
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.

2

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.

2

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.

Show that for every q there is a connected graph G and a
disconnected graph G′ with G ≡q G

′.
If there was a formula to decide connectivity it would have

quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.

2

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.

2

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games.

2

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q G
′ if for all first-order sentences ϕ of

quantifier-rank≤ q holds G |= ϕ ⇐⇒ G′ |= ϕ.
Show that for every q there is a connected graph G and a

disconnected graph G′ with G ≡q G
′.

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell G
and G′ apart. A contradiction.

Show G ≡q G
′ using Ehrenfeucht–Fraïssé games. 2

Ehrenfeucht–Fraïssé Games

G

G′

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1g′

2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).

Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for
all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1g′

2

g2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).

Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for
all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1g′

2

g2 g3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1g′

2

g2 g3

E

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

g′
4

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

g′
4

g4

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

g′
4

g4

g′
5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

g′
4

g4

g′
5

E
g5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

3

Ehrenfeucht–Fraïssé Games

G

G′

g1

g′
1

g2

g′
2g′

3

g3

g′
4

g4

g′
5

E
g5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and G′.

Spoiler picks gi ∈ V (G) or g′i ∈ V (G′)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and g′1, . . . , g′q ∈ V (G′) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ g′i∼g′j for

all i, j.

Theorem

G ≡q G′ iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game. 3

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Parity

For every q there isGwith an even number of vertices andG′

with an odd number of vertices and G ≡q G′.

G G′

q + 1 vertices q vertices 4

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

For every q there is a connected graphG and a disconnected
graph G′ with G ≡q G

′.

G G′

4q vertices 4q vertices 5

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

gi+1

≤
2 q−i≤ 2

q−i

g′i+1

≤
2 q−i≤ 2

q−i

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 1: gi+1 is close to other vertices

gi+1

≤
2 q−i≤ 2

q−i

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 1: gi+1 is close to other vertices

gi+1

≤
2 q−i≤ 2

q−i

≤
2 q−i+1

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 1: gi+1 is close to other vertices

gi+1

≤
2 q−i≤ 2

q−i

≤
2 q−i+1

≤
2 q−i≤ 2

q−i

≤
2 q−i+1

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 1: gi+1 is close to other vertices

gi+1

≤
2 q−i≤ 2

q−i

≤
2 q−i+1

g′i+1

≤
2 q−i≤ 2

q−i

≤
2 q−i+1

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 2: gi+1 is not close to other vertices

gi+1

6

Connectivity

Proof by induction: The Duplicator can play such that for elements
g1, . . . , gi and g′1, . . . , g′i choosen after i rounds
dist(gj , gk) =2q−i+1 dist(g′j , g′k). Here a =c b means that a and b are
equal or both larger than c. Show that this also holds for i+ 1.

Case 2: gi+1 is not close to other vertices

gi+1
g′i+1

6

Fefermann–Vaught (First-Order)

F H

q-type(H) is the set of all FO-sentences ξ of quantifier-rank≤ q
with H |= ξ. Note that q-type(F) = q-type(H) iff F ≡q H .

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = ∅.
Then q-type(F ∪H) is completely determined by
q-type(F) and
q-type(H).

7

Fefermann–Vaught (First-Order)

F H

q-type(H) is the set of all FO-sentences ξ of quantifier-rank≤ q
with H |= ξ. Note that q-type(F) = q-type(H) iff F ≡q H .

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = ∅.
Then q-type(F ∪H) is completely determined by
q-type(F) and
q-type(H).

7

Fefermann–Vaught (First-Order)

F H

F ′ H ′

≡q ≡q

Alternative Formulation

Let F , F ′, H , H ′ be graphs. If
F ≡q F

′ and
H ≡q H

′

then F ∪H ≡q F
′ ∪H ′. 8

Fefermann–Vaught (First-Order)

F H

F ′ H ′

≡q

Alternative Formulation

Let F , F ′, H , H ′ be graphs. If
F ≡q F

′ and
H ≡q H

′

then F ∪H ≡q F
′ ∪H ′. 8

Fefermann–Vaught (First-Order)

Proof: Combine the two winning strategies of the Duplicator.

