
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free. Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

2

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free.

Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

2

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free. Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

2

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

3

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.

removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 3

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs

merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 3

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex

removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 3

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex

removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 3

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 3

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

4

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

4

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}

Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

4

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r). 4

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Nowhere Dense

A graph class C is nowhere dense if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
ωr(G) ≤ f(r). 4

5

log(n)


clique of size n

k


clique of size n

5

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
6

Main Results for Sparse Graphs

Theorem (Grohe, Kreuzer, Siebertz 2017)

For graph class C that is closed under subgraphs holds C is
nowhere dense iff the first-order model-checking problem
on C is FPT (assuming FPT 6= AW[∗]).

7

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

8

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

8

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

8

Existential Model-Checking

We will first prove a weaker result that is a building block in many
other algorithms.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every existential FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n.

This is (more or less) equivalent to deciding in time f(|H|)n
whether a pattern graph H occurs as induced subgraph.

9

Existential Model-Checking

We will first prove a weaker result that is a building block in many
other algorithms.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every existential FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n.

This is (more or less) equivalent to deciding in time f(|H|)n
whether a pattern graph H occurs as induced subgraph.

9

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

10

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

x y z x yzH = { , , }x y z

10

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

x y z x yzH = { , , }x y z

10

Alternative Characterizations

How can we prove these results?

Gaifman does not help much because neighborhoods can be
the whole graph.

So far, all we know that certain shallow minors are not present.
If we have a better understanding of the structure of sparse

graphs, this will help us.

11

Alternative Characterizations

There are many alternative definitions of bounded expansion and
nowhere dense classes.

shallow minors
generalized coloring numbers
low treedepth colorings
transitive fraternal augmentations
quasi-wideness
connector-splitter games

Which one is best depends on the task.

12

Low Treedepth Colorings

To prove the result, we will use the powerful notion of low treedepth
colorings.

As a warmup, we solve the problem on planar graphs and then
generalize the approach to bounded expansion.

13

Low Treedepth Colorings

To prove the result, we will use the powerful notion of low treedepth
colorings.

As a warmup, we solve the problem on planar graphs and then
generalize the approach to bounded expansion.

13

Baker’s Technique

On any planar graph you can
do the following.

do breadth-first search
give layer i color i mod p
pick a strict subset of

colors
The resulting graph has
treewidth at most 3p+ 1.

14

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search

give layer i color i mod p
pick a strict subset of

colors
The resulting graph has
treewidth at most 3p+ 1.

14

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p+ 1.

14

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p
pick a strict subset of

colors

The resulting graph has
treewidth at most 3p+ 1.

14

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p
pick a strict subset of

colors
The resulting graph has
treewidth at most 3p+ 1.

14

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.

color the graph as before
with p = |H|+ 1 colors.

If H is induced subgraph
then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.

15

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.

If H is induced subgraph
then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.

15

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.

15

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.

15

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n.

15

Baker’s Technique

We want to know whetherG has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p+ 1.

Run time
(

p
p−1

)
·f(3p+1, |H|)·n. 15

Low Treedepth Colorings

We used the following observation of planar graphs.

For every p one can color the graph with p+ 1 colors such that
every set of p colors induces a graph with
treewith at most 3p+ 1.

We can get something similar for bounded expansion.

For every p one can color the graph with f(p) colors such that
every set of p colors induces a graph with
treedepth at most p.

16

Low Treedepth Colorings

We used the following observation of planar graphs.

For every p one can color the graph with p+ 1 colors such that
every set of p colors induces a graph with
treewith at most 3p+ 1.

We can get something similar for bounded expansion.

For every p one can color the graph with f(p) colors such that
every set of p colors induces a graph with
treedepth at most p.

16

Treedepth

Definition

The treedepth of a graphG is the minimum height of a rooted
forest onV (G) such that all edges ofG go between ancestors
and descendants.

17

Treedepth

Definition

The treedepth of a graphG is the minimum height of a rooted
forest onV (G) such that all edges ofG go between ancestors
and descendants.

17

Treedepth

Definition

The treedepth of a graphG is the minimum height of a rooted
forest onV (G) such that all edges ofG go between ancestors
and descendants.

17

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd 18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

gfd

18

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

gfd

18

Treedepth of Paths

A treedepth of a path with n vertices is exactly dlog(n+ 1)e.

ba c

d

e f
g

a

b

c

d

e

f

g

19

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph?

How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

20

Low Treedepth Colorings

How many colors do we need to color a tree such that every set of
p colors induces a graph with treedepth at most p?

Color it with p+ 1 colors slicewise.

