
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Recap

We learned about Gaifman’s locality theorem and used it do find a
first-order meta-theorem for locally bounded treewidth.

This captures three natural classes of graphs.

bounded treewidth
planar graphs
bounded degree

However, locally bounded treewidth is not very robust. It is not
closed under adding apex-vertices.

2

Roadmap

We want to find the most general structural notion of “sparsity”
that still still admits fpt first-order model-checking.

If you want to know more after this course, check out lecture notes
and recordings of the fantastic sparsity lecture by Marcin Pilipczuk
and Michał Pilipczuk.

lecture notes:
mimuw.edu.pl/~mp248287/sparsity2/

video recordings:
youtube.com/playlist?list=
PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD

3

mimuw.edu.pl/~mp248287/sparsity2/
youtube.com/playlist?list=PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD
youtube.com/playlist?list=PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD

Roadmap

We want to find the most general structural notion of “sparsity”
that still still admits fpt first-order model-checking.

If you want to know more after this course, check out lecture notes
and recordings of the fantastic sparsity lecture by Marcin Pilipczuk
and Michał Pilipczuk.

lecture notes:
mimuw.edu.pl/~mp248287/sparsity2/

video recordings:
youtube.com/playlist?list=
PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD

3

mimuw.edu.pl/~mp248287/sparsity2/
youtube.com/playlist?list=PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD
youtube.com/playlist?list=PLzdZSKerwrXrUPVDx6pHUPNdurKxqC4VD

Sparsity Choices

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

Let us first consider the case where we say “Yes”.

4

Sparsity Choices

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

Let us first consider the case where we say “Yes”.

subdivision adds 1/2
vertex per edge

4

Sparsity Choices

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

Let us first consider the case where we say “Yes”.

subdivision adds 1/2
vertex per edge

4

Sparsity Choices

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

Let us first consider the case where we say “Yes”.

subdivision adds 1/2
vertex per edge

4

Sparsity Choices

Are we allowed to make a graph “sparse” by adding extra
vertices?

Definitely no!

We want a width measure that does not increase if we take a
subgraph. It should be “closed under subgraphs“ (hereditary).

5

Sparsity Choices

Are we allowed to make a graph “sparse” by adding extra
vertices?

Definitely no!

We want a width measure that does not increase if we take a
subgraph. It should be “closed under subgraphs“ (hereditary).

5

Sparsity Choices

Are we allowed to make a graph “sparse” by adding extra
vertices?

Definitely no!

We want a width measure that does not increase if we take a
subgraph. It should be “closed under subgraphs“ (hereditary).

5

Degeneracy

The degeneracy of a a graph is the minimum number k such
that there is an ordering of the vertices where no vertex has
more than k neighbors on the left.

at most two left neighbors

6

Degeneracy

What is the degeneracy here?

7

Degeneracy

What is the degeneracy here?

7

Degeneracy

What is the degeneracy here?

7

Degeneracy

Degeneracy is closed under subgraphs.

If degeneracy is k then all subgraphs have average degree at
most 2k.

8

Degeneracy

Degeneracy is closed under subgraphs.

If degeneracy is k then all subgraphs have average degree at
most 2k.

8

Degeneracy

Degeneracy is closed under subgraphs.

If degeneracy is k then all subgraphs have average degree at
most 2k.

8

Degeneracy

Degeneracy is closed under subgraphs.

If degeneracy is k then all subgraphs have average degree at
most 2k.

8

Degeneracy

Degeneracy is closed under subgraphs.
If degeneracy is k then all subgraphs have average degree at

most 2k.

︸ ︷︷ ︸
avgerage degree≤ 2k

8

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

An optimal degeneracy ordering can be computed by iteratively
removing the vertex of smallest degree.

9

Degeneracy

Can we bound the degeneracy of a planar graph?

Every planar
graph has vertex of degree≤ 5. Iteratively pull this vertex out.
Degeneracy is≤ 5.

10

Degeneracy

Can we bound the degeneracy of a planar graph? Every planar
graph has vertex of degree≤ 5. Iteratively pull this vertex out.
Degeneracy is≤ 5.

