Algorithmic Meta-Theorems

192.122 WS21/22 Jan Dreier dreier@ac.tuwien.ac.at

1

 The *quantifier-rank* of a formula is the maximum number of nested quantifiers.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q G'$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff G' \models \varphi$.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q G'$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff G' \models \varphi$.
- Show that for every q there is a connected graph G and a disconnected graph G' with $G \equiv_q G'$.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q G'$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff G' \models \varphi$.
- Show that for every q there is a connected graph G and a disconnected graph G' with $G \equiv_q G'$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G and G' apart. A contradiction.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q G'$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff G' \models \varphi$.
- Show that for every q there is a connected graph G and a disconnected graph G' with $G \equiv_q G'$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G and G' apart. A contradiction.
- Show $G \equiv_q G'$ using Ehrenfeucht–Fraïssé games.

○ Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all \ i, j.$

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \ \ \, \text{Duplicator wins if } g_i \sim g_j \iff g_i' \sim g_j' \text{ for } \\ \text{ all } i,j.$

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all \ i, j.$

- \bigcirc Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff g'_i \sim g'_j$ for all i, j.

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all \ i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all \ i, j.$

- Spoiler picks $g_i \in V(G)$ or $g'_i \in V(G')$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $g'_1, \ldots, g'_q \in V(G')$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff g'_i \sim g'_j \text{ for } all i, j.$

Theorem

 $G \equiv_q G'$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.

For every q there is a connected graph G and a disconnected graph G' with $G\equiv_q G'.$

 4^q vertices

 4^q vertices

q-type(H) is the set of all FO-sentences ξ of quantifier-rank $\leq q$ with $H \models \xi$. Note that q-type(F) = q-type(H) iff $F \equiv_q H$.

q-type(H) is the set of all FO-sentences ξ of quantifier-rank $\leq q$ with $H \models \xi$. Note that q-type(F) = q-type(H) iff $F \equiv_q H$.

Alternative Formulation

Let
$$F$$
, F' , H , H' be graphs. If
 $\bigcirc F \equiv_q F'$ and
 $\bigcirc H \equiv_q H'$
then $F \cup H \equiv_q F' \cup H'$.

Alternative Formulation

Let
$$F$$
, F' , H , H' be graphs. If
 $\bigcirc F \equiv_q F'$ and
 $\bigcirc H \equiv_q H'$
then $F \cup H \equiv_q F' \cup H'$.

Proof: Combine the two winning strategies of the Duplicator.

 First-order logic captures certain types of problems very well but fails spectacularly at some other very basic tasks.

- First-order logic captures certain types of problems very well but fails spectacularly at some other very basic tasks.
- \bigcirc There are more expressive extensions
 - FO + parity
 - FO + counting
 - FO + fixed points

o ...

But model-checking may be harder for them.

- First-order logic captures certain types of problems very well but fails spectacularly at some other very basic tasks.
- \bigcirc There are more expressive extensions
 - FO + parity
 - FO + counting
 - FO + fixed points
 - o ...

But model-checking may be harder for them.

 The field of *descriptive complexity* dedicated to studying the expressiveness of logics.

Our First First-Order Meta-Theorem

We will show:

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

Later we will generalize this to other sparse graph classes.

 \bigcirc Finding an independent set of size k?

 \bigcirc Finding an independent set of size k? Yes.

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k?

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid?

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid? Yes.

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid? Yes.
- Deciding if a graph is connected?

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid? Yes.
- Deciding if a graph is connected? No.

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid? Yes.
- Deciding if a graph is connected? No.
- \bigcirc Finding a set of size k that dominates n/2 vertices?

- \bigcirc Finding an independent set of size k? Yes.
- \bigcirc Finding an dominating set of size k? Yes.
- \bigcirc Finding a $k \times k$ -grid? Yes.
- Deciding if a graph is connected? No.
- \bigcirc Finding a set of size k that dominates n/2 vertices? No.

We show how to ...

- \bigcirc find things that are far apart (independent sets, ...),
- find things that are local (connected subgraphs, ...).

We show how to ...

- \bigcirc find things that are far apart (independent sets, ...),
- find things that are local (connected subgraphs, ...).