21

Low Treedepth Colorings

How many colors do we need to color a tree such that every set of
p colors induces a graph with treedepth at most p?

Color it with p+ 1 colors slicewise.

21

Existential Model-Checking

We can now use low-treedepth colorings to prove fpt existential
model-checking.

22

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

23

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring! 1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

23

Main Result for Sparse Graphs

After we previously proved the result for existential
model-checking, we now prove the full version.

Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

This is the most involved proof presented in this course. We will
again use low-treedepth colorings.

24

Functional Graphs

a

b c

d e

h1(d) = b

h2(d) = c

h1 h2

h1

h1 h1

A functional graph ~G is a structure with signature
τ = {h1, h2, . . . , R1, R2, . . . , Q1, Q2, . . . } where

hi : V → V are unary functions
Ri ⊆ V are unary relations
Qi ∈ {0, 1} are nullary relations

You can think of it as follows

hi(u) = v equals directed edge from u to v of the ith type,
Ri(u) equals labeling u with ith label.
Qi equals a globally acessible truth value. 25

Classes

h1 h2

h1

h1 h1

~G Gaifman(~G)

For a functional graph ~G, the graph Gaifman(~G) has the same
vertex set and edges uv iff hi(u) = v or hi(v) = u for some i.

We say a class of functional graphs has bounded expansion if the
class of their Gaifman graphs has.

26

Classes

h1 h2

h1

h1 h1

~G Gaifman(~G)

For a functional graph ~G, the graph Gaifman(~G) has the same
vertex set and edges uv iff hi(u) = v or hi(v) = u for some i.

We say a class of functional graphs has bounded expansion if the
class of their Gaifman graphs has.

26

Reduction

If we can solve the model-checking problem in time f(|ϕ|)n
on functional graph classes with bounded expansion then we
can also do it in time f(|ϕ|)n on normal graph classes with
bounded expansion.

Proof: Let C be a normal class with bounded expansion. Then C has
bounded degeneracy d.

Compute degeneracy ordering. Let hi(v) point to ith left neighbor
of v. Replace in ϕ every occurence of x∼y with

d∧
i=1

hi(x) = y ∨ hi(y) = x.

27

Reduction

If we can solve the model-checking problem in time f(|ϕ|)n
on functional graph classes with bounded expansion then we
can also do it in time f(|ϕ|)n on normal graph classes with
bounded expansion.

Proof: Let C be a normal class with bounded expansion. Then C has
bounded degeneracy d.

Compute degeneracy ordering. Let hi(v) point to ith left neighbor
of v. Replace in ϕ every occurence of x∼y with

d∧
i=1

hi(x) = y ∨ hi(y) = x.

27

Reduction

If we can solve the model-checking problem in time f(|ϕ|)n
on functional graph classes with bounded expansion then we
can also do it in time f(|ϕ|)n on normal graph classes with
bounded expansion.

Proof: Let C be a normal class with bounded expansion. Then C has
bounded degeneracy d.

Compute degeneracy ordering. Let hi(v) point to ith left neighbor
of v. Replace in ϕ every occurence of x∼y with

d∧
i=1

hi(x) = y ∨ hi(y) = x.

27

Main Result for Functional Structures

We therefore want to prove the following.

Theorem (Dvořák, Král, Thomas 2013)

Let ~C be a functional graph class with bounded expansion.
For every graph ~G ∈ ~C and FO formula ϕ one can decide
whether ~G |= ϕ in time f(|ϕ|)n.

28

Quantifier Elimination

Convert formula to prenex normal form.

Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(

∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form.

Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(
∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form.

Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form.

Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free

))

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′ |= ∃x1

(
∀x2

quantifier-free︷ ︸︸ ︷
ϕ′(x1x2)

)

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′ |= ∃x1

(
∀x2

quantifier-free︷ ︸︸ ︷
ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free

)

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′′′ |=

quantifier-free︷︸︸︷
ϕ′′′

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

Convert formula to prenex normal form. Gradually simplify
formula by removing quantifiers one by one from the inside.

~G′′′ |=

quantifier-free︷︸︸︷
ϕ′′′

We shift complexity from the formula to the graph. G′, G′′, G′′′

have same vertices and edges but additional unary and nullary
relations.

29

Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

30

Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.

30

Quantifier Elimination

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Should still be short. Length
depends only on ϕ.

Should still be sparse. Same
Gaifman graph as ~G.

30

Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.

31

Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.

31

Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.

31

Quantifier Elimination

We say there is a quantifier elimination procedure for a class C if
the following holds.