10

Degeneracy

Degeneracy is Too General

One cannot decide for graphsGof degeneracy 2 and FO sen-
tences ϕ in time f(|ϕ|)nc whether G |= ϕ.

Reduction:
We want to find a k-clique in graph G.
A subdivision G′ of G has degeneracy≤ 2.
If we could evaluate in time f(k)|G′|c

G′ |= ∃x1 black(x1) . . . xk black(xk)
∧
i,j

∃y purple(y)∧xi∼y∧y∼xj

then we knew whether G had a clique of size k.
But clique cannot be solved in FPT time.

11

Degeneracy

Degeneracy is Too General

One cannot decide for graphsGof degeneracy 2 and FO sen-
tences ϕ in time f(|ϕ|)nc whether G |= ϕ.

Reduction:
We want to find a k-clique in graph G.

A subdivision G′ of G has degeneracy≤ 2.
If we could evaluate in time f(k)|G′|c

G′ |= ∃x1 black(x1) . . . xk black(xk)
∧
i,j

∃y purple(y)∧xi∼y∧y∼xj

then we knew whether G had a clique of size k.
But clique cannot be solved in FPT time.

11

Degeneracy

Degeneracy is Too General

One cannot decide for graphsGof degeneracy 2 and FO sen-
tences ϕ in time f(|ϕ|)nc whether G |= ϕ.

Reduction:
We want to find a k-clique in graph G.
A subdivision G′ of G has degeneracy≤ 2.

If we could evaluate in time f(k)|G′|c

G′ |= ∃x1 black(x1) . . . xk black(xk)
∧
i,j

∃y purple(y)∧xi∼y∧y∼xj

then we knew whether G had a clique of size k.
But clique cannot be solved in FPT time.

11

Degeneracy

Degeneracy is Too General

One cannot decide for graphsGof degeneracy 2 and FO sen-
tences ϕ in time f(|ϕ|)nc whether G |= ϕ.

Reduction:
We want to find a k-clique in graph G.
A subdivision G′ of G has degeneracy≤ 2.
If we could evaluate in time f(k)|G′|c

G′ |= ∃x1 black(x1) . . . xk black(xk)
∧
i,j

∃y purple(y)∧xi∼y∧y∼xj

then we knew whether G had a clique of size k.

But clique cannot be solved in FPT time.

11

Degeneracy

Degeneracy is Too General

One cannot decide for graphsGof degeneracy 2 and FO sen-
tences ϕ in time f(|ϕ|)nc whether G |= ϕ.

Reduction:
We want to find a k-clique in graph G.
A subdivision G′ of G has degeneracy≤ 2.
If we could evaluate in time f(k)|G′|c

G′ |= ∃x1 black(x1) . . . xk black(xk)
∧
i,j

∃y purple(y)∧xi∼y∧y∼xj

then we knew whether G had a clique of size k.
But clique cannot be solved in FPT time.

11

Sparsity Choices

Do we consider subdivisions of arbitrary graphs “sparse”?

No, because FO-logic can recover the underlying graph at
“depth” one

and higher “depths.”

We require that subgraphs at all “depths” are sparse.
Subgraphs hidden at a certain depth are called shallow minors.

12

Sparsity Choices

Do we consider subdivisions of arbitrary graphs “sparse”?

No, because FO-logic can recover the underlying graph at
“depth” one

and higher “depths.”
We require that subgraphs at all “depths” are sparse.
Subgraphs hidden at a certain depth are called shallow minors.

12

Sparsity Choices

Do we consider subdivisions of arbitrary graphs “sparse”?

No, because FO-logic can recover the underlying graph at
“depth” one and higher “depths.”

We require that subgraphs at all “depths” are sparse.
Subgraphs hidden at a certain depth are called shallow minors.

12

Sparsity Choices

Do we consider subdivisions of arbitrary graphs “sparse”?

No, because FO-logic can recover the underlying graph at
“depth” one and higher “depths.”

We require that subgraphs at all “depths” are sparse.

Subgraphs hidden at a certain depth are called shallow minors.

12

Sparsity Choices

Do we consider subdivisions of arbitrary graphs “sparse”?

No, because FO-logic can recover the underlying graph at
“depth” one and higher “depths.”