A famous logic theorem by Gaifman shows that every problem definable in first-order logic can be decomposed into subproblems from these two categories.
We show how to ...

- find things that are far apart (independent sets, ...),
- find things that are local (connected subgraphs, ...).

A famous logic theorem by Gaifman shows that every problem definable in first-order logic can be decomposed into subproblems from these two categories.

One can use the same technique for *locally bounded treewidth* graph classes. This includes: planar graphs, bounded treewidth, bounded degree, bounded genus, ...

Let v be a vertex in a graph with maximal degree d. Then $|N_r(v)| \leq d^{r+1}.$

Let v be a vertex in a graph with maximal degree d. Then $|N_r(v)| \leq d^{r+1}.$

Proof:

 $\bigcirc \text{ We show there are at most } d^i$ vertices with distance i. Then $\sum_{i=1}^r d^i \leq d^{r+1}$.

Let v be a vertex in a graph with maximal degree d. Then $|N_r(v)| \leq d^{r+1}.$

Proof:

 $\bigcirc \text{ We show there are at most } d^i$ vertices with distance *i*. Then $\sum_{i=1}^r d^i \leq d^{r+1}.$

• There is
$$1 = (d - 1)^0$$
 vertex with distance 0.

Let v be a vertex in a graph with maximal degree d. Then $|N_r(v)| \le d^{r+1}.$

Proof:

- \bigcirc We show there are at most d^i vertices with distance *i*. Then $\sum_{i=1}^{r} d^i \leq d^{r+1}$.
- There is $1 = (d 1)^0$ vertex with distance 0.
- Number can increase at most by factor of *d* as we go from *i* to i + 1.

Let C be a graph class with bounded degree. One can decide in time f(r,k)n whether a graph $G \in C$ contains a red rscattered set of size k.

Is there a red *r*-scattered set of size k in a graph of degree $\leq d$?

• Assume we have more than $d^{r+1}k$ red vertices. Otherwise solve using brute force in time $(d^{r+1}k)^{O(k)}$.

- Assume we have more than $d^{r+1}k$ red vertices. Otherwise solve using brute force in time $(d^{r+1}k)^{O(k)}$.
- \bigcirc Greedily pick a vertex v_1 and remove $N_r(v_1)$ (of size $\leq d^{r+1}$)

- Assume we have more than $d^{r+1}k$ red vertices. Otherwise solve using brute force in time $(d^{r+1}k)^{O(k)}$.
- $\bigcirc~$ Greedily pick a vertex v_1 and remove $N_r(v_1)$ (of size $\leq d^{r+1}$)
- \bigcirc Repeat k times. This is a solution.

- Assume we have more than $d^{r+1}k$ red vertices. Otherwise solve using brute force in time $(d^{r+1}k)^{O(k)}$.
- \bigcirc Greedily pick a vertex v_1 and remove $N_r(v_1)$ (of size $\leq d^{r+1}$)
- Repeat k times. This is a solution.
- Works because $\leq d^{r+1}$ vertices are removed each round.

- Assume we have more than $d^{r+1}k$ red vertices. Otherwise solve using brute force in time $(d^{r+1}k)^{O(k)}$.
- \bigcirc Greedily pick a vertex v_1 and remove $N_r(v_1)$ (of size $\leq d^{r+1}$)
- Repeat k times. This is a solution.
- \bigcirc Works because $\leq d^{r+1}$ vertices are removed each round.
- \bigcirc Run time: $(d^{r+1}k)^{O(k)}n$.

Let C be a graph class with bounded degree. One can decide in time f(k)n whether a graph $G \in C$ contains a $k \times k$ -grid as an induced subgraph.

○ Is there a $k \times k$ grid in a graph of degree $\leq d$?

○ Is there a $k \times k$ grid in a graph of degree $\leq d$?

- Is there a $k \times k$ grid in a graph of degree $\leq d$?
- \bigcirc If yes, then it is contained in $N_{2r}(v)$ for some vertex v.

- Is there a $k \times k$ grid in a graph of degree $\leq d$?
- \bigcirc If yes, then it is contained in $N_{2r}(v)$ for some vertex v.
- \bigcirc Enumerate every vertex v.

