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Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

# The quantifier-rank of a formula is the maximum number of
nested quantifiers.

# We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
# Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

# If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

# Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.
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Ehrenfeucht–Fraïssé Games

G

G′

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

# Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

# Duplicator picks partner vertex in other
graph.

# Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
# Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.
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Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

gi+1

≤
2 q−i≤ 2

q−i

g′i+1

≤
2 q−i≤ 2

q−i

6
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Fefermann–Vaught (First-Order)

F H

q-type(H) is the set of all FO-sentences ξ of quantifier-rank≤ q
with H |= ξ. Note that q-type(F ) = q-type(H) iff F ≡q H .

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F ) ∩ V (H) = ∅.
Then q-type(F ∪H) is completely determined by
# q-type(F ) and
# q-type(H).
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# q-type(H).
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Fefermann–Vaught (First-Order)

F H

F ′ H ′

≡q ≡q

Alternative Formulation

Let F , F ′, H , H ′ be graphs. If
# F ≡q F

′ and
# H ≡q H

′

then F ∪H ≡q F
′ ∪H ′. 8
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Fefermann–Vaught (First-Order)

Proof: Combine the two winning strategies of the Duplicator.

F H

F ′ H ′

9



Summary

# First-order logic captures certain types of problems very well
but fails spectacularly at some other very basic tasks.

# There are more expressive extensions
◦ FO + parity
◦ FO + counting
◦ FO + fixed points
◦ . . .

But model-checking may be harder for them.
# The field of descriptive complexity dedicated to studying the

expressiveness of logics.
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Our First First-Order Meta-Theorem

We will show:
Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Later we will generalize this to
other sparse graph classes.

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth
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Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k?

Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.

# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k?

Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.

# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid?

Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.

# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected?

No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.

# Finding a set of size k that dominates n/2 vertices? No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices?

No.

12



Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

# Finding an independent set of size k? Yes.
# Finding an dominating set of size k? Yes.
# Finding a k × k-grid? Yes.
# Deciding if a graph is connected? No.
# Finding a set of size k that dominates n/2 vertices? No.

12



Proof Idea

We show how to . . .

# find things that are far apart (independent sets, . . . ),
# find things that are local (connected subgraphs, . . . ).

A famous logic theorem by Gaifman shows that every problem
definable in first-order logic can be decomposed into subproblems
from these two categories.

One can use the same technique for locally bounded treewidth
graph classes. This includes: planar graphs, bounded treewidth,
bounded degree, bounded genus, . . .
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Main Tool: Bounded Neighborhood Size

v

Let v be a vertex in a graph with maximal degree d. Then
|Nr(v)| ≤ dr+1.

Proof:
# We show there are at most di

vertices with distance i. Then∑r
i=1 d

i ≤ dr+1.
# There is 1 = (d− 1)0 vertex with

distance 0.
# Number can increase at most by

factor of d as we go from i to i+ 1.
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Finding Things That Are Far Appart

Let C be a graph class with bounded degree. One can decide
in time f(r, k)n whether a graph G ∈ C contains a red r-
scattered set of size k.

15



Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

Is there a red r-scattered set of size k in a graph of degree≤ d?

# Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

# Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
# Repeat k times. This is a solution.
# Works because≤ dr+1 vertices are removed each round.
# Run time: (dr+1k)O(k)n.
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Finding Things That Are Local

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains a k × k-grid
as an induced subgraph.
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Finding Things That Are Local

k︷ ︸︸ ︷
k



degree≤ d

∈ ?

# Is there a k × k grid in a graph of degree≤ d?

# If yes, then it is contained in N2r(v) for some vertex v.
# Enumerate every vertex v.
# Check in time |N2r(v)|O(k2) whether neighborhood has grid.
# Total time: d(2k+1)O(k2)n
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Combining Both Ideas

Homework

Let C be a graph class with bounded degree. For every graph
H and G ∈ C one can decide in time f(|H|)n whether G
contains H as induced subgraph.

Now

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains two disjoint
k × k-grids as induced subgraph.

19



Combining Both Ideas

Homework

Let C be a graph class with bounded degree. For every graph
H and G ∈ C one can decide in time f(|H|)n whether G
contains H as induced subgraph.