We require that subgraphs at all “depths” are sparse.
Subgraphs hidden at a certain depth are called shallow minors.

12

Minors

A graph H is a minor of G (H 4 G) if H can be built from G by

merging edges
removing edges
removing vertices

⇒

⇒
⇒

13

Minors

A graph H is a minor of G (H 4 G) if H can be built from G by

merging edges
removing edges
removing vertices

⇒

⇒
⇒

is minor of

13

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs
removing all vertices outside these subgraphs
merging each subgraph into a single vertex
removing edges

14

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs

removing all vertices outside these subgraphs
merging each subgraph into a single vertex
removing edges

14

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs
removing all vertices outside these subgraphs

merging each subgraph into a single vertex
removing edges

14

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs
removing all vertices outside these subgraphs
merging each subgraph into a single vertex

removing edges

14

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs
removing all vertices outside these subgraphs
merging each subgraph into a single vertex

removing edges

14

Minors

Equivalently, minors are graphs that are built from the
host-graph by

picking some connected subgraphs
removing all vertices outside these subgraphs
merging each subgraph into a single vertex
removing edges

14

Minor Characterization of Planar Graphs

One can characterize graph classes by excluding certain minors.

Kuratowski’s Theorem

A graph is planar iff it does not have K3,3 or K5 as a minor.

K3,3 K5

15

Minor Characterization of Planar Graphs

One can characterize graph classes by excluding certain minors.

Kuratowski’s Theorem

A graph is planar iff it does not have K3,3 or K5 as a minor.

K3,3 K5

15

Minor Characterization of Treewidth

A graph is a forest iff it does not have K3 as a minor.

A graph has treewidth≤ 2 if it does not have K4 as a minor.

K3

16

Minor Characterization of Treewidth

A graph is a forest iff it does not have K3 as a minor.

A graph has treewidth≤ 2 if it does not have K4 as a minor.

K3 K4

16

Minor Characterization of Treewidth

A graph has treewidth ≤ 3 iff it does not have any of these
graphs as a minor.

In general, for every k there exists a family of minorsFk such
that a graph has treewidth≤ k iff it does not have any graph
from Fk as a minor.

17

Minor Characterization of Treewidth

A graph has treewidth ≤ 3 iff it does not have any of these
graphs as a minor.

In general, for every k there exists a family of minorsFk such
that a graph has treewidth≤ k iff it does not have any graph
from Fk as a minor.

17

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free. Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

18

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free.

Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

18

Minor Characterization

Minor-Free Graphs

A class of graphs C is minor-free if there exists a t such that
every graph in C excludes Kt as a minor.

Every planar graph class and every class with bounded treewidth is
minor-free. Proof for planar graphs:

K3,3 K5

planar ⇒ or ⇒
K6

18

Sparsity

FO-logic can recover the underlying graph hidden at a “depth” in
the graph. We require that subgraphs at all “depths” are sparse.

Can we say a graph is sparse if it is minor-free, i.e., does not contain
any complicated minors?

No. We could not capture locally
bounded treewidth this way.

19

Sparsity

FO-logic can recover the underlying graph hidden at a “depth” in
the graph. We require that subgraphs at all “depths” are sparse.

Can we say a graph is sparse if it is minor-free, i.e., does not contain
any complicated minors? No. We could not capture locally
bounded treewidth this way.

19

Subdivisions of High Depth

Remember the class of log(n)-subdivisions of n-cliques.

We showed, it has locally bounded treewidth, and therefore
fpt model-checking.

But it has arbitrary large cliques as minors.

clique of size n

20

Subdivisions of High Depth

Remember the class of log(n)-subdivisions of n-cliques.

We showed, it has locally bounded treewidth, and therefore
fpt model-checking.

But it has arbitrary large cliques as minors.

log(n)

clique of size n

20

Subdivisions of High Depth

Remember the class of log(n)-subdivisions of n-cliques.

We showed, it has locally bounded treewidth, and therefore
fpt model-checking.

But it has arbitrary large cliques as minors.

log(n)

clique of size n

20

Subdivisions of High Depth

Remember the class of log(n)-subdivisions of n-cliques.

We showed, it has locally bounded treewidth, and therefore
fpt model-checking.

