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Announcements

# Today last lecture, Friday was last exercise.
# 30 min overtime today.
# Feedback on Tuwel is highly appreciated (short anonymous

survey).
# Oral exam: in January/February
# There will be a question session before the oral exam.
# Write email until end of year to dreier@ac.tuwien.ac.at if you

want to participate in the oral exam.
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Main Result for Sparse Graphs

Today, we finish the proof of the following theorem.

Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

And then briefly talk about dense graphs.
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Functional Graphs

a

b c

d e

h1(d) = b

h2(d) = c

h1 h2

h1

h1 h1

A functional graph ~G is a structure with signature
τ = {h1, h2, . . . , R1, R2, . . . , Q1, Q2, . . . } where

# hi : V → V are unary functions
# Ri ⊆ V are unary relations
# Qi ∈ {0, 1} are nullary relations
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Classes

h1 h2

h1

h1 h1

~G Gaifman(~G)

For a functional graph ~G, the graph Gaifman(~G) has the same
vertex set and edges uv iff hi(u) = v or hi(v) = u for some i.

We say a class of functional graphs has bounded expansion if the
class of their Gaifman graphs has.
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.

Should still be sparse. Same
Gaifman graph as ~G.
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Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.
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Quantifier Elimination

If we have a quantifier elimination procedure, we can do
model-checking.

~G |= ∃x1

(

∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

)

)
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Quantifier Elimination

If we have a quantifier elimination procedure, we can do
model-checking.

~G′ |= ∃x1

(
∀x2

quantifier-free︷ ︸︸ ︷
ϕ′(x1x2)

)
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Quantifier Elimination

If we have a quantifier elimination procedure, we can do
model-checking.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)
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Quantifier Elimination

If we have a quantifier elimination procedure, we can do
model-checking.

~G′′′ |=

quantifier-free︷︸︸︷
ϕ′′′
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Roadmap

Roadmap: Construct quantifier elimination for graph classes of
increasing complexity.

# forests of bounded depth 3

# bounded treedepth
# bounded expansion
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Bounded Treedepth

Let C be a class whose Gaifman graphs have bounded
treedepth. Then C has a quantifier elimination procedure.
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Bounded Treedepth

~G

∃y ϕ(yx̄)

bounded
treedepth
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Bounded Treedepth

~G

∃y ϕ(yx̄)

~G′

∃y ϕ′(x̄)
→

bounded
treedepth

forest of bounded
depth
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Bounded Treedepth

bounded
treedepth

~G

∃y ϕ(yx̄)

~G′′

ϕ′′(x̄)
→

Use previous theorem
for quantifier

elimination on forests.

forest of bounded
depth
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Bounded Treedepth

# Consider Gaifman graph of ~G.

Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

# All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

# This tree fully encodes ~G.
# Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.
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Bounded Treedepth

~G

∃y ϕ(yx̄)

bounded
treedepth

13



Bounded Treedepth

~G

∃y ϕ(yx̄)

~G′

∃y ϕ′(x̄)
→

bounded
treedepth

forest of bounded
depth

13



Bounded Treedepth

bounded
treedepth

~G

∃y ϕ(yx̄)

~G′′

ϕ′′(x̄)
→

Use previous theorem
for quantifier

elimination on forests.

forest of bounded
depth

13



Bounded Expansion

The last step.

Let C be a class with bounded expansion. Then C has a quan-
tifier elimination procedure.
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Low Treedepth Colorings

One can labelG ∈ C with f(p) colors such that every set of p colors
induces a graph with treedepth≤ p.
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Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃a xi  g a ∧ a p xj .

The result is a formula ∃ȳ ψ(ȳx̄) on a normal (non-functional)
directed edge-labeled graph G.
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Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=p

colors(v̄) ⊆ S ∧

G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=p

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=p

colors(v̄) ⊆ S ∧ ψS(v̄).
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And stack the graphs on top of each other.

17



Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=p

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff
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Summary

This completes the proof. We have solved the model-checking
problem on bounded expansion by performing quantifier
elimination on trees and lifting it up using low treedepth colorings.
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A Note on Nowhere Dense Classes

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way.
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Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp=f(ε′/p, p)nε

′
3

Do something very expensive
in time 22f(p) 3

Do something very expensive
in time 22f(ε/p,p)n

ε

≥ 22log(n)
= 2n 7
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Beyond Nowhere Dense?

