2. Lemma 3.32 then forms the core component
of our algorithm. We conclude this section by summarizing the algorithm (Lemma 3.33)
and giving a proof of Lemma 3.2.

LEMMA 3.31. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP, let Z be a solution
for this instance, and let Z′ = Z∩ RB[W1, S]. Let I′ denote the instance I[RB[W1, S]]. If S
disconnects W1 and W2, then (I′, |Z′|, S, W1) is a nonseparating YES instance of EXT-SBD
COMP and conversely for any nonseparating solution Z′′ for the instance (I′, |Z′|, S, W1),
the set Ẑ = (Z \ Z′) ∪ Z′′ is a solution for the original instance.

PROOF. Suppose that Z′ is not a strong backdoor set for the instance (I′, |Z′|, S, W1).
Let B′ be the incidence graph of the instance I′. Then, some component of B′

Z′ contains
a set C of constraints forbidden with respect to Z′. However, since S disconnects these
constraints from Z\ Z′, it must be the case that these constraints also occur in a single
connected component of BZ. Also, since Z \ Z′ is disjoint from var(C), by Observation 2
we know that C is also forbidden with respect to Z′ ∪ (Z \ Z′) = Z, a contradiction.
Therefore, Z′ is indeed a strong backdoor set for the instance (I′, |Z′|, S, W1). Since the
connecting gadget has been added on W1 (by assumption), it must be the case that Z′
is a nonseparating solution for the instance (I′, |Z′|, S, W1).

For the converse direction, suppose that the set Ẑ is not a solution for the original
instance, and let C be a set of constraints in a connected component of BẐ that is
forbidden with respect to Ẑ. Clearly, C is contained entirely inside one of the sets
RB(W1, S) or NRB(W1, S). We first consider the case when C is contained in RB(W1, S).
Then, it must be the case that C is also in a single connected component of B′ − Z′′.
However, since Z′′ is assumed to be a strong backdoor set for the CSP instance I′, C is
not forbidden with respect to Z′′ and hence also not forbidden with respect to Ẑ. On the
other hand, we consider the case when C is contained in NRB(W1, S). Then C must be
contained in some component of NRB(W1, S) − Ẑ and in particular in some component
of NRB(W1, S) − (Z \ Z′′) = NRB(W1, S) − (Z \ Z′). Also, since Z′ is disjoint from var(C),
by Observation 2 we know that C is also forbidden with respect to Z′ ∪ (Z \ Z′) = Z, a
contradiction.

PREPROCESSING RULE 2. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP. If S
disconnects W1 from W2, then compute a nonseparating solution Z′ for the instance
(I′, k′, S, W1), where I′ denotes the instance I[RB[W1, S]] and k′ is the least possible
value of i ≤ k such that (I′, i, S, W1) is a YES instance. Delete Z′, and return the instance
(I − Z′, k − |Z′|, S, W2).

It follows from Lemma 3.31 that the preceding rule is correct (see paragraph following
Preprocessing Rule 1 for definition of a rule being correct), and we obtain a bound on the
running time from that of the algorithm of Lemma 3.19. Henceforth, we assume that
in any given instance of EXT-SBD COMP, the preceding rule is not applicable. We now
move to the description of the subroutine, which is at the heart of our main algorithm.
Recall that every solution Z to an instance of EXT-SBD COMP by assumption contains

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:27

Fig. 3. An illustration of the instance obtained by gluing some Î ∈ H to the instance I[R[W1, P1] ∪ S].

an �-good W1-W2 separator X (here, as well as further on, by separator we implicitly
mean a separator in BS unless stated otherwise).

LEMMA 3.32. Let (I, k, S, W1, W2) be an instance of EXT-SBD COMP, and let 0 ≤ �, λ ≤
k. There is an algorithm that, given a tuple < (I, k, S, W1, W2), λ, � > runs in time
22O(k) |I|O(1) and returns a set R which is disjoint from S and contains at most 22O(k)

variables such that for every �-important W1-W2 separator X of size at most λ in BS and
for every solution Z ⊇ X for the given instance of EXT-SBD COMP,

—R intersects X or
—there is a variable in R which is separated from W by Z or
—R intersects Z \ S.