But it has arbitrary large cliques as minors.

log(n)

clique of size n

20

Our Goal

We want to say a graph class is “sparse” if
◦ it is closed under subgraphs,
◦ you can do FPT first-order model-checking on it.

Dense minors are okay as long as they are at a high “depth”.
How do we formalize this?

21

Our Goal

log(n)

clique of size n

k

clique of size n

We want to say a graph class is “sparse” if
◦ it is closed under subgraphs,
◦ you can do FPT first-order model-checking on it.

Dense minors are okay as long as they are at a high “depth”.
How do we formalize this?

21

Our Goal

log(n)

clique of size n

k

clique of size n

We want to say a graph class is “sparse” if
◦ it is closed under subgraphs,
◦ you can do FPT first-order model-checking on it.

Dense minors are okay as long as they are at a high “depth”.
How do we formalize this?

21

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

22

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.

removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 22

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs

merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 22

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex

removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 22

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex

removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 22

Shallow Minors

H is an depth-rminor of G (H 4r G) if H can be built from G by

picking some connected subgraphs with radius≤ r.
removing all vertices outide these subgraphs
merging each subgraph into a single vertex
removing edges

radius 1 radius 2

radius 2radius 1

radius 1

depth-2 minor 22

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

23

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

23

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}

Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r).

23

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Bounded Expansion

A graph class C has bounded expansion if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
∇r(G) ≤ f(r). 23

The Right Notion of Sparsity

We measure sparsity at depth r by measuring the depth-r minors
of a graph G. This notion of sparsity was introduced by Nešetřil and
Ossona de Mendez. We can think of two ways to do so

bounding the average degree

∇r(G) = max
{ |E(H)|
|V (H)|

| H 4r G
}

bounding the clique size

ωr(G) = max
{
t | Kt 4r G

}
Nowhere Dense

A graph class C is nowhere dense if there exists a func-
tion f(r) such that for all r ∈ N and all G ∈ C we have
ωr(G) ≤ f(r). 23

Which of these classes has bounded expansion / is nowhere dense?

24

log(n)

clique of size n

k

clique of size n

Which of these classes has bounded expansion / is nowhere dense?

24

Our Goal

We want to say a graph class is “sparse” if

it is closed under subgraphs,
you can do FPT first-order model-checking on it.

Theorem (Grohe, Kreuzer, Siebertz 2017)

For graph class C that is closed under subgraphs holds C is
nowhere dense iff the first-order model-checking problem
on C is FPT (assuming FPT 6= AW[∗]).

Before we prove (parts of) this result in the next lectures, we
discuss the relationship to other graph classes.

25

Our Goal

We want to say a graph class is “sparse” if

it is closed under subgraphs,
you can do FPT first-order model-checking on it.

Theorem (Grohe, Kreuzer, Siebertz 2017)

For graph class C that is closed under subgraphs holds C is
nowhere dense iff the first-order model-checking problem
on C is FPT (assuming FPT 6= AW[∗]).

Before we prove (parts of) this result in the next lectures, we
discuss the relationship to other graph classes.

25

Our Goal

We want to say a graph class is “sparse” if

it is closed under subgraphs,
you can do FPT first-order model-checking on it.

Theorem (Grohe, Kreuzer, Siebertz 2017)

For graph class C that is closed under subgraphs holds C is
nowhere dense iff the first-order model-checking problem
on C is FPT (assuming FPT 6= AW[∗]).

Before we prove (parts of) this result in the next lectures, we
discuss the relationship to other graph classes.

25

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
26

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).

For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).

ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1:

If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒

∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.

So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

Every graph class with bounded expansion is also nowhere
dense.

Proof:

Assume C has bounded expansion with function f(r).
For all r ∈ N and all G ∈ C we have∇r(G) ≤ f(r).
ωr(G) ≤ 2∇r(G) + 1: If ωr(G) is large then also∇r(G):

ωr(G) = t ⇒ ∇r(G) ≥ |E(Kt)|
|V (Kt)|

=
t(t− 1)/2

t
=

t− 1

2

for all r ∈ N and all G ∈ C we have ωr(G) ≤ 2f(r) + 1.
So C is nowhere dense with function 2f(r) + 1.