- Is there a $k \times k$ grid in a graph of degree $\leq d$?
- \bigcirc If yes, then it is contained in $N_{2r}(v)$ for some vertex v.
- \bigcirc Enumerate every vertex v.
- \bigcirc Check in time $|N_{2r}(v)|^{O(k^2)}$ whether neighborhood has grid.

- Is there a $k \times k$ grid in a graph of degree $\leq d$?
- \bigcirc If yes, then it is contained in $N_{2r}(v)$ for some vertex v.
- \bigcirc Enumerate every vertex v.
- \bigcirc Check in time $|N_{2r}(v)|^{O(k^2)}$ whether neighborhood has grid.

- Is there a $k \times k$ grid in a graph of degree $\leq d$?
- \bigcirc If yes, then it is contained in $N_{2r}(v)$ for some vertex v.
- \bigcirc Enumerate every vertex v.
- \bigcirc Check in time $|N_{2r}(v)|^{O(k^2)}$ whether neighborhood has grid.
- \bigcirc Total time: $d^{(2k+1)O(k^2)}n$

Homework

Let C be a graph class with bounded degree. For every graph H and $G \in C$ one can decide in time f(|H|)n whether G contains H as induced subgraph.

Homework

Let C be a graph class with bounded degree. For every graph H and $G \in C$ one can decide in time f(|H|)n whether G contains H as induced subgraph.

Now

Let C be a graph class with bounded degree. One can decide in time f(k)n whether a graph $G \in C$ contains two disjoint $k \times k$ -grids as induced subgraph.

- Are there two disjoint $k \times k$ grids in a graph of degree $\leq d$?
- Mark one corner of each grid red.

- \bigcirc Are there two disjoint $k \times k$ grids in a graph of degree $\leq d$?
- Mark one corner of each grid red.
- \bigcirc Case 1: There is a path of length $\leq 4k$ between red vertices.
 - Use existing aproach to find connected subgraph.

- \bigcirc Are there two disjoint $k \times k$ grids in a graph of degree $\leq d$?
- Mark one corner of each grid red.
- \bigcirc Case 1: There is a path of length $\leq 4k$ between red vertices.
 - Use existing aproach to find connected subgraph.
- \bigcirc Case 2: Red vertices have distance > 4k.

- Are there two disjoint $k \times k$ grids in a graph of degree $\leq d$?
- Mark one corner of each grid red.
- \bigcirc Case 1: There is a path of length $\leq 4k$ between red vertices.
 - Use existing aproach to find connected subgraph.
- \bigcirc Case 2: Red vertices have distance > 4k.
 - Mark all grid corners in the graph red (using brute force on neighborhoods).

- \bigcirc Are there two disjoint $k \times k$ grids in a graph of degree $\leq d$?
- Mark one corner of each grid red.
- \bigcirc Case 1: There is a path of length $\leq 4k$ between red vertices.
 - Use existing aproach to find connected subgraph.
- \bigcirc Case 2: Red vertices have distance > 4k.
 - Mark all grid corners in the graph red (using brute force on neighborhoods).
 - Use existing approach to find two red vertices with distance > 4k. Since grids have radius 2k, their grids are disjoint.

The same kind of split into "local" and "far apart" parts can be done for first-order logic as well.

In a sense, all that first-order logic can do is say certain "local" properties are "far apart".

This is formalized in Gaifman's locality Theorem.

 $G\models\omega(v)\iff G[N_r(v)]\models\omega(v).$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some *r*?

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some *r*?

$$\bigcirc \ \omega(x) = \exists y \ x {\sim} y$$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some r?

 $\bigcirc \ \omega(x) = \exists y \ x {\sim} y \ \mathrm{Yes}$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some *r*?

$$\bigcirc \ \omega(x) = \exists y \ x \sim y \text{ Yes}$$
$$\bigcirc \ \omega(x) = \exists y \ x \not\sim y$$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some *r*?

$$\bigcirc \ \omega(x) = \exists y \ x \sim y \text{ Yes}$$
$$\bigcirc \ \omega(x) = \exists y \ x \not\sim y \text{ No}$$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some r?