F H

F ′ H ′

9

Summary

First-order logic captures certain types of problems very well
but fails spectacularly at some other very basic tasks.

There are more expressive extensions
◦ FO + parity
◦ FO + counting
◦ FO + fixed points
◦ . . .

But model-checking may be harder for them.
The field of descriptive complexity dedicated to studying the

expressiveness of logics.

10

Summary

First-order logic captures certain types of problems very well
but fails spectacularly at some other very basic tasks.

There are more expressive extensions
◦ FO + parity
◦ FO + counting
◦ FO + fixed points
◦ . . .

But model-checking may be harder for them.

The field of descriptive complexity dedicated to studying the
expressiveness of logics.

10

Summary

First-order logic captures certain types of problems very well
but fails spectacularly at some other very basic tasks.

There are more expressive extensions
◦ FO + parity
◦ FO + counting
◦ FO + fixed points
◦ . . .

But model-checking may be harder for them.
The field of descriptive complexity dedicated to studying the

expressiveness of logics.

10

Our First First-Order Meta-Theorem

We will show:
Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Later we will generalize this to
other sparse graph classes.

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth

11

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k?

Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.

Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k?

Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.

Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid?

Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.

Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected?

No.
Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.

Finding a set of size k that dominates n/2 vertices? No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices?

No.

12

Implications

If C is a class with bounded degree, which problems does the
theorem solve in time f(k) · n on C?

Finding an independent set of size k? Yes.
Finding an dominating set of size k? Yes.
Finding a k × k-grid? Yes.
Deciding if a graph is connected? No.
Finding a set of size k that dominates n/2 vertices? No.

12

Proof Idea

We show how to . . .

find things that are far apart (independent sets, . . .),
find things that are local (connected subgraphs, . . .).

A famous logic theorem by Gaifman shows that every problem
definable in first-order logic can be decomposed into subproblems
from these two categories.

One can use the same technique for locally bounded treewidth
graph classes. This includes: planar graphs, bounded treewidth,
bounded degree, bounded genus, . . .

13

Proof Idea

We show how to . . .

find things that are far apart (independent sets, . . .),
find things that are local (connected subgraphs, . . .).

A famous logic theorem by Gaifman shows that every problem
definable in first-order logic can be decomposed into subproblems
from these two categories.

One can use the same technique for locally bounded treewidth
graph classes. This includes: planar graphs, bounded treewidth,
bounded degree, bounded genus, . . .

13

Proof Idea

We show how to . . .

find things that are far apart (independent sets, . . .),
find things that are local (connected subgraphs, . . .).

A famous logic theorem by Gaifman shows that every problem
definable in first-order logic can be decomposed into subproblems
from these two categories.

One can use the same technique for locally bounded treewidth
graph classes. This includes: planar graphs, bounded treewidth,
bounded degree, bounded genus, . . .

13

Main Tool: Bounded Neighborhood Size

v

Let v be a vertex in a graph with maximal degree d. Then
|Nr(v)| ≤ dr+1.

Proof:
We show there are at most di

vertices with distance i. Then∑r
i=1 d

i ≤ dr+1.
There is 1 = (d− 1)0 vertex with

distance 0.
Number can increase at most by

factor of d as we go from i to i+ 1.

14

Main Tool: Bounded Neighborhood Size

v

Let v be a vertex in a graph with maximal degree d. Then
|Nr(v)| ≤ dr+1.

Proof:
We show there are at most di

vertices with distance i. Then∑r
i=1 d

i ≤ dr+1.

There is 1 = (d− 1)0 vertex with
distance 0.

Number can increase at most by
factor of d as we go from i to i+ 1.

14

Main Tool: Bounded Neighborhood Size

v

Let v be a vertex in a graph with maximal degree d. Then
|Nr(v)| ≤ dr+1.

Proof:
We show there are at most di

vertices with distance i. Then∑r
i=1 d

i ≤ dr+1.
There is 1 = (d− 1)0 vertex with

distance 0.

Number can increase at most by
factor of d as we go from i to i+ 1.