27

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth. For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .
Expected number of k-cycles is nk ·

(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth.

For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .
Expected number of k-cycles is nk ·

(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth. For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .
Expected number of k-cycles is nk ·

(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth. For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .
Expected number of k-cycles is nk ·

(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth. For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .

Expected number of k-cycles is nk ·
(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

But there exist graph classes that are nowhere dense but do
not have bounded expansion.

The few known such graph classes have high average degree and
high girth. For example random graphs with edge probability
log(n)/n.

Proof:

The expected degree is 2 log(n). So with high probably
unbounded average degree (already at depth zero) and
therefore not bounded expansion.

Probability that vertices v1, . . . , vk form a cycle is
(
log(n)/n

)k .
Expected number of k-cycles is nk ·

(
log(n)/n

)k
= log(n)k .

28

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.
This means every log(log(n))/6-shallow minor is triangle-free

and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.
On the other hand, if r ≥ log(log(n))/6 then

ωr(G) ≤ n ≤ 22
6r .

Thus the graph comes with high probably from a nowhere
dense class.

29

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.
This means every log(log(n))/6-shallow minor is triangle-free

and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.
On the other hand, if r ≥ log(log(n))/6 then

ωr(G) ≤ n ≤ 22
6r .

Thus the graph comes with high probably from a nowhere
dense class.

29

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.

This means every log(log(n))/6-shallow minor is triangle-free
and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.

On the other hand, if r ≥ log(log(n))/6 then
ωr(G) ≤ n ≤ 22

6r .
Thus the graph comes with high probably from a nowhere

dense class.

29

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.
This means every log(log(n))/6-shallow minor is triangle-free

and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.

On the other hand, if r ≥ log(log(n))/6 then
ωr(G) ≤ n ≤ 22

6r .
Thus the graph comes with high probably from a nowhere

dense class.

29

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.
This means every log(log(n))/6-shallow minor is triangle-free

and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.
On the other hand, if r ≥ log(log(n))/6 then

ωr(G) ≤ n ≤ 22
6r .

Thus the graph comes with high probably from a nowhere
dense class.

29

Nowhere Dense vs. Bounded Expansion

Remove all cycles of length≤ log(log(n)). The number of
them is roughly log(n)log(log(n)). This is not too much.

Only a vanishing fraction of vertices has been removed. The
expected degree is still roughly 2 log(n). So with high probably
still not bounded expansion.

However, every log(log(n))-neighborhood is a tree.
This means every log(log(n))/6-shallow minor is triangle-free

and therefore ωr(G) ≤ 2 for r ≤ log(log(n))/6.
On the other hand, if r ≥ log(log(n))/6 then

ωr(G) ≤ n ≤ 22
6r .

Thus the graph comes with high probably from a nowhere
dense class.

29

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
30

Bounded Expansion vs. Bounded Degree

Every graph class with bounded degree has bounded expan-
sion. In particular, if a graph G has degree at most d then
∇r(G) ≤ dr+2.

Proof:
Depth r-minors are built from

subgraphs with radius≤ r.
As proven earlier, these subgraphs

have size at most dr+1.
Such a subgraph can have at most

dr+2 neighbors in the minor model.
The maximum degree of an depth

r-minor is dr+2.

31

Bounded Expansion vs. Bounded Degree

r r

r

r

r

Every graph class with bounded degree has bounded expan-
sion. In particular, if a graph G has degree at most d then
∇r(G) ≤ dr+2.

Proof:
Depth r-minors are built from

subgraphs with radius≤ r.

As proven earlier, these subgraphs
have size at most dr+1.

Such a subgraph can have at most
dr+2 neighbors in the minor model.

The maximum degree of an depth
r-minor is dr+2.

31

Bounded Expansion vs. Bounded Degree

r

Every graph class with bounded degree has bounded expan-
sion. In particular, if a graph G has degree at most d then
∇r(G) ≤ dr+2.

Proof:
Depth r-minors are built from

subgraphs with radius≤ r.
As proven earlier, these subgraphs

have size at most dr+1.

Such a subgraph can have at most
dr+2 neighbors in the minor model.

The maximum degree of an depth
r-minor is dr+2.