For every formula ∃y ϕ(yx̄) where ϕ is quantifier free there
exists a quantifier-free formula ϕ′(x̄) as follows:

For every ~G ∈ ~C one can compute in timeO(|~G|) a functional
graph ~G′ with the same Gaifman graph as ~G and

~G |= ∃y ϕ(yv̄) iff ~G′ |= ϕ′(v̄) for all v̄ ∈ V (~G)|x̄|.

31

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(

∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

)

)

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(
∀x2

(

∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)

))

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result.

We use De
Morgan to get rid of universal quantifiers.

~G |= ∃x1

(
∀x2

(
∃x3

quantifer-free︷ ︸︸ ︷
ϕ(x1x2x3)︸ ︷︷ ︸

replace with quantifier-free

))

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′ |= ∃x1

(
∀x2

quantifier-free︷ ︸︸ ︷
ϕ′(x1x2)

)

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′ |= ∃x1 ¬
(
∃x2

quantifier-free︷ ︸︸ ︷
¬ϕ′(x1x2)

)

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′ |= ∃x1 ¬
(
∃x2

quantifier-free︷ ︸︸ ︷
¬ϕ′(x1x2)︸ ︷︷ ︸

replace with quantifier-free

)

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′ |= ∃x1

quantifier-free︷ ︸︸ ︷
ϕ′′(x1)︸ ︷︷ ︸

replace with quantifier-free

32

Quantifier Elimination

If there is a quantifier elimination procedure for classes with
bounded expansion, this proves our main result. We use De
Morgan to get rid of universal quantifiers.

~G′′′ |=

quantifier-free︷︸︸︷
ϕ′′′

32

Roadmap

Roadmap: Construct quantifier elimination for graph classes of
increasing complexity.

forests of bounded depth
bounded treedepth
bounded expansion

33

Functional Forests

a

b c

d e f g

parent(e) = b

The simplest functional structures we work with are functional
forests.

There are unary relations (labels) and exactly one unary function
“parent” describing the parent relation of a rooted forest (roots
point to themselves).

34

Functional Forests

~G

∃y ϕ(yx̄)

~G′

ϕ′(x̄)
→

Let C be a class of functional forests with bounded depth.
Then C has a quantifier elimination procedure.

35

Functional Forests

Since ϕ(yx̄) is quantifier free, it is a boolean combination of atoms
of the form

R for some nullary relation R
R(parenti(s)) for unary R, i ≤ d and variable s ∈ yx̄
parenti(s) = parentj(t) for i, j ≤ d and variables s, t ∈ yx̄

ϕ(yx̄) can only talk about the connections between and labelings
of ancestors of yx̄.

36

Functional Forests

yx1 x|x̄|x2 x3
. . .

Since ϕ(yx̄) is quantifier free, it is a boolean combination of atoms
of the form

R for some nullary relation R
R(parenti(s)) for unary R, i ≤ d and variable s ∈ yx̄
parenti(s) = parentj(t) for i, j ≤ d and variables s, t ∈ yx̄

ϕ(yx̄) can only talk about the connections between and labelings
of ancestors of yx̄.

36

Functional Forests

yx1 x|x̄|x2 x3
. . .

x1 yx2 x|x̄|x3
. . .

yx1 x|x̄|x2 x3
. . .

` ϕ

Let T be the set of all such trees that imply ϕ.

We see every T ∈ T as a formula T (yx̄) checking if ancestor tree of
yx̄ equals T . Then

∃y ϕ(yx̄) = ∃y
∨
T∈T

T (yx̄) =
∨
T∈T
∃y T (yx̄).

37

Functional Forests

yx1 x|x̄|x2 x3
. . .

x1 yx2 x|x̄|x3
. . .

yx1 x|x̄|x2 x3
. . .

` ϕ

Let T be the set of all such trees that imply ϕ.

We see every T ∈ T as a formula T (yx̄) checking if ancestor tree of
yx̄ equals T . Then

∃y ϕ(yx̄) = ∃y
∨
T∈T

T (yx̄)

=
∨
T∈T
∃y T (yx̄).

37

Functional Forests

yx1 x|x̄|x2 x3
. . .

x1 yx2 x|x̄|x3
. . .

yx1 x|x̄|x2 x3
. . .

` ϕ

Let T be the set of all such trees that imply ϕ.

We see every T ∈ T as a formula T (yx̄) checking if ancestor tree of
yx̄ equals T . Then

∃y ϕ(yx̄) = ∃y
∨
T∈T

T (yx̄) =
∨
T∈T
∃y T (yx̄).

37

Functional Forests

We focus on a single subformula ∃y T (yx̄).