PROOF. Recall that Preprocessing Rule 2 is assumed to have been exhaustively
applied, and hence, there must be some W1-W2 path in BS. Similarly, if there is no
W1-W2 separator of size at most λ in BS, then we return NO, that is, the tuple is invalid.
Otherwise, we execute the algorithm of Lemma 3.27 to compute a tight W1-W2 separator
sequence I of order λ. We then partition I into �-good and �-bad separators. We do this
by testing each separator in the sequence for the presence of nonseparating solutions
(this is sufficient due to the presence of the connecting gadget, which is assumed to have
been placed on W1), and this can be done in time 2O(�2)|I|O(1) by invoking Lemma 3.19.
Now, let P1 be component-maximal among the �-good separators in I (if any exist), and
let P2 be component-minimal among the �-bad separators in I (if any exist). We set
R := P1 ∪ P2. For each i ∈ {1, 2}, we now do the following.

We execute the algorithm of Lemma 3.30, Claim 6 to compute a family H of bound-
aried CSP instances with an annotated set of variables. Then, for every choice of
Pr

i ⊆ Pi, for every instance Î ∈ H with |Pr
i ∪ S| terminals and for every possible bijec-

tion δ : ∂(Î) → Pr
i ∪ S, we construct the glued CSP instance IPr

i ,δ = I[R[W1, Pi] ∪ S] ⊗δ Î
(see Figure 3, where the boundary of the instance I[R[W1, Pi] ∪ S] is defined as Pr

i ∪ S
and the connecting gadget is added on W1 ∪ Pr

i . We then recursively invoke this al-
gorithm on the tuple < (IPr

i ,δ, k − j, S ∪ S̃, W1, Pi \ Pr
i), λ′, �′ > for every 0 ≤ λ′ < λ,

1 ≤ j ≤ k− 1 and 0 ≤ �′ ≤ �, where S̃ is the annotated set of variables in Î. We add the
union of the variable sets returned by these recursive invocations to R and return the
resulting set. This completes the description of the algorithm. We now proceed to the
proof of correctness of this algorithm.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:28 R. Ganian et al.

Fig. 4. An illustration of the case where X (the dotted circles) is incomparable with P1 and P2.

Correctness. We prove the correctness by induction on λ. Consider the base case,
when λ = 1 and there is a path from W1 to W2 in BS. We argue the correctness of the
base case as follows. Let X be an �-important W1-W2 separator; since X has size 1, it
cannot be incomparable with any distinct W1-W2 separator of size 1. Therefore, X has
to be equal to P1 or covered by P1 (P1 exists since X itself is �-good by assumption).
In either case, we are correct. The former case is trivially accounted for because P1 is
contained in R, and the latter case is accounted for because then P1 would clearly well-
dominate X, which itself is �-important, leading to a contradiction. We now move to the
induction step with the induction hypothesis being that the algorithm runs correctly
(the output satisfies the properties claimed in the statement of the lemma) on all tuples
where λ < λ̂ for some λ̂ ≥ 2. Now, consider an invocation of the algorithm on a tuple
with λ = λ̂.

Let Z be a solution for this instance containing the �-important separator X, that
is, X ⊆ (Z \ S), of size at most λ. If X intersects P1 ∪ P2, then the algorithm is correct
because R intersects Z \ S. Therefore, we may assume that X is disjoint from P1 ∪ P2.
Now, suppose that X is covered by P1. In this case, since P1 is also �-good and has size
at most λ, by the definition of well-domination, P1 well-dominates X, contradicting our
assumption that X is �-important.

Similarly, by the Monotonocity Lemma (Lemma 3.23), because X is �-good and P2 is
not, it cannot be the case that X covers P2. Now, suppose that X covers P1 and is itself
covered by P2. However, due to the maximality of the tight separator sequence, X must
be contained in I. But this contradicts our assumption that P1 is a component-maximal
�-good separator in the sequence I and P1 �= X.