31

Bounded Expansion vs. Bounded Degree

r

Every graph class with bounded degree has bounded expan-
sion. In particular, if a graph G has degree at most d then
∇r(G) ≤ dr+2.

Proof:
Depth r-minors are built from

subgraphs with radius≤ r.
As proven earlier, these subgraphs

have size at most dr+1.
Such a subgraph can have at most

dr+2 neighbors in the minor model.

The maximum degree of an depth
r-minor is dr+2.

31

Bounded Expansion vs. Bounded Degree

r

Every graph class with bounded degree has bounded expan-
sion. In particular, if a graph G has degree at most d then
∇r(G) ≤ dr+2.

Proof:
Depth r-minors are built from

subgraphs with radius≤ r.
As proven earlier, these subgraphs

have size at most dr+1.
Such a subgraph can have at most

dr+2 neighbors in the minor model.
The maximum degree of an depth

r-minor is dr+2. 31

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
32

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.
Let G ∈ C. Then G does not have Kt as a minor.
Also every r-shallow minor of G does not have Kt as a minor.
Extra lemma: Every graph that does not contain Kt as a minor

has < 2t edges per vertex.
This means every r-shallow minor of G has < 2t edges per

vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.

33

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.

Let G ∈ C. Then G does not have Kt as a minor.
Also every r-shallow minor of G does not have Kt as a minor.
Extra lemma: Every graph that does not contain Kt as a minor

has < 2t edges per vertex.
This means every r-shallow minor of G has < 2t edges per

vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.

33

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.
Let G ∈ C. Then G does not have Kt as a minor.

Also every r-shallow minor of G does not have Kt as a minor.
Extra lemma: Every graph that does not contain Kt as a minor

has < 2t edges per vertex.
This means every r-shallow minor of G has < 2t edges per

vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.

33

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.
Let G ∈ C. Then G does not have Kt as a minor.
Also every r-shallow minor of G does not have Kt as a minor.

Extra lemma: Every graph that does not contain Kt as a minor
has < 2t edges per vertex.

This means every r-shallow minor of G has < 2t edges per
vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.

33

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.
Let G ∈ C. Then G does not have Kt as a minor.
Also every r-shallow minor of G does not have Kt as a minor.
Extra lemma: Every graph that does not contain Kt as a minor

has < 2t edges per vertex.

This means every r-shallow minor of G has < 2t edges per
vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.

33

Bounded Expansion vs. Minor Free Classes

LetC be a minor-free graph class (examples are planar graphs,
or bounded treewidth.) Then C has bounded expansion.

Proof:

Because C is minor-free, it excludes some Kt as a minor.
Let G ∈ C. Then G does not have Kt as a minor.
Also every r-shallow minor of G does not have Kt as a minor.
Extra lemma: Every graph that does not contain Kt as a minor

has < 2t edges per vertex.
This means every r-shallow minor of G has < 2t edges per

vertex. In other words, ∆r(G) ≤ 2t for all r ∈ N.
33

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.

We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).

Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.

We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v

noKt minor 34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v

noKt minor

noKt−1 minor

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.

We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v

noKt minor

noKt−1 minor

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].

Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v

u

noKt minor

noKt−1 minor

< 2t

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v

u

< 2t

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].
Contract u and v.

The result has by
induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

v
u

< 2t

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].
Contract u and v. The result has by

induction < 2t edges per vertex.

Going back to G adds one vertex and < 2t

edges.

< 2t

34

Bounded Expansion vs. Minor Free Classes

Lemma 1.16, Chapter 1, MIMUW Sparsity Lecture Notes

For every t ≥ 2, if a graph does not contain Kt as a minor,
then it has < 2t edges per vertex.

Proof (induction over graph size and t):
Let G be a graph with no Kt minor and let

v ∈ V (G).
Then G[N(v)] has no Kt−1 minor.

