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Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free. Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6
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Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

# picking some connected subgraphs with radius≤ r.
# removing all vertices outide these subgraphs
# merging each subgraph into a single vertex
# removing edges
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The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

# bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

# bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).
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We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

# bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

# bounding the clique size

ωr(G) = max
{
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Many Sparse Graph Classes
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Main Results for Sparse Graphs

Theorem (Grohe, Kreuzer, Siebertz 2017)

For graph class C that is closed under subgraphs holds C is
nowhere dense iff the first-order model-checking problem
on C is FPT (assuming FPT 6= AW[∗]).
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Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.
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Existential Model-Checking

We will first prove a weaker result that is a building block in many
other algorithms.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every existential FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n.

This is (more or less) equivalent to deciding in time f(|H|)n
whether a pattern graph H occurs as induced subgraph.
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Existential Model-Checking
Proof of equivalence:

# Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

# Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

# Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.
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Alternative Characterizations

How can we prove these results?

# Gaifman does not help much because neighborhoods can be
the whole graph.

# So far, all we know that certain shallow minors are not present.
# If we have a better understanding of the structure of sparse

graphs, this will help us.

11



Alternative Characterizations

There are many alternative definitions of bounded expansion and
nowhere dense classes.

# shallow minors
# generalized coloring numbers
# low treedepth colorings
# transitive fraternal augmentations
# quasi-wideness
# connector-splitter games

Which one is best depends on the task.
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Low Treedepth Colorings

To prove the result, we will use the powerful notion of low treedepth
colorings.

As a warmup, we solve the problem on planar graphs and then
generalize the approach to bounded expansion.
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Baker’s Technique

On any planar graph you can
do the following.

# do breadth-first search
# give layer i color i mod p
# pick a strict subset of

colors
The resulting graph has
treewidth at most 3p+ 1.
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Baker’s Technique

We want to know whetherG has
H as an induced subgraph.

# color the graph as before
with p = |H|+ 1 colors.

# If H is induced subgraph
then it is contained in a
subset of |H| colors.

# Enumerate all subsets of
|H| colors and search for
H .

# Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.
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Low Treedepth Colorings

We used the following observation of planar graphs.

# For every p one can color the graph with p+ 1 colors such that
every set of p colors induces a graph with
treewith at most 3p+ 1.

We can get something similar for bounded expansion.

# For every p one can color the graph with f(p) colors such that
every set of p colors induces a graph with
treedepth at most p.
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Treedepth

Definition

The treedepth of a graphG is the minimum height of a rooted
forest onV (G) such that all edges ofG go between ancestors
and descendants.
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Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.
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Treedepth of Paths

A treedepth of a path with n vertices is exactly dlog(n+ 1)e.
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Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20
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Low Treedepth Colorings
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Low Treedepth Colorings

How many colors do we need to color a tree such that every set of
p colors induces a graph with treedepth at most p?

Color it with p+ 1 colors slicewise.
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Existential Model-Checking

We can now use low-treedepth colorings to prove fpt existential
model-checking.
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Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

# For p = |H| compute low treedepth coloring of G with f(p)

colors.

# H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

# We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

# Total run time
(f(|H|)
|H|

)
g(|H|) · n.

# Plus time needed
to compute coloring!

G
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Main Result for Sparse Graphs

After we previously proved the result for existential
model-checking, we now prove the full version.

Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

This is the most involved proof presented in this course. We will
again use low-treedepth colorings.

24



Functional Graphs

a

b c

d e

h1(d) = b

h2(d) = c

h1 h2

h1

h1 h1

A functional graph ~G is a structure with signature
τ = {h1, h2, . . . , R1, R2, . . . , Q1, Q2, . . . } where

# hi : V → V are unary functions
# Ri ⊆ V are unary relations
# Qi ∈ {0, 1} are nullary relations

You can think of it as follows

# hi(u) = v equals directed edge from u to v of the ith type,
# Ri(u) equals labeling u with ith label.
# Qi equals a globally acessible truth value. 25



Classes

h1 h2

h1

h1 h1

~G Gaifman(~G)

For a functional graph ~G, the graph Gaifman(~G) has the same
vertex set and edges uv iff hi(u) = v or hi(v) = u for some i.

We say a class of functional graphs has bounded expansion if the
class of their Gaifman graphs has.
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Reduction

If we can solve the model-checking problem in time f(|ϕ|)n
on functional graph classes with bounded expansion then we
can also do it in time f(|ϕ|)n on normal graph classes with
bounded expansion.

Proof: Let C be a normal class with bounded expansion. Then C has
bounded degeneracy d.

Compute degeneracy ordering. Let hi(v) point to ith left neighbor
of v. Replace in ϕ every occurence of x∼y with

d∧
i=1

hi(x) = y ∨ hi(y) = x.
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Main Result for Functional Structures

We therefore want to prove the following.

Theorem (Dvořák, Král, Thomas 2013)

Let ~C be a functional graph class with bounded expansion.
For every graph ~G ∈ ~C and FO formula ϕ one can decide
whether ~G |= ϕ in time f(|ϕ|)n.
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Quantifier Elimination

Convert formula to prenex normal form.

Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(

∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.
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Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.