Finally, we are left with the case when X is incomparable with P1 (if P1 is defined) or
P2 (otherwise). Without loss of generality, suppose that X is incomparable with P1 (see
Figure 4). The argument for the case when P1 does not exist is analogous and follows
by simply replacing P1 with P2 in the proof.

Let K ⊆ Z be a strong backdoor set for I[R[W1, X] ∪ S] extending X ∪ S. If P1 ∩ K
is nonempty, then P1 ∩ Z is nonempty as well, and since R contains the vertices in
P1, the algorithm is correct. Therefore, we assume that P1 and K are disjoint. Now,
let Xr = RBS (W1, P1) ∩ X and Xnr = X \ Xr. Similarly, let Pr

1 = RBS (W1, X) ∩ P1 and
Pnr

1 = P1 \ Pr
1 . Since X and P1 are incomparable, the sets Xr, Xnr, Pr

1 and Pnr
1 must

all be nonempty. Let K r = (K ∩ R(W1, P)) ∪ S. Furthermore, if any variable in Pr
1 is

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:29

not in the same component as W1 in BZ, then R contains a variable separated from
W by Z, also implying that the algorithm is correct. Hence, we may assume that
Pr

1 is contained in the same component as W1 in BZ. Observe that the sets defined
earlier satisfy the premises of Lemma 3.30 with P = P1 and Q = X in the statement
of the lemma. Therefore, there is a |Pr

1 ∪ S|-boundaried instance Î with an annotated
set S̃ and an appropriate bijection μ : ∂(Î) → Pr

1 ∪ S with the properties claimed in
the statement of Lemma 3.30. Now, consider the recursion of the algorithm on the
tuple <(IPr

1 ,μ, k1, S ∪ S̃, W1, Pnr
1), λ′, �′>, where IPr

1 ,μ is the instance obtained by gluing
together I[R[W1, P1] ∪ S] (with Pr

1 ∪ S as the boundary) and Î via the bijection μ with
the connecting gadget added on W1 ∪ Pr

1 , λ′ = |Xr|, k1 = |K r|, and �′ = |K r|.
In order to apply the induction hypothesis on the execution of the algorithm on this

tuple, we need to prove that the tuple is “valid,” that is, it satisfies the conditions in
the premise of the lemma. In order to prove this, it is sufficient for us to prove that
(IPr

1 ,μ, k1, S ∪ S̃, W1, Pnr
1) is indeed a valid instance of EXT-SBD COMP. For this to hold,

it must be the case that W1 ∪ Pnr
1 ∪ S is a strong-backdoor set for the CSP instance

IPr
1 ,μ. But this property is indeed guaranteed by Lemma 3.30, Claim 2. Therefore, the

tuple satisfies the conditions in the premise of the lemma, and since λ′ < λ = λ̂, we
may apply the induction hypothesis.

Since X is �-important, from Lemma 3.30, Claims 3 and 4 it follows that Xr must also
be k1-important in IPr

1 ,μ. By the induction hypothesis, the algorithm is correct on this
tuple and the returned set, call it R′, either intersects Xr (due to the aforementioned
argument using Claims 3 and 4), or contains a variable separated from W1 ∪ Pnr by
K r or contains a variable in K r. By Lemma 3.30, Claim 5 it holds that in the second
case R′ contains a variable separated from W by Z. In the third case, R′ contains a
variable in Z \ S because K r ⊆ K ⊆ Z and R′ is disjoint from S ∪ S̃ ⊇ S. Since R′ ⊆ R,
we conclude the correctness of the algorithm, and we now move on to the analysis of
the running time and the size of the returned set R.

Bounding the set R. Recall that since λ, which is bounded above by k, is required to be
nonnegative in a valid tuple, the depth of the search tree is bounded by k. Furthermore,
the number of branches initiated at each node of the search tree is at most k3 · k! · g(k),
where g(k) is the number of boundaried CSP instances in the set H (k3 for the choice
of λ′, j and �′ and k! for the choice of the bijection δ). Since Lemma 3.30 guarantees
a bound of 22ηk

on |H| for some constant η, we conclude that the number of internal
nodes in the search tree is bounded by 22η′k

for some constant η′. Finally, since at each
internal node we add at most 2k vertices (corresponding to P1 ∪ P2), we conclude that
the set returned has size 22O(k)

.