By induction < 2t−1 edges per vertex.
We can pick u of degree < 2t in G[N(v)].
Contract u and v. The result has by

induction < 2t edges per vertex.
Going back to G adds one vertex and < 2t

edges.

v

u

< 2t

34

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
35

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

36

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

36

Main Results for Sparse Graphs
Theorem (Dvořák, Král, Thomas 2013)

Let C be a graph class with bounded expansion. There exists a
function f such that for every FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Theorem (Grohe, Kreuzer, Siebertz 2017)

Let C be a nowhere dense graph class. There exists a function
f such that for every ε > 0, FO formula ϕ and graph G ∈ C
one can decide whether G |= ϕ in time f(ε, |ϕ|)n1+ε.

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way. This is why we focus on
bounded expansion only in this course.

36

Existential Model-Checking

We will first prove a weaker result that is a building block in many
other algorithms.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every existential FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n.

This is more or less equivalent to the following.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every pattern graph H and host graph
G ∈ C one can decide whether H is an induced subgraph of
G in time f(|H|)n.

37

Existential Model-Checking

We will first prove a weaker result that is a building block in many
other algorithms.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every existential FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n.

This is more or less equivalent to the following.

Let C be a class with bounded expansion. There exists a func-
tion f such that for every pattern graph H and host graph
G ∈ C one can decide whether H is an induced subgraph of
G in time f(|H|)n. 37

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

38

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

x y z x yzH = { , , }x y z

38

Existential Model-Checking
Proof of equivalence:

Assume we want to know whether G |= ϕ for some existential
formula with q quantifiers. For example
ϕ = ∃x∃y∃zx∼y ∧ y 6∼z.

Compute setH of all graphs with at most q vertices and
H |= ϕ. In our case,

Now G |= ϕ iff G contains some graph fromH as induced
subgraph.
◦ Assume G |= ϕ. Then the satisfying assignment describes

induced subgraph H of G with H |= ϕ.
◦ Assume H ∈ H is induced subgraph of G. Then H |= ϕ. This

does not change while adding the remaining vertices of G.

x y z x yzH = { , , }x y z

38

Alternative Characterizations

How can we prove these results?

Gaifman does not help much because neighborhoods can be
the whole graph.

So far, all we know that certain shallow minors are not present.
If we have a better understanding of the structure of sparse

graphs, this will help us.

39

Alternative Characterizations

There are many alternative definitions of bounded expansion and
nowhere dense classes.

shallow minors
generalized coloring numbers
low treedepth colorings
transitive fraternal augmentations
quasi-wideness
connector-splitter games

Which one is best depends on the task.

40

Low Treedepth Colorings

To prove the result, we will use the powerful notion of low treedepth
colorings.

As a warmup, we solve the problem on planar graphs and then
generalize the approach to bounded expansion.

41

Low Treedepth Colorings

To prove the result, we will use the powerful notion of low treedepth
colorings.

As a warmup, we solve the problem on planar graphs and then
generalize the approach to bounded expansion.

41

Baker’s Technique

On any planar graph you can
do the following.

do breadth-first search
give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p + 1.

42

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search

give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p + 1.

42

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p + 1.

42

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p + 1.

42

Baker’s Technique

On any planar graph you can
do the following.
do breadth-first search
give layer i color i mod p

pick a strict subset of
colors

The resulting graph has
treewidth at most 3p + 1.

42

Baker’s Technique

We want to know whether G has
H as an induced subgraph.

color the graph as before
with p = |H|+ 1 colors.

If H is induced subgraph
then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n.

43

Baker’s Technique

We want to know whether G has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.

If H is induced subgraph
then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n.

43

Baker’s Technique

We want to know whether G has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n.

43

Baker’s Technique

We want to know whether G has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n.

43

Baker’s Technique

We want to know whether G has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n.

43

Baker’s Technique

We want to know whether G has
H as an induced subgraph.
color the graph as before

with p = |H|+ 1 colors.
If H is induced subgraph

then it is contained in a
subset of |H| colors.

Enumerate all subsets of
|H| colors and search for
H .

Use Courcelle on induced
graph of treewith≤ 3p + 1.

Run time p · f(3p + 1, |H|) · n. 43

Low Treedepth Colorings

We used the following observation of planar graphs.

For every p one can color the graph with p + 1 colors such that
every set of p colors induces a graph with
treewith at most 3p + 1.

We can get something similar for bounded expansion.

For every p one can color the graph with f(p) colors such that
every set of p colors induces a graph with
treedepth at most p.