We have gradually defined more and more general sparse graph
classes. The most general so far are nowhere dense classes.

Are there any more interesting sparse graph classes beyond
nowhere dense?

We show the answer is no! We have found the most general sparse
graph classes on which first-order problems are tractable!
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Precise Chacaterization

A graph class is monotone if it is closed under removing vertices or
edges. This is a natural assumption for sparse graphs.

Theorem (Grohe, Kreuzer, Siebertz 2017)

For every monotone graph class C holds C is nowhere dense
iff the first-order model-checking problem on C is fpt
(assuming FPT 6= AW[∗]).

We discussed the forward implication already. We will prove the
backward implication.
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Shallow Topological Minors

H is an depth-r topological minor of G (H 4top
r G) if H can be built

from G by

# picking some nails,
# picking internally vertex disjoint paths of length at most 2r + 1

between nails,
# contracting the paths.
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Shallow Topological Minors

If H is an depth-r topological minor then it also is a depth-r minor.
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Topological Sparsity Measures

We can also measure sparsity using topological minors.

# ∇r(G) = max
{ |E(H)|
|V (H)| | H 4

top

r G
}

# ωr(G) = max
{
t | Kt 4

top

r G
}

As we saw on the last slide

# ∇̃r(G) ≤ ∇r(G)

# ω̃r(G) ≤ ωr(G)

Surprisingly, also

# ∇r(G) ≤ 2d
2+3d+3(d∇̃r(G)e)(d+2)2

# ωr(G) ≤ 1 + (ω̃3r+1(G))2d+2
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Equivalent Definitions
Therefore it does not matter if we consider normal or topological
shallow minors.

Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

Nowhere Dense

A graph class C is nowhere dense if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
ωr(G) ≤ f(r).
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Somewhere Dense

We can slightly restate this.

Nowhere Dense

A graph class C is nowhere dense if for all r ∈ N there exists
t ∈ N such that for all G ∈ C we have Kt 64top

r G.

We say a graph class is somewhere dense if it is not nowhere dense:

Somewhere Dense

A graph class C is somewhere dense if there exists an r ∈ N
such that for all t ∈ N there exists G ∈ C with Kt 4

top
r G.
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Subdivisions of Arbitrary Subgraphs

We show the following.

Lemma

If a graph class is monotone and somewhere dense then first-
order model-checking on this class is AW[∗]-hard.
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Subdivisions of Arbitrary Subgraphs

We need Ramsey’s Theorem.

Lemma

For every t, r ∈ N there is k ∈ N such that an edge-coloring
of Kk with r colors contains a monochromatic Kt.
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Subdivisions of Arbitrary Subgraphs
Somewhere Dense

A graph class C is somewhere dense if there exists an r ∈ N
such that for all t ∈ N there exists G ∈ C with Kt 4

top
r G.

# Let C be monotone, somewhere dense.

# Pick r s.t. for every t there is a graph in C
with Kt as depth-r topological minor.

# Using Ramsey, we can enforce that every
path has length exactly r′ ≤ 2r + 1.

# Since C is monotone, we can remove
arbitrary edges and vertices.

# C contains r′-subdivisions
of arbitrary graphs.

# We may even assume that the nails have
some “hair” to distinguish them.
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Reduction

We show that if one could do FPT first-order model-checking on a
monotone, somewhere dense class, then one could do it on the
class of all graphs. But there it is AW[∗]-hard.

# Assume we want to know whether G |= ϕ.

# Subdivide each edge r′ times and
add hair. The result is in C.

# Replace
◦ x ∼ y with dist(x, y) ≤ r′.
◦ ∃xξ with ∃x degree(x) ≥ 3 ∧ ξ
◦ ∀xξ with ∀x degree(x) ≥ 3→ ξ

# Since the modified graph is in C,
the modified formula can be
evaluated in fpt time.
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Summary

For monotone graph classes, we cannot go beyond nowhere dense
classes. Nowhere dense classes are a natural definition of “sparse
graphs”.
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Beyond Sparsity

This says nothing about dense tractable classes, such as the class of
all cliques.