Running time. The analysis for the running time is similar to the proof of the bound
on R. We already have a bound on the number of nodes of the search tree. The claimed
bound on the running time of the whole algorithm follows from the observation that the
time spent at each node of the search tree is dominated by the time required to execute
the algorithms of Lemmas 3.19 and 3.30, which in turn is bounded by 22O(k) |I|O(1). This
completes the proof of the lemma.

LEMMA 3.33. There is an algorithm that, given an instance (I, k, S, W1, W2) of EXT-
SBD COMP, runs in time 22O(k) |I|O(1) and either computes a solution for this instance
which is a W1-W2 separator or correctly concludes that no such solution exists.

PROOF. For every 0 ≤ �, λ ≤ k, we invoke Lemma 3.32 on the tuple
<(I, k, S, W1, W2), λ, �> to compute a set R�,λ. We then set R to be the set obtained

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

29:30 R. Ganian et al.

by taking the union of the sets R�,λ for all possible values of � and λ. Following that,
we simply branch on which vertex v in R is added to S, creating a new instance
(I, k, S ∪ {v}, W1, W2) of EXT-SBD COMP. If |S ∪ {v}| > k, we return NO. If Preprocessing
Rule 2 applies, we use it to reduce the instance; if this results in a nonseparating in-
stance, we use Lemma 3.19 to solve the instance. Otherwise, we iterate all of the above
on this new instance.

The bound on the running time of this algorithm follows from the total depth of the
branching tree being bounded by k and the width of each branch being bounded by |R| ≤
22O(k)

(the cost of branching over �, λ and of applying Lemma 3.19 and Preprocessing
Rule 2 is dominated by the above). The correctness follows from the correctness of
Lemma 3.32, of Preprocessing Rule 2, and of Lemma 3.19. This completes the proof of
the lemma, and we now have our algorithm to handle separating instances of EXT-SBD
COMP.

We conclude this section by combining the algorithms for separating and nonsepa-
rating instances to present our complete algorithm for EXT-SBD COMP (Lemma 3.2).

PROOF OF LEMMA 3.2. Let (I, k, S, W) be the input instance of EXT-SBD COMP. We
first apply Lemma 3.19 to check if there is a non-separating solution for this instance.
If not, then we branch over all W1 ⊂ W and for each such choice of W1 we add the
connecting gadget on W1 and apply Lemma 3.33 to check if (I, k, S, W1, W2 = W \ W1)
has solution which is a W1-W2 separator. The correctness and claimed running time
bound both follow from those of Lemmas 3.19 and 3.33.

4. CONCLUDING REMARKS

We have presented an FPT algorithm that can find strong backdoors to scattered
base classes of CSP and #CSP. This algorithm allows us to lift known tractability
results based on constraint languages from instances over a single tractable language
to instances containing a mix of constraints from distinct tractable languages. The
instances may also contain constraints that only belong to a tractable language after
the backdoor variables have been instantiated, where different instantiations may lead
to different tractable languages. Formally, we have applied the algorithm to CSP and
#CSP, but it clearly applies also to other versions of CSP, such as MAX-CSP (where the
task is to simultaneously satisfy a maximum number of constraints) or various forms
of weighted or valued CSPs.

Our work opens up several avenues for future research. First, the runtime bounds
for finding backdoors to scattered base classes provided in this work are very likely
suboptimal due to us having to obtain a unified algorithm for every scattered set of
finite constraint languages. Therefore, it is quite likely that a refined study for scat-
tered classes of specific constraint languages using their inherent properties will yield
significantly better runtimes. Second, graph modification problems and in particular
the study of efficiently computable modulators to various graph classes has been an
integral part of parameterized complexity and has led to the development of several
powerful tools and techniques. We believe that the study of modulators to “scattered
graph classes” could prove equally fruitful and, as our techniques are mostly graph
based, our results as well as techniques could provide a useful starting point toward
future research in this direction.