44

Low Treedepth Colorings

We used the following observation of planar graphs.

For every p one can color the graph with p + 1 colors such that
every set of p colors induces a graph with
treewith at most 3p + 1.

We can get something similar for bounded expansion.

For every p one can color the graph with f(p) colors such that
every set of p colors induces a graph with
treedepth at most p.

44

Treedepth

Definition

The treedepth of a graph G is the minimum height of a rooted
forest F such that all edges of G go between ancestors and
descendants in F .

45

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd 46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

gfd

46

Treedepth vs. Treewidth

The treewidth of a graph is as most as large as the treedepth.

This means graph classes with bounded treewidth are more general
than those with bounded treedepth.

Proof: The set of all paths from leafs to the root yield a tree
decomposition.

ba c

d

e f
g

a

b

c

d

e

f

g

abd

cbd

efd

gfd

46

Treedepth of Paths

A treedepth of a path with n vertices is exactly dlog(n + 1)e.

ba c

d

e f
g

a

b

c

d

e

f

g

47

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph?

How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

Nešetřil, Ossona de Mendez

A graph class C has bounded expansion iff there exists a func-
tion f such that for every G ∈ C and p ∈ N one can color G
with f(p) colors and every set of p colors induces a graph with
treedepth≤ p.

What is f(2) for this graph? How many colors do we need here
such that every set of 2 colors has treedepth≤ 2?

48

Low Treedepth Colorings

How many colors do we need to color a tree such that every set of
p colors induces a graph with treedepth at most p?

Color it with p + 1 colors slicewise.

49

Low Treedepth Colorings

How many colors do we need to color a tree such that every set of
p colors induces a graph with treedepth at most p?

Color it with p + 1 colors slicewise.

49

Existential Model-Checking

We can now use low-treedepth colorings to prove fpt existential
model-checking.

50

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6 4

6

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5 3

5

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring!

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

51

Existential Model-Checking

Let C be a class with bounded expansion, having low treedepth
colorings with function f(p). We want to know in time h(|H|) · n
whether a graph G ∈ C has H as induced subgraph.

For p = |H| compute low treedepth coloring of G with f(p)

colors.

H occurs in G iff there exists a set of |H| colors such that H
occurs in graph obtained by inducing G on these colors.

We consider
(f(|H|)
|H|

)
color sets

and for each we search for H
in time g(|H|) · n using Courcelle.

Total run time
(f(|H|)
|H|

)
g(|H|) · n.

Plus time needed
to compute coloring! 1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6 4

6 4

6 4

6 4

6 4

6 4

6

1

2

1

2

1

2

1

2

1

2

1

2

3

5 3

5 3

5 3

5 3

5 3

5

G

51

A Note on Nowhere Dense Classes

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way.

Nowhere dense classes can also be characterized via low treedepth
colorings.

Nešetřil, Ossona de Mendez

If a graph class C is nowhere dense then there exists a func-
tion f such that for every G ∈ C, every ε > 0, and p ∈ N one
can color G with f(ε, p)|n|ε colors and every set of p colors
induces a graph with treedepth≤ p.

52

A Note on Nowhere Dense Classes

General rule: Things that work for bounded expansion also work for
nowhere dense, but in an uglier way.

Nowhere dense classes can also be characterized via low treedepth
colorings.

Nešetřil, Ossona de Mendez

If a graph class C is nowhere dense then there exists a func-
tion f such that for every G ∈ C, every ε > 0, and p ∈ N one
can color G with f(ε, p)|n|ε colors and every set of p colors
induces a graph with treedepth≤ p.

52

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)

≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

Comparison

Bounded Expansion Nowhere Dense

p-treedepth colorings with
f(p) colors 3

p-treedepth colorings with
f(ε, p)nε colors for all ε > 0 3

Enumerate p-subsets in time(
f(p)
p

)
3

Enumerate p-subsets in time(
f(ε,p)nε

p

)
≤ f(ε, p)nεp = f(ε/p, p)nε 3

Do something very expensive
in time 22

f(p)
3

Do something very expensive
in time 22

f(ε/p,p)nε

≥ 22
log(n)

= 2n 7

53