It enforces that the ancestors of x̄ induce a certain tree and that
there exists y that hits this tree via a “special path” with certain
labels at a certain ancestor at height l.

38

Functional Forests

yx1 x|x̄|x2 x3
. . .

level `

We focus on a single subformula ∃y T (yx̄).

It enforces that the ancestors of x̄ induce a certain tree and that
there exists y that hits this tree via a “special path” with certain
labels at a certain ancestor at height l.

38

Functional Forests

yx1 x|x̄|x2 x3
. . .

level `

We focus on a single subformula ∃y T (yx̄).

It enforces that the ancestors of x̄ induce a certain tree and that
there exists y that hits this tree via a “special path” with certain
labels at a certain ancestor at height l.

38

Functional Forests

. . .

level `

We now augment the graph.

For all v at level l use label Pi(v) to
store that i children of v can be completed to form a special path.

round all numbers larger than |x̄| up to∞.

For all w at level l + 1 add label R(w) if w lies on a special path.

39

Functional Forests

. . .

level ` P0 P1 P3P2

We now augment the graph. For all v at level l use label Pi(v) to
store that i children of v can be completed to form a special path.

round all numbers larger than |x̄| up to∞.

For all w at level l + 1 add label R(w) if w lies on a special path.

39

Functional Forests

. . .

level ` P0 P1 P3P2

We now augment the graph. For all v at level l use label Pi(v) to
store that i children of v can be completed to form a special path.

round all numbers larger than |x̄| up to∞.

For all w at level l + 1 add label R(w) if w lies on a special path.

39

Functional Forests

. . .

level `
level `+ 1

P0 P1 P3P2

R R R R R R

We now augment the graph. For all v at level l use label Pi(v) to
store that i children of v can be completed to form a special path.

round all numbers larger than |x̄| up to∞.

For all w at level l + 1 add label R(w) if w lies on a special path.

39

Functional Forests

x1 x|x̄|x2 x3
. . .

level `
level `+ 1

P2

R

We construct a quantifier-free formula T ′(x̄) equivalent to
∃y T (yx̄). This formula can only check the ancestor tree of x̄.

If we want to know if there is y reaching an ancestor s of x̄, we can
check whether s has more ancestors than are in the tree of x̄.

40

Functional Forests

yx1 x|x̄|x2 x3
. . .

level `
level `+ 1

P2

R R

We construct a quantifier-free formula T ′(x̄) equivalent to
∃y T (yx̄). This formula can only check the ancestor tree of x̄.

If we want to know if there is y reaching an ancestor s of x̄, we can
check whether s has more ancestors than are in the tree of x̄.

40

Functional Forests

yx1 x|x̄|x2 x3
. . .

level `
level `+ 1

P2

R R

We construct a quantifier-free formula T ′(x̄) equivalent to
∃y T (yx̄). This formula can only check the ancestor tree of x̄.

If we want to know if there is y reaching an ancestor s of x̄, we can
check whether s has more ancestors than are in the tree of x̄.

40

Functional Forests

~G

∃y T (yx̄)

~G′

T ′(x̄)
→

For every ancestor tree T ∈ T we can perform quantifier
elimination.

~G |= ∃y T (yv̄) iff ~G′ |= T ′(v̄) for all v̄ ∈ V (~G)|x̄|.

41

Functional Forests

~G

∃y T (yx̄)

~G′

T ′(x̄)
→

For every ancestor tree T ∈ T we can perform quantifier
elimination.

~G |= ∃y T (yv̄) iff ~G′ |= T ′(v̄) for all v̄ ∈ V (~G)|x̄|.

41

Functional Forests

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

~G

∃y T1(yx̄)

~G

∃y T1(yx̄)

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

~G

∃y T1(yx̄)

~G′
1

T ′
1(x̄)

~G

∃y T1(yx̄)

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G

~G′
2

T ′
2(x̄)

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

~G

∃y T1(yx̄)

~G′
1

T ′
1(x̄)

Graphs differ only in
labels. Merge them

into ~G′.

~G

∃y T1(yx̄)

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G

~G′
2

T ′
2(x̄)

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

~G

∃y T1(yx̄)

Graphs differ only in
labels. Merge them

into ~G′.

~G

∃y T1(yx̄)

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G

~G′

T ′
1(x̄)

~G′

T ′
2(x̄)

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Functional Forests

~G

∃y T1(yx̄)

~G

∃y T1(yx̄)

∃y T1(yx̄) ∨ ∃y T2(yx̄)

~G ~G′

T ′
1(x̄) ∨ T ′

2(x̄)

~G′

T ′
1(x̄)

~G′

T ′
2(x̄)

However, we want quantifier elimination for our original formula
∃y ϕ(yx̄) =

∨
T∈T
∃y T (yx̄).