14

Main Tool: Bounded Neighborhood Size

v

Let v be a vertex in a graph with maximal degree d. Then
|Nr(v)| ≤ dr+1.

Proof:
We show there are at most di

vertices with distance i. Then∑r
i=1 d

i ≤ dr+1.
There is 1 = (d− 1)0 vertex with

distance 0.
Number can increase at most by

factor of d as we go from i to i+ 1.

14

Finding Things That Are Far Appart

Let C be a graph class with bounded degree. One can decide
in time f(r, k)n whether a graph G ∈ C contains a red r-
scattered set of size k.

15

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
Repeat k times. This is a solution.
Works because≤ dr+1 vertices are removed each round.
Run time: (dr+1k)O(k)n.

16

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

> dr+1k red vertices

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
Repeat k times. This is a solution.
Works because≤ dr+1 vertices are removed each round.
Run time: (dr+1k)O(k)n.

16

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

> dr+1(k − 1) red vertices

v1

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)

Repeat k times. This is a solution.
Works because≤ dr+1 vertices are removed each round.
Run time: (dr+1k)O(k)n.

16

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

> dr+1(k − 2) red vertices

v2
v1

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
Repeat k times. This is a solution.

Works because≤ dr+1 vertices are removed each round.
Run time: (dr+1k)O(k)n.

16

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

> dr+1(k − 3) red vertices

v3

v2
v1

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
Repeat k times. This is a solution.
Works because≤ dr+1 vertices are removed each round.

Run time: (dr+1k)O(k)n.

16

Finding Things That Are Far Appart

degree≤ d

∈ ?

>
r

red r-scattered set:
k red vertices with

pairwise distance> r

> dr+1(k − 3) red vertices

v3

v2
v1

Is there a red r-scattered set of size k in a graph of degree≤ d?

Assume we have more than dr+1k red vertices. Otherwise
solve using brute force in time (dr+1k)O(k).

Greedily pick a vertex v1 and remove Nr(v1) (of size≤ dr+1)
Repeat k times. This is a solution.
Works because≤ dr+1 vertices are removed each round.
Run time: (dr+1k)O(k)n. 16

Finding Things That Are Local

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains a k × k-grid
as an induced subgraph.

17

Finding Things That Are Local

k︷ ︸︸ ︷
k

degree≤ d

∈ ?

Is there a k × k grid in a graph of degree≤ d?

If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.
Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

∈ ?

Is there a k × k grid in a graph of degree≤ d?

If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.
Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

radius
2k

N2k(v)

∈ ?

Is there a k × k grid in a graph of degree≤ d?
If yes, then it is contained in N2r(v) for some vertex v.

Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.
Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

radius
2k

N2k(v)

∈ ?

Is there a k × k grid in a graph of degree≤ d?
If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.

Check in time |N2r(v)|O(k2) whether neighborhood has grid.
Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

radius
2k

N2k(v)

∈ ?

Is there a k × k grid in a graph of degree≤ d?
If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.

Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

radius
2k

≤d
2k

+1

︷ ︸︸ ︷

N2k(v)

∈ ?

Is there a k × k grid in a graph of degree≤ d?
If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.

Total time: d(2k+1)O(k2)n

18

Finding Things That Are Local

k︷ ︸︸ ︷
k

diameter 2k

degree≤ d

radius
2k

≤d
2k

+1

︷ ︸︸ ︷

N2k(v)

∈ ?

Is there a k × k grid in a graph of degree≤ d?
If yes, then it is contained in N2r(v) for some vertex v.
Enumerate every vertex v.
Check in time |N2r(v)|O(k2) whether neighborhood has grid.
Total time: d(2k+1)O(k2)n

18

Combining Both Ideas

Homework

Let C be a graph class with bounded degree. For every graph
H and G ∈ C one can decide in time f(|H|)n whether G
contains H as induced subgraph.

Now

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains two disjoint
k × k-grids as induced subgraph.

19

Combining Both Ideas

Homework

Let C be a graph class with bounded degree. For every graph
H and G ∈ C one can decide in time f(|H|)n whether G
contains H as induced subgraph.