Now

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains two disjoint
k × k-grids as induced subgraph.

19



Combining Both Ideas

degree≤ d

∈ ?

# Are there two disjoint k × k grids in a graph of degree≤ d?

# Mark one corner of each grid red.
# Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.
# Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.
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Gaifman

The same kind of split into “local” and “far apart” parts can be done
for first-order logic as well.

In a sense, all that first-order logic can do is say certain “local”
properties are “far apart”.

This is formalized in Gaifman’s locality Theorem.
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Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

# ω(x) = ∃y x∼y Yes
# ω(x) = ∃y x6∼y No
# ω(x) saying that x is corner of some k × k-grid. Yes
# ... and there also is a second disjoint k × k-grid. No
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Evaluating Local Formulas

Let G be a graph with degree ≤ d and ω(x) be an r-local
formula. One can compute in in time O(d(r+1)|ϕ|n) the set
of all v ∈ V (G) with G |= ω(v).

Proof:

# Enumerate all vertices v.
# Instead of evaluating ϕ(v) on G, we evaluate it on G[Nr(v)].
# G[Nr(v)] contains≤ dr+1 vertices.
# We can evaluate ϕ(v) on a graph with k vertices in time
O(k|ϕ|).
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Basic Local Sentences

Let ω(x) be an r-local formula.

Let dist>2r(x1, x2) be the
first-order formula denoting that the distance between x1 and x2 is
greater than 2r. A basic local sentence is a sentence of the form

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

“There are s vertices that all satisfy some local property ω and are
far apart.”

Example: There exist s vertices with degree 4 and pairwise distance
larger than 10.
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Gaifman

Gaifman’s Locality Theorem

Every first-order sentence is equivalent to a boolean combi-
nation of basic local sentences.
For a given sentence, such a boolean combination can be
computed.

What is a boolean combination of basic local sentences expressing
that there are two disjoint k × k-grids?

# either there exists s1 that is part of a subgraph �–� (6k-local),
# or there exist s1, s2, both part of a subgraph � (2k-local) with

dist>4k(s1, s2).
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Proof of First-Order Meta-Theorem

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Proof:

# By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

The size and number of these basic local sentences depends
only on ϕ. We show how to evaluate such sentences.
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Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

# Neighborhoods G[Nr(v)] have size≤ dr+1.
# For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

# Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.
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Locally Bounded Treewidth

Our approach for bounded degree easily generalizes to
locally bounded treewidth.
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Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?
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Relationship to Other Classes

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth
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Relationship to Other Classes

Locally bounded treewidth generalizes

# planar graphs,
# bounded degree,
# bounded treewidth.

Theorem (Bodlaender)

The treewidth of a planar graph with radius r is at most 3r−1.

The size of a graph with with radius r and maximal degree d
is at most dr+1.
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Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

# Every circle has length at least 3 log(n).
# If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
# If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
# For every r, G[Nr(v)] has treewidth at most 2r .

clique of size n
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A More General First-Order Meta-Theorem

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formula ϕ, graph
G ∈ C and ε > 0 one can decide whether G |= ϕ in time
f(ε, |ϕ|)n1+ε.

We prove the following slightly weaker statement.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.
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Proof

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.

Proof:

# By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We show how to evaluate such sentences.
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Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

# Neighborhoods G[Nr(v)] have treewidth at most g(r).
# For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

# Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].
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Proof

· · ·
5sr

Assume G[Nr(R)] has diameter at least 5sr.

# Then there is a shortest path of length 5sr.

# There are s vertices on it with distance 5r of each other.
# Each vertex on the path has distance≤ r from a red vertex.
# These red vertices have pairwise distance > 2r.
# 2r-scattered set of size s exists!
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Proof

Assume G[Nr(R)] has diameter at most 5sr. Then it has treewidth
at most g(5sr), where g is the treewidth bound of C. Use
Courcelle’s theorem to decide if G[Nr(R)] has red 2r-scattered set.

37



Summary

We now have a first-order meta-theorem for locally bounded
treewidth.

This captures three natural classes of graphs.

# bounded treewidth
# planar graphs
# bounded degree

However, locally bounded treewidth is not very robust. It is not
closed under adding apex-vertices.
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