REFERENCES

Christian Bessiere, Clément Carbonnel, Emmanuel Hebrard, George Katsirelos, and Toby Walsh. 2013. De-
tecting and exploiting subproblem tractability. In Proceedings of the 23rd International Joint Conference
on Artificial Intelligence, Francesca Rossi (Ed.). IJCAI/AAAI.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

Discovering Archipelagos of Tractability for Constraint Satisfaction and Counting 29:31

Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh, and Dimitrios
M. Thilikos. 2009. (Meta) kernelization. In Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’09). IEEE Computer Soc., Los Alamitos, CA, 629–638.

Andrei A. Bulatov. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.
ACM 53, 1 (2006), 66–120.

Andrei A. Bulatov. 2011. Complexity of conservative constraint satisfaction problems. ACM Trans. Comput.
Log. 12, 4 (2011), Art. 24, 66.

Andrei A. Bulatov. 2013. The complexity of the counting constraint satisfaction problem. J. ACM 60, 5 (2013),
Art 34, 41.

Andrei A. Bulatov and Vı́ctor Dalmau. 2007. Towards a dichotomy theorem for the counting constraint
satisfaction problem. Inf. Comput. 205, 5 (2007), 651–678.

Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. 2014. On backdoors to tractable constraint
languages. In Proceedings of the 20th International Conference on Principles and Practice of Constraint
Programming (CP’14), Vol. 8656. Springer Verlag, 224–239.

Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. 2006. Strong computational lower bounds via
parameterized complexity. J. Comput. Syst. Sci. 72, 8 (2006), 1346–1367.

Jianer Chen, Yang Liu, and Songjian Lu. 2009. An improved parameterized algorithm for the minimum node
multiway cut problem. Algorithmica 55, 1 (2009), 1–13.

Martin C. Cooper, David A. Cohen, and Peter G. Jeavons. 1994. Characterising tractable constraints. Artif.
Intell. 65, 2 (1994), 347–361.

Y. Crama, O. Ekin, and P. L. Hammer. 1997. Variable and term removal from boolean formulae. Discr. Appl.
Math. 75, 3 (1997), 217–230.

Nadia Creignou. 1995. A dichotomy theorem for maximum generalized satisfiability problems. J. Comput.
Syst. Sci. 51, 3 (1995), 511–522.

Nadia Creignou and Miki Hermann. 1996. Complexity of generalized satisfiability counting problems. Infor-
mation and Computation 125, 1 (1996), 1–12.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michal Pilipczuk, and Saket Saurabh. 2015. Parameterized Algorithms. Springer. DOI:http://dx.doi.org/
10.1007/978-3-319-21275-3

Reinhard Diestel. 2012. Graph Theory, 4th Edition. Graduate texts in mathematics, Vol. 173. Springer.
R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer Verlag, New York.
Rodney G. Downey and Michael R. Fellows. 2013. Fundamentals of Parameterized Complexity. Springer.
Tomás Feder and Moshe Y. Vardi. 1993. Monotone monadic SNP and constraint satisfaction. In Proceedings

of the 25th Annual ACM Symposium on Theory of Computing, S. Rao Kosaraju, David S. Johnson, and
Alok Aggarwal (Eds.). ACM, 612–622.

Tomás Feder and Moshe Y. Vardi. 1998. The computational structure of monotone monadic SNP and con-
straint satisfaction: A study through datalog and group theory. SIAM J. Comput. 28, 1 (1998), 57–104.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Texts in Theoretical Computer Sci-
ence. An EATCS Series, Vol. XIV. Springer Verlag, Berlin.

Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, M. S. Ramanujan, and Saket Saurabh. 2015. Solving
d-SAT via backdoors to small treewidth. In Proceedings of the 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA’15). 630–641. DOI:http://dx.doi.org/10.1137/1.9781611973730.43

Serge Gaspers, Neeldhara Misra, Sebastian Ordyniak, Stefan Szeider, and Stanislav Zivny. 2014. Backdoors
into heterogeneous classes of SAT and CSP. In Proceedings of the 28th AAAI Conference on Artificial
Intelligence, Carla E. Brodley and Peter Stone (Eds.). AAAI Press, 2652–2658.