A monotone tractable class containing all cliques
contains all graphs.
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Goal: Find tractable classes beyond sparsity.

Today, we discuss some results, as well as possible candidates.
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Classes with FPT first-order model-checking?

nowhere
dense
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Cliquewidth

Graphs of treewidth w have cliquewidth at most 3 · 2w−1.

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(cw(G), |ϕ|)n3 for some function f .
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Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense
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Complements

Ḡ |= ϕ

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.
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Complements

Ḡ |= ϕG |= ϕ̄

⇔

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.
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Complements

Ḡ |= ϕG |= ϕ̄

obtain ϕ̄ from
ϕ by swapping
∼ and 6∼

⇔

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.
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Classes with FPT first-order model-checking?

nowhere
densetreewidth
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complements
of nowhere
dense
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Fully Bipartite Graphs

G |= ϕ

...
...

Can we do fpt model-checking on the class of fully bipartite
graphs?
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Fully Bipartite Graphs

G |= ϕ

⇔

obtain ϕ′ from
ϕ by replacing

x∼y with
dist(x, y) = 3

...
...

...
...

G′ |= ϕ′
also restrict
quantifiers to
black vertices

Can we do fpt model-checking on the class of fully bipartite
graphs?
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Classes with FPT first-order model-checking?

nowhere
densetreewidth
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Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

transductions
of nowhere
dense
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Interpretations

...
...

G I(G)

An interpretation I = (µ(x, y), ν(x)) maps G to I(G).

# vertices of I(G): {v : G |= ν(v)}.
# edges of I(G): {uv : G |= µ(u, v)}.
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Interpretations

I(G) |= ϕ

...
...

...
...

G |= ϕ′

⇔

Assume we want to know whether I(G) |= ϕ.

We can build a
formula ϕ′ from I and ϕ and instead evaluate G |= ϕ′.

Instead of asking whether x∼y in I(G), ask whether µ(x, y) in G.
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Transductions

A class C is a transduction of a classD if there exists an
interpretation I such that if for every G ∈ C there exists a graph
H ∈ D and a coloring H ′ of H such that G = I(H ′).

Example:

# C is class of complete bipartite graphs
# D is class of trees

# There is I = (black(x), dist(x, y) = 3)

# such that if for every complete bipartite G
# there is a tree H
# and a coloring H ′ of H
# such that G = I(H ′).
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Classes with FPT first-order model-checking?
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Transductions

We believe that model-checking is fpt on transductions of
nowhere dense classes.

But we don’t know how to prove it.

Assume we want to evalute I(G) |= ϕ with G from a nowhere
dense class. If we could construct G from I(G), we could instead
evaluate G |= ϕ′ (where ϕ′ is obtained from I and ϕ).

For some sparse graph classes, this approach works.
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Transductions

Gajarský, Hliněný, Lokshtanov, Obdržálek, Ramanujan 2018

Let C be a transduction of a class with bounded degree. First-
order model-checking is fpt on C.

Bonnet, Dreier, Gajarský, Kreuzer, Mählmann, Toruńczyk
2022+

Let C be a transduction of a class with locally bounded
treewidth. First-order model-checking is fpt on C.
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Twinwidth

c

b

a d

e

f

g

You already know normal graphs.

In trigraphs there are additional red error edges.
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Contraction

a b

→
→
→
→
→

We can contract two (not neccessarily adjacent)
vertices a and b. The edges of the new vertex ab
follow this table.
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Contraction Sequences
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→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51
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Contraction Sequences
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Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.
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Twinwidth: Smallest integer d such there is a contraction se-
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Classes of Bounded Twinwidth

The following classes have bounded twinwidth

# planar graphs,
# classes with bounded cliquewidth.

The following classes do not have bounded twinwidth

# graphs with degree three.
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First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth.

But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

54



First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth. But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

54



First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth. But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

54



Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

transductions
of nowhere
dense

A class C is a transduction of a class D if there exists an inter-
pretation I such that if for every G ∈ C there exists a graph
H ∈ D and a coloring H ′ of H such that G = I(H ′).

A graph class C is monadically NIP if every transduction D of
C is not the class of all graphs.

Conjecture

For every graph class C that is closed under subgraphs holds:
First-order model-checking is fpt on C iff C is monadically
NIP.
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The End
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