$$\bigcirc \omega(x) = \exists y \ x \sim y$$
 Yes

 $\bigcirc \ \omega(x) = \exists y \ x \not\sim y \ \mathsf{No}$

 $\bigcirc \omega(x)$ saying that x is corner of some $k \times k$ -grid.
A formula $\omega(x)$ is called r-local if for all graphs G and all $v \in V(G)$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some r?

$$\bigcirc \omega(x) = \exists y \ x \sim y$$
 Yes

 $\bigcirc \ \omega(x) = \exists y \ x \not\sim y \ \mathsf{No}$

 $\bigcirc \omega(x)$ saying that x is corner of some $k \times k$ -grid. Yes

A formula $\omega(x)$ is called r-local if for all graphs G and all $v \in V(G)$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some r?

$$\bigcirc \omega(x) = \exists y \ x \sim y$$
 Yes

 $\bigcirc \ \omega(x) = \exists y \ x \not\sim y \ \mathsf{No}$

- $\bigcirc \omega(x)$ saying that x is corner of some $k \times k$ -grid. Yes
- $\, \odot \,$... and there also is a second disjoint $k \times k\text{-}\mathsf{grid}.$

A formula $\omega(x)$ is called r-local if for all graphs G and all $v \in V(G)$

$$G \models \omega(v) \iff G[N_r(v)] \models \omega(v).$$

Are these formulas local for some r?

$$\bigcirc \omega(x) = \exists y \ x \sim y$$
 Yes

 $\bigcirc \ \omega(x) = \exists y \ x \not\sim y \ \mathsf{No}$

- $\bigcirc \omega(x)$ saying that x is corner of some $k \times k$ -grid. Yes
- $\, \odot \,$... and there also is a second disjoint k imes k-grid. No

Let G be a graph with degree $\leq d$ and $\omega(x)$ be an r-local formula. One can compute in in time $O(d^{(r+1)|\varphi|}n)$ the set of all $v \in V(G)$ with $G \models \omega(v)$.

Let G be a graph with degree $\leq d$ and $\omega(x)$ be an r-local formula. One can compute in in time $O(d^{(r+1)|\varphi|}n)$ the set of all $v \in V(G)$ with $G \models \omega(v)$.

Proof:

- \bigcirc Enumerate all vertices v.
- \bigcirc Instead of evaluating $\varphi(v)$ on *G*, we evaluate it on $G[N_r(v)]$.
- $\bigcirc G[N_r(v)]$ contains $\leq d^{r+1}$ vertices.
- $\, \odot \,$ We can evaluate $\varphi(v)$ on a graph with k vertices in time $O(k^{|\varphi|}).$

Let $\omega(x)$ be an r-local formula.

Let $\omega(x)$ be an r-local formula. Let dist $_{>2r}(x_1, x_2)$ be the first-order formula denoting that the distance between x_1 and x_2 is greater than 2r.

Let $\omega(x)$ be an r-local formula. Let dist $_{>2r}(x_1, x_2)$ be the first-order formula denoting that the distance between x_1 and x_2 is greater than 2r. A *basic local sentence* is a sentence of the form

$$\exists x_1 \ldots \exists x_s \Big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\Big).$$

"There are s vertices that all satisfy some local property ω and are far apart."

Example: There exist *s* vertices with degree 4 and pairwise distance larger than 10.

Every first-order sentence is equivalent to a boolean combination of basic local sentences. For a given sentence, such a boolean combination can be computed.

Every first-order sentence is equivalent to a boolean combination of basic local sentences. For a given sentence, such a boolean combination can be computed.

What is a boolean combination of basic local sentences expressing that there are two disjoint $k \times k$ -grids?

Every first-order sentence is equivalent to a boolean combination of basic local sentences. For a given sentence, such a boolean combination can be computed.

What is a boolean combination of basic local sentences expressing that there are two disjoint $k \times k$ -grids?

 \bigcirc either there exists s_1 that is part of a subgraph $\Box -\Box$ (6k-local),

Every first-order sentence is equivalent to a boolean combination of basic local sentences. For a given sentence, such a boolean combination can be computed.

What is a boolean combination of basic local sentences expressing that there are two disjoint $k \times k$ -grids?