Now

Let C be a graph class with bounded degree. One can decide
in time f(k)n whether a graph G ∈ C contains two disjoint
k × k-grids as induced subgraph.

19

Combining Both Ideas

degree≤ d

∈ ?

Are there two disjoint k × k grids in a graph of degree≤ d?

Mark one corner of each grid red.
Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.
Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Combining Both Ideas

degree≤ d

∈ ?

Are there two disjoint k × k grids in a graph of degree≤ d?
Mark one corner of each grid red.

Case 1: There is a path of length≤ 4k between red vertices.
◦ Use existing aproach to find connected subgraph.

Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Combining Both Ideas

degree≤ d

∈ ?
≤ 4k

Are there two disjoint k × k grids in a graph of degree≤ d?
Mark one corner of each grid red.
Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.

Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Combining Both Ideas

degree≤ d

∈ ?
> 4k

Are there two disjoint k × k grids in a graph of degree≤ d?
Mark one corner of each grid red.
Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.
Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Combining Both Ideas

degree≤ d

∈ ?
> 4k

Are there two disjoint k × k grids in a graph of degree≤ d?
Mark one corner of each grid red.
Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.
Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Combining Both Ideas

degree≤ d

∈ ?
> 4k

Are there two disjoint k × k grids in a graph of degree≤ d?
Mark one corner of each grid red.
Case 1: There is a path of length≤ 4k between red vertices.

◦ Use existing aproach to find connected subgraph.
Case 2: Red vertices have distance > 4k.

◦ Mark all grid corners in the graph red (using brute force on
neighborhoods).

◦ Use existing approach to find two red vertices with distance
> 4k. Since grids have radius 2k, their grids are disjoint.

20

Gaifman

The same kind of split into “local” and “far apart” parts can be done
for first-order logic as well.

In a sense, all that first-order logic can do is say certain “local”
properties are “far apart”.

This is formalized in Gaifman’s locality Theorem.

21

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y

Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes

ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y

No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No

ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid.

Yes
... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes

... and there also is a second disjoint k × k-grid. No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid.

No

22

Local Formulas

A formula ω(x) is called r-local if for all graphs G and all v ∈ V (G)

G |= ω(v) ⇐⇒ G[Nr(v)] |= ω(v).

Are these formulas local for some r?

ω(x) = ∃y x∼y Yes
ω(x) = ∃y x6∼y No
ω(x) saying that x is corner of some k × k-grid. Yes
... and there also is a second disjoint k × k-grid. No

22

Evaluating Local Formulas

Let G be a graph with degree ≤ d and ω(x) be an r-local
formula. One can compute in in time O(d(r+1)|ϕ|n) the set
of all v ∈ V (G) with G |= ω(v).

Proof:

Enumerate all vertices v.
Instead of evaluating ϕ(v) on G, we evaluate it on G[Nr(v)].
G[Nr(v)] contains≤ dr+1 vertices.
We can evaluate ϕ(v) on a graph with k vertices in time
O(k|ϕ|).

23

Evaluating Local Formulas

Let G be a graph with degree ≤ d and ω(x) be an r-local
formula. One can compute in in time O(d(r+1)|ϕ|n) the set
of all v ∈ V (G) with G |= ω(v).

Proof:

Enumerate all vertices v.
Instead of evaluating ϕ(v) on G, we evaluate it on G[Nr(v)].
G[Nr(v)] contains≤ dr+1 vertices.
We can evaluate ϕ(v) on a graph with k vertices in time
O(k|ϕ|).

23

Basic Local Sentences

Let ω(x) be an r-local formula.

Let dist>2r(x1, x2) be the
first-order formula denoting that the distance between x1 and x2 is
greater than 2r. A basic local sentence is a sentence of the form

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

“There are s vertices that all satisfy some local property ω and are
far apart.”

Example: There exist s vertices with degree 4 and pairwise distance
larger than 10.

24

Basic Local Sentences

Let ω(x) be an r-local formula. Let dist>2r(x1, x2) be the
first-order formula denoting that the distance between x1 and x2 is
greater than 2r.

A basic local sentence is a sentence of the form

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

“There are s vertices that all satisfy some local property ω and are
far apart.”