42

Bounded Treedepth

Next, we consider functional graph classes whose Gaifman graphs
have bounded treedepth.

Let C be a class whose Gaifman graphs have bounded
treedepth. Then C has a quantifier elimination procedure.

43

Bounded Treedepth

Next, we consider functional graph classes whose Gaifman graphs
have bounded treedepth.

Let C be a class whose Gaifman graphs have bounded
treedepth. Then C has a quantifier elimination procedure.

43

Bounded Treedepth

~G

∃y ϕ(yx̄)

bounded
treedepth

44

Bounded Treedepth

~G

∃y ϕ(yx̄)

~G′

∃y ϕ′(x̄)
→

bounded
treedepth

forest of bounded
depth

44

Bounded Treedepth

bounded
treedepth

~G

∃y ϕ(yx̄)

~G′′

ϕ′′(x̄)
→

Use previous theorem
for quantifier

elimination on forests.

forest of bounded
depth

44

Bounded Treedepth

Consider Gaifman graph of ~G.

Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional.

Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d.

We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree.

Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.

Replace atoms fj(x) = y by
guessing tree-relationship and
checking the new predicates.

45

Bounded Treedepth

Consider Gaifman graph of ~G. Build depth-first search tree
and make it functional. Graphs with treedepth d contain no
paths longer than 2d. We have a functional forest of depth at
most 2d.

All edges go between ancestors in the tree. Encode edges of
~G by predicates at lower endpoints.

Pi,j,l(v): “There is edge from v

to parenti(v) labeled with j going
upwards/downwards”.

This tree fully encodes ~G.
Replace atoms fj(x) = y by

guessing tree-relationship and
checking the new predicates. 45

Bounded Treedepth

~G

∃y ϕ(yx̄)

bounded
treedepth

46

Bounded Treedepth

~G

∃y ϕ(yx̄)

~G′

∃y ϕ′(x̄)
→

bounded
treedepth

forest of bounded
depth

46

Bounded Treedepth

bounded
treedepth

~G

∃y ϕ(yx̄)

~G′′

ϕ′′(x̄)
→

Use previous theorem
for quantifier

elimination on forests.

forest of bounded
depth

46

Bounded Expansion

The last step.

Let C be a class with bounded expansion. Then C has a quan-
tifier elimination procedure.

47

Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃y xi g y ∧ y p xj .

The result is a formula ∃ȳ ψ(ȳx̄) on a normal (non-functional)
directed edge-labeled graph G.

48

Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃y xi g y ∧ y p xj .

The result is a formula ∃ȳ ψ(ȳx̄) on a normal (non-functional)
directed edge-labeled graph G.

48

Bounded Expansion

We are given a formula ∃yϕ(x̄) where ϕ is quantifier-free.

Replace all function applications such as p(g(xi)) = xj with
directed labeled edges such as ∃y xi g y ∧ y p xj .

The result is a formula ∃ȳ ψ(ȳx̄) on a normal (non-functional)
directed edge-labeled graph G.

48

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧

G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧

G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

Let Λ be the colors of a low-treedepth coloring of G where every
subgraph on |ȳx̄| colors has treedepth≤ g(|ȳx̄|).

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧

G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

Let Λ be the colors of a low-treedepth coloring of G where every
subgraph on |ȳx̄| colors has treedepth≤ g(|ȳx̄|).

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

Let Λ be the colors of a low-treedepth coloring of G where every
subgraph on |ȳx̄| colors has treedepth≤ g(|ȳx̄|).

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

For all graphs G[S] (of bounded treedepth) we perform quantifier
elimination.

And stack the graphs on top of each other.

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′S |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

For all graphs G[S] (of bounded treedepth) we perform quantifier
elimination.

And stack the graphs on top of each other.

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

For all graphs G[S] (of bounded treedepth) we perform quantifier
elimination. And stack the graphs on top of each other.

49

Bounded Expansion

For every v̄ ∈ V (G)|x̄|

G |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧G[S] |= ∃ȳ ψ(ȳv̄) iff

∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ~G′ |= ψS(v̄) iff

~G′ |=
∨
S⊆Λ
|S|=|ȳx̄|

colors(v̄) ⊆ S ∧ ψS(v̄).

Finally, pull out the graph.

49

Summary

This completes the proof. We have solved the model-checking
problem on bounded expansion by performing quantifier
elimination on trees and lifting it up using low treedepth colorings.

50

51