- \bigcirc either there exists s_1 that is part of a subgraph $\Box -\Box$ (6k-local),
- or there exist s_1 , s_2 , both part of a subgraph □ (2*k*-local) with dist_{>4k}(s_1 , s_2).

Proof of First-Order Meta-Theorem

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

Proof:

 $\bigcirc\,$ By Gaifman's theorem, φ is equivalent of boolean combination of basic local sentences such as

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

The size and number of these basic local sentences depends only on φ . We show how to evaluate such sentences.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \Big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\Big).$$

Consider a basic local sentence

$$\exists x_1 \ldots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

We compute the set of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

We compute the set of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

○ Neighborhoods $G[N_r(v)]$ have size $\leq d^{r+1}$.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- Neighborhoods $G[N_r(v)]$ have size $\leq d^{r+1}$.
- For $v \in V(G)$, check whether $G[N_r(v)] \models \omega(v)$ in time $O(d^{(r+1)|\varphi|})$ (brute force).

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

We compute the set of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- Neighborhoods $G[N_r(v)]$ have size $\leq d^{r+1}$.
- $\bigcirc \text{ For } v \in V(G) \text{, check whether } G[N_r(v)] \models \omega(v) \text{ in time } O(d^{(r+1)|\varphi|}) \text{ (brute force).}$
- Doing it for all $v \in V(G)$ takes time $O(d^{(r+1)|\varphi|}n)$.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- Neighborhoods $G[N_r(v)]$ have size $\leq d^{r+1}$.
- $\bigcirc \mbox{ For } v \in V(G) \mbox{, check whether } G[N_r(v)] \models \omega(v) \mbox{ in time } O(d^{(r+1)|\varphi|}) \mbox{ (brute force).}$
- Doing it for all $v \in V(G)$ takes time $O(d^{(r+1)|\varphi|}n)$.

We have to find a red 2r-scattered set of size s in G. This can be done in time f(r, s)n in bounded degree classes.

Our approach for bounded degree easily generalizes to *locally bounded treewidth*.

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

A graph class C has *locally bounded treewidth* if there exists a function g(r) such that for every graph $G \in C$, every $v \in V(G)$ and every $r \in \mathbb{N}$ the neighborhood $G[N_r(v)]$ has treewidth at most g(r).

Locally bounded treewidth generalizes

- planar graphs,
- bounded degree,
- bounded treewidth.

Theorem (Bodlaender)

The treewidth of a planar graph with radius r is at most 3r-1.

The size of a graph with with radius r and maximal degree d is at most d^{r+1} .

Yes! Proof:

Yes! Proof:

 \bigcirc Every circle has length at least $3 \log(n)$.

Yes! Proof:

○ Every circle has length at least $3 \log(n)$. ○ If $r \leq \log(n)$ then $G[N_r(v)]$ has treewidth at most 1.

Yes! Proof:

- \bigcirc Every circle has length at least $3 \log(n)$.
- \bigcirc If $r \leq \log(n)$ then $G[N_r(v)]$ has treewidth at most 1.
- If $r > \log(n)$ then $G[N_r(v)]$ has treewidth at most $n \le 2^r$.

Yes! Proof:

- \bigcirc Every circle has length at least $3 \log(n)$.
- \bigcirc If $r \leq \log(n)$ then $G[N_r(v)]$ has treewidth at most 1.
- If $r > \log(n)$ then $G[N_r(v)]$ has treewidth at most $n \le 2^r$.
- \bigcirc For every r, $G[N_r(v)]$ has treewidth at most 2^r .
A More General First-Order Meta-Theorem

Theorem (Frick, Grohe 2001)

Let \mathcal{C} be a graph class with locally bounded treewidth. There exists a function f such that for every FO formula φ , graph $G \in \mathcal{C}$ and $\varepsilon > 0$ one can decide whether $G \models \varphi$ in time $f(\varepsilon, |\varphi|)n^{1+\varepsilon}$.

A More General First-Order Meta-Theorem

Theorem (Frick, Grohe 2001)

Let \mathcal{C} be a graph class with locally bounded treewidth. There exists a function f such that for every FO formula φ , graph $G \in \mathcal{C}$ and $\varepsilon > 0$ one can decide whether $G \models \varphi$ in time $f(\varepsilon, |\varphi|)n^{1+\varepsilon}$.