Example: There exist s vertices with degree 4 and pairwise distance
larger than 10.

24

Basic Local Sentences

Let ω(x) be an r-local formula. Let dist>2r(x1, x2) be the
first-order formula denoting that the distance between x1 and x2 is
greater than 2r. A basic local sentence is a sentence of the form

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

“There are s vertices that all satisfy some local property ω and are
far apart.”

Example: There exist s vertices with degree 4 and pairwise distance
larger than 10.

24

Gaifman

Gaifman’s Locality Theorem

Every first-order sentence is equivalent to a boolean combi-
nation of basic local sentences.
For a given sentence, such a boolean combination can be
computed.

What is a boolean combination of basic local sentences expressing
that there are two disjoint k × k-grids?

either there exists s1 that is part of a subgraph �–� (6k-local),
or there exist s1, s2, both part of a subgraph � (2k-local) with

dist>4k(s1, s2).

25

Gaifman

Gaifman’s Locality Theorem

Every first-order sentence is equivalent to a boolean combi-
nation of basic local sentences.
For a given sentence, such a boolean combination can be
computed.

What is a boolean combination of basic local sentences expressing
that there are two disjoint k × k-grids?

either there exists s1 that is part of a subgraph �–� (6k-local),
or there exist s1, s2, both part of a subgraph � (2k-local) with

dist>4k(s1, s2).

25

Gaifman

Gaifman’s Locality Theorem

Every first-order sentence is equivalent to a boolean combi-
nation of basic local sentences.
For a given sentence, such a boolean combination can be
computed.

What is a boolean combination of basic local sentences expressing
that there are two disjoint k × k-grids?

either there exists s1 that is part of a subgraph �–� (6k-local),

or there exist s1, s2, both part of a subgraph � (2k-local) with
dist>4k(s1, s2).

25

Gaifman

Gaifman’s Locality Theorem

Every first-order sentence is equivalent to a boolean combi-
nation of basic local sentences.
For a given sentence, such a boolean combination can be
computed.

What is a boolean combination of basic local sentences expressing
that there are two disjoint k × k-grids?

either there exists s1 that is part of a subgraph �–� (6k-local),
or there exist s1, s2, both part of a subgraph � (2k-local) with

dist>4k(s1, s2).
25

Proof of First-Order Meta-Theorem

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Proof:

By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

The size and number of these basic local sentences depends
only on ϕ. We show how to evaluate such sentences.

26

Proof of First-Order Meta-Theorem

Theorem (Seese 1996)

Let C be a graph class with bounded degree. There exists a
function f such that for every FO formulaϕ and graphG ∈ C
one can decide whether G |= ϕ in time f(|ϕ|)n.

Proof:

By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

The size and number of these basic local sentences depends
only on ϕ. We show how to evaluate such sentences.

26

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.

For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have size≤ dr+1.
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
O(d(r+1)|ϕ|) (brute force).

Doing it for all v ∈ V (G) takes time O(d(r+1)|ϕ|n).

We have to find a red 2r-scattered set of size s in G. This can be
done in time f(r, s)n in bounded degree classes.

27

Locally Bounded Treewidth

Our approach for bounded degree easily generalizes to
locally bounded treewidth.

28

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Locally Bounded Treewidth

A graph class C has locally bounded treewidth if there exists a
function g(r) such that for every graph G ∈ C, every v ∈ V (G) and
every r ∈ N the neighborhood G[Nr(v)] has treewidth at
most g(r).

Which of these classes have locally bounded treewidth?

29

Relationship to Other Classes

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth

30

Relationship to Other Classes

Locally bounded treewidth generalizes

planar graphs,
bounded degree,
bounded treewidth.

Theorem (Bodlaender)

The treewidth of a planar graph with radius r is at most 3r−1.

The size of a graph with with radius r and maximal degree d
is at most dr+1.

31

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).

If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.

If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .

For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

Subdivisions

Does the class of log(n)-subdivisions of n-cliques have locally
bounded treewidth?