Should still be sparse. Same
Gaifman graph as ~G.
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Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.
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Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(

∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

)

)
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Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.
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¬ϕ′(x1x2)

)

32



Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′ |= ∃x1 ¬
(
∃x2

quantifier-free︷ ︸︸ ︷
¬ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free

)

32



Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)

32



Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free

32



Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′′ |=

quantifier-free︷︸︸︷
ϕ′′′
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Roadmap

Roadmap: Construct quantifier elimination for graph classes of
increasing complexity.

# forests of bounded depth
# bounded treedepth
# bounded expansion
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Functional Forests

a

b c

d e f g

parent(e) = b

The simplest functional structures we work with are functional
forests.

There are unary relations (labels) and exactly one unary function
“parent” describing the parent relation of a rooted forest (roots
point to themselves).

34



Functional Forests

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Let C be a class of functional forests with bounded depth.
Then C has a quantifier elimination procedure.
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Functional Forests

Since ϕ(yx̄) is quantifier free, it is a boolean combination of atoms
of the form

# R for some nullary relation R
# R(parenti(s)) for unary R, i ≤ d and variable s ∈ yx̄
# parenti(s) = parentj(t) for i, j ≤ d and variables s, t ∈ yx̄

ϕ(yx̄) can only talk about the connections between and labelings
of ancestors of yx̄.
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Functional Forests

yx1 x|x̄|x2 x3
. . .

Since ϕ(yx̄) is quantifier free, it is a boolean combination of atoms
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Functional Forests

yx1 x|x̄|x2 x3
. . .

x1 yx2 x|x̄|x3
. . .

yx1 x|x̄|x2 x3
. . .

` ϕ

Let T be the set of all such trees that imply ϕ.

We see every T ∈ T as a formula T (yx̄) checking if ancestor tree of
yx̄ equals T . Then

∃y ϕ(yx̄) = ∃y
∨
T∈T

T (yx̄) =
∨
T∈T
∃y T (yx̄).
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Functional Forests

We focus on a single subformula ∃y T (yx̄).

It enforces that the ancestors of x̄ induce a certain tree and that
there exists y that hits this tree via a “special path” with certain
labels at a certain ancestor at height l.
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there exists y that hits this tree via a “special path” with certain
labels at a certain ancestor at height l.
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Functional Forests

. . .

level `

We now augment the graph.

For all v at level l use label Pi(v) to
store that i children of v can be completed to form a special path.

# round all numbers larger than |x̄| up to∞.

For all w at level l + 1 add label R(w) if w lies on a special path.
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Functional Forests

x1 x|x̄|x2 x3
. . .

level `
level `+ 1

P2

R

We construct a quantifier-free formula T ′(x̄) equivalent to
∃y T (yx̄). This formula can only check the ancestor tree of x̄.

If we want to know if there is y reaching an ancestor s of x̄, we can
check whether s has more ancestors than are in the tree of x̄.
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Functional Forests

~G

∃y T (yx̄)

~G′

T ′(x̄)
→

For every ancestor tree T ∈ T we can perform quantifier
elimination.

~G |= ∃y T (yv̄) iff ~G′ |= T ′(v̄) for all v̄ ∈ V (~G)|x̄|.
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Functional Forests

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).
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Bounded Treedepth

Next, we consider functional graph classes whose Gaifman graphs
have bounded treedepth.

Let C be a class whose Gaifman graphs have bounded
treedepth. Then C has a quantifier elimination procedure.
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Bounded Treedepth

~G

∃y ϕ(yx̄)

bounded
treedepth
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Bounded Treedepth

~G

∃y ϕ(yx̄)

~G′

∃y ϕ′(x̄)
→

bounded
treedepth

forest of bounded
depth
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Bounded Treedepth

bounded
treedepth

~G

∃y ϕ(yx̄)

~G′′

ϕ′′(x̄)
→

Use previous theorem
for quantifier

elimination on forests.

forest of bounded
depth
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Bounded Treedepth

# Consider Gaifman graph of ~G.

Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

# All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

# This tree fully encodes ~G.
# Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.
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~G

∃y ϕ(yx̄)

bounded
treedepth
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bounded
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Bounded Expansion

The last step.

Let C be a class with bounded expansion. Then C has a quan-
tifier elimination procedure.
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Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃y xi  g y ∧ y  p xj .

The result is a formula ∃ȳ ψ(ȳx̄) on a normal (non-functional)
directed edge-labeled graph G.

48



Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃y xi  g y ∧ y  p xj .
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Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧

G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).
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colors(v̄) ⊆ S ∧ ψS(v̄).

Let Λ be the colors of a low-treedepth coloring of G where every
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∨
S⊆Λ
|S|=|ȳx̄|
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49



Bounded Expansion

For every v̄ ∈ V (G)|x̄|
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colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|
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For all graphs G[S] (of bounded treedepth) we perform quantifier
elimination.

And stack the graphs on top of each other.
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colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff
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Bounded Expansion
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colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff
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colors(v̄) ⊆ S ∧ ψS(v̄).

Finally, pull out the graph.
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Summary

This completes the proof. We have solved the model-checking
problem on bounded expansion by performing quantifier
elimination on trees and lifting it up using low treedepth colorings.
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