We prove the following slightly weaker statement.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n^2$.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n^2$.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There exists a function f such that for every FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n^2$.

Proof:

 $\bigcirc\,$ By Gaifman's theorem, φ is equivalent of boolean combination of basic local sentences such as

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

We show how to evaluate such sentences.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i)\big).$$

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

 \bigcirc Neighborhoods $G[N_r(v)]$ have treewidth at most g(r).

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- \bigcirc Neighborhoods $G[N_r(v)]$ have treewidth at most g(r).
- For $v \in V(G)$, check whether $G[N_r(v)] \models \omega(v)$ in time $f'(|\omega|, g(r))n$ using Courcelle's theorem.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- \bigcirc Neighborhoods $G[N_r(v)]$ have treewidth at most g(r).
- $\bigcirc \text{ For } v \in V(G) \text{, check whether } G[N_r(v)] \models \omega(v) \text{ in time } f'(|\omega|, g(r))n \text{ using Courcelle's theorem.}$
- $\bigcirc \ \, {\rm Doing \ it \ for \ all \ } v \in V(G) \ {\rm takes \ time \ } f'(|\omega|,g(r))n^2.$

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- \bigcirc Neighborhoods $G[N_r(v)]$ have treewidth at most g(r).
- $\bigcirc \text{ For } v \in V(G) \text{, check whether } G[N_r(v)] \models \omega(v) \text{ in time } f'(|\omega|, g(r))n \text{ using Courcelle's theorem.}$
- \bigcirc Doing it for all $v \in V(G)$ takes time $f'(|\omega|, g(r))n^2$.

We have to find a red 2r-scattered set of size s in G. This is equivalent to finding a red 2r-scattered set of size s in $G[N_r(R)]$.

Consider a basic local sentence

$$\exists x_1 \dots \exists x_s \big(\bigwedge_{i \neq j} \mathsf{dist}_{>2r}(x_i, x_j) \land \bigwedge_i \omega(x_i) \big).$$

We compute the set R of all vertices v with $G[N_r(v)] \models \omega(v)$ and color them red.

- \bigcirc Neighborhoods $G[N_r(v)]$ have treewidth at most g(r).
- For $v \in V(G)$, check whether $G[N_r(v)] \models \omega(v)$ in time $f'(|\omega|, g(r))n$ using Courcelle's theorem.
- \bigcirc Doing it for all $v \in V(G)$ takes time $f'(|\omega|, g(r))n^2$.

We have to find a red 2r-scattered set of size s in G. This is equivalent to finding a red 2r-scattered set of size s in $G[N_r(R)]$.

We do a case distinction on the diameter of $G[N_r(R)]$.

 \bigcirc Then there is a shortest path of length 5sr.

- \bigcirc Then there is a shortest path of length 5sr.
- \bigcirc There are s vertices on it with distance 5r of each other.

- \bigcirc Then there is a shortest path of length 5sr.
- \bigcirc There are *s* vertices on it with distance 5*r* of each other.
- \bigcirc Each vertex on the path has distance $\leq r$ from a red vertex.

- \bigcirc Then there is a shortest path of length 5sr.
- \bigcirc There are *s* vertices on it with distance 5*r* of each other.
- \bigcirc Each vertex on the path has distance $\leq r$ from a red vertex.
- \bigcirc These red vertices have pairwise distance > 2r.

- \bigcirc Then there is a shortest path of length 5sr.
- \bigcirc There are *s* vertices on it with distance 5*r* of each other.
- \bigcirc Each vertex on the path has distance $\leq r$ from a red vertex.
- \bigcirc These red vertices have pairwise distance > 2r.
- \bigcirc 2*r*-scattered set of size *s* exists!

Assume $G[N_r(R)]$ has diameter at most 5sr. Then it has treewidth at most g(5sr), where g is the treewidth bound of C. Use Courcelle's theorem to decide if $G[N_r(R)]$ has red 2r-scattered set. We now have a first-order meta-theorem for locally bounded treewidth.

This captures three natural classes of graphs.

- bounded treewidth
- planar graphs
- bounded degree

However, locally bounded treewidth is not very robust. It is not closed under adding apex-vertices.