Serge Gaspers, Sebastian Ordyniak, M. S. Ramanujan, Saket Saurabh, and Stefan Szeider. 2013. Backdoors
to q-Horn. In Proceedings of the 30th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’13), Natacha Portier and Thomas Wilke (Eds.), Vol. 20. Leibniz-Zentrum fuer Informatik,
67–79.

Serge Gaspers and Stefan Szeider. 2013. Strong backdoors to bounded treewidth SAT. In Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer Science (FOCS’13). IEEE Computer Society,
489–498.

Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadimitriou. 2009. The connec-
tivity of boolean satisfiability: computational and structural dichotomies. SIAM J. Comput. 38, 6 (2009),
2330–2355.

Pavol Hell and Jaroslav Nesetril. 2008. Colouring, constraint satisfaction, and complexity. Comput. Sci. Rev.
2, 3 (2008), 143–163.

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1137/1.9781611973730.43

29:32 R. Ganian et al.

Lane A. Hemaspaandra and Ryan Williams. 2012. SIGACT news complexity theory column 76: An atypical
survey of typical-case heuristic algorithms. SIGACT News (2012), 70–89.

Peter Jeavons, David Cohen, and Marc Gyssens. 1997. Closure properties of constraints. J. ACM 44, 4 (1997),
527–548.

Phokion G. Kolaitis. 2003. Constraint satisfaction, databases, and logic. In Proceedings of the 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’03). Morgan Kaufmann, 1587–1595.

Phokion G. Kolaitis and Moshe Y. Vardi. 2007. A logical approach to constraint satisfaction. In Finite Model
Theory and its Applications. Springer Verlag, 339–370.

Vladimir Kolmogorov and Stanislav Živný. 2013. The complexity of conservative valued CSPs. J. ACM 60, 2
(2013), Art. 10, 38.

Daniel Lokshtanov and M. S. Ramanujan. 2012. Parameterized tractability of multiway cut with parity
constraints. In ICALP 2012, Automata, Languages, and Programming. Part I (Lecture Notes in Computer
Science), Vol. 7391. Springer Verlag, 750–761.

Dániel Marx. 2006. Parameterized graph separation problems. Theoret. Comput. Sci. 351, 3 (2006), 394–406.
Ugo Montanari. 1974. Networks of constraints: Fundamental properties and applications to picture process-

ing. Inf. Sci. 7 (1974), 95–132.
Naomi Nishimura, Prabhakar Ragde, and Stefan Szeider. 2004. Detecting backdoor sets with respect to

horn and binary clauses. In Proceedings of 7th International Conference on Theory and Applications of
Satisfiability Testing. 96–103.

Christos H. Papadimitriou and Mihalis Yannakakis. 1999. On the complexity of database queries. J. Comput.
Syst. Sci. 58, 3 (1999), 407–427.

Igor Razgon and Barry O’Sullivan. 2009. Almost 2-SAT is fixed parameter tractable. J. Comput Syst. Sci. 75,
8 (2009), 435–450.

Bruce A. Reed, Kaleigh Smith, and Adrian Vetta. 2004. Finding odd cycle transversals. Oper. Res. Lett. 32, 4
(2004), 299–301.

Thomas J. Schaefer. 1978. The complexity of satisfiability problems. In Conference Record of the 10th Annual
ACM Symposium on Theory of Computing. ACM, 216–226.

Johan Thapper and Stanislav Zivny. 2013. The complexity of finite-valued CSPs. In Proceedings of the
Symposium on Theory of Computing Conference (STOC’13). ACM, 695–704.

Ryan Williams, Carla Gomes, and Bart Selman. 2003a. Backdoors to typical case complexity. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03), Georg Gottlob and Toby
Walsh (Eds.). Morgan Kaufmann, 1173–1178.

Ryan Williams, Carla Gomes, and Bart Selman. 2003b. On the connections between backdoors, restarts, and
heavy-tailedness in combinatorial search. In Informal Proceedings of the 6th International Conference
on Theory and Applications of Satisfiability Testing (SAT’03). 222–230.

Received October 2015; revised October 2016; accepted November 2016

ACM Transactions on Algorithms, Vol. 13, No. 2, Article 29, Publication date: March 2017.