Yes! Proof:

Every circle has length at least 3 log(n).
If r ≤ log(n) then G[Nr(v)] has treewidth at most 1.
If r > log(n) then G[Nr(v)] has treewidth at most n ≤ 2r .
For every r, G[Nr(v)] has treewidth at most 2r .

log(n)

clique of size n

32

A More General First-Order Meta-Theorem

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formula ϕ, graph
G ∈ C and ε > 0 one can decide whether G |= ϕ in time
f(ε, |ϕ|)n1+ε.

We prove the following slightly weaker statement.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.

33

A More General First-Order Meta-Theorem

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formula ϕ, graph
G ∈ C and ε > 0 one can decide whether G |= ϕ in time
f(ε, |ϕ|)n1+ε.

We prove the following slightly weaker statement.

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.

33

Proof

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.

Proof:

By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We show how to evaluate such sentences.

34

Proof

Theorem (Frick, Grohe 2001)

Let C be a graph class with locally bounded treewidth. There
exists a function f such that for every FO formulaϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n2.

Proof:

By Gaifman’s theorem, ϕ is equivalent of boolean combination
of basic local sentences such as

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We show how to evaluate such sentences.

34

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).

For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)].

35

Proof

Consider a basic local sentence

∃x1 . . . ∃xs
(∧
i 6=j

dist>2r(xi, xj) ∧
∧
i

ω(xi)
)
.

We compute the set R of all vertices v with G[Nr(v)] |= ω(v) and
color them red.

Neighborhoods G[Nr(v)] have treewidth at most g(r).
For v ∈ V (G), check whether G[Nr(v)] |= ω(v) in time
f ′(|ω|, g(r))n using Courcelle’s theorem.

Doing it for all v ∈ V (G) takes time f ′(|ω|, g(r))n2.

We have to find a red 2r-scattered set of size s in G. This is
equivalent to finding a red 2r-scattered set of size s in G[Nr(R)].

We do a case distinction on the diameter of G[Nr(R)]. 35

Proof

· · ·
5sr

Assume G[Nr(R)] has diameter at least 5sr.

Then there is a shortest path of length 5sr.

There are s vertices on it with distance 5r of each other.
Each vertex on the path has distance≤ r from a red vertex.
These red vertices have pairwise distance > 2r.
2r-scattered set of size s exists!

36

Proof

5r · · ·5r 5r 5r 5r

5sr

Assume G[Nr(R)] has diameter at least 5sr.

Then there is a shortest path of length 5sr.
There are s vertices on it with distance 5r of each other.

Each vertex on the path has distance≤ r from a red vertex.
These red vertices have pairwise distance > 2r.
2r-scattered set of size s exists!

36

Proof

5r · · ·5r 5r 5r 5r

5sr

Assume G[Nr(R)] has diameter at least 5sr.

Then there is a shortest path of length 5sr.
There are s vertices on it with distance 5r of each other.
Each vertex on the path has distance≤ r from a red vertex.

These red vertices have pairwise distance > 2r.
2r-scattered set of size s exists!

36

Proof

5r · · ·5r 5r 5r 5r

5sr

Assume G[Nr(R)] has diameter at least 5sr.

Then there is a shortest path of length 5sr.
There are s vertices on it with distance 5r of each other.
Each vertex on the path has distance≤ r from a red vertex.
These red vertices have pairwise distance > 2r.

2r-scattered set of size s exists!

36

Proof

5r · · ·5r 5r 5r 5r

5sr

Assume G[Nr(R)] has diameter at least 5sr.

Then there is a shortest path of length 5sr.
There are s vertices on it with distance 5r of each other.
Each vertex on the path has distance≤ r from a red vertex.
These red vertices have pairwise distance > 2r.
2r-scattered set of size s exists!

36

Proof

Assume G[Nr(R)] has diameter at most 5sr. Then it has treewidth
at most g(5sr), where g is the treewidth bound of C. Use
Courcelle’s theorem to decide if G[Nr(R)] has red 2r-scattered set.

37

Summary

We now have a first-order meta-theorem for locally bounded
treewidth.

This captures three natural classes of graphs.

bounded treewidth
planar graphs
bounded degree

However, locally bounded treewidth is not very robust. It is not
closed under adding apex-vertices.

38

