Algorithmic Meta-Theorems

192122
WS21/22
Jan Dreier
dreier@ac.tuwien.ac.at

ac I I I [ALGORITHMS AND

COMPLEXITY GROUP

B Informatics

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

O MSO;: base variant,

O MSO,: edge quantifiers,

O CMSO: parity/modulo counting,
O LinEMSOL: optimization,

O and any combination thereof.

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

O Historically proven by converting MSO; -formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

O Historically proven by converting MSO; -formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

O We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.

Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

n

Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

Theorem (Fefermann—Vaught)

Let F'and H be graphs with V(F) NV (H) = {v1,..., v}
If we know

O q_type(F7 U1, .- ,’Uk;)
@) q-type(H; Pigooo ,”Uk)
then we can compute g-type(F' U H; vy, ..., vg).

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

For bag i (with boundary vy, . . ., v;) we store for each formula
&(xq,. .., xx) with quantifier-rank < ¢ a table entry

M;(€) = {1 O)

0 otherwise.

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

For bag i (with boundary vy, . . ., v;) we store for each formula
&(xq,. .., xx) with quantifier-rank < ¢ a table entry

M;(€) = {1 O)

0 otherwise.

Let be the root-node. Then G = ¢ iff G|V, | = ¢ iff M, (¢) = 1.

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < || many that occur in .

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < || many that occur in .
O “Normalize” all formulas:

drx=axANr=xAx=zANz=xArz=xAx=xANT=TA...

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < || many that occur in .
O “Normalize” all formulas:

drx==x

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < || many that occur in .
O “Normalize” all formulas:

drx==x

Show the claim by induction.

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), |¢|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < || many that occur in .
O “Normalize” all formulas:

drx==x

Show the claim by induction. Base case ¢ = 0: There are only

2.
2270710 many quantifier-free formulas with < & variables.

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only

2.
22771 many quantifier-free formulas with < % variables.

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
2
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses).

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
2
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
2
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
2
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k

O ;rl-:mjforl <i,j<k

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
2
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k
O ;ri:xjforlgi,jﬁkz
O wi~vxjforl <i,j <k

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only

2.
22771 many quantifier-free formulas with < % variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k

O ;rl-:mjforl <i,j<k

O wi~vxjforl <i,j <k

plus their negations.

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
220(k2-|w>

many quantifier-free formulas with < k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k
O ;ri:xjforlgi,jﬁkz
O wi~vxjforl <i,j <k

plus their negations.
Number of literals: O (k?|¢]).

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
220(k2-|w>

many quantifier-free formulas with < k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k
O ;ri:xjforlgi,jﬁkz
O wi~vxjforl <i,j <k

plus their negations.
Number of literals: O (k?|¢]).
Number of clauses (after removing duplicate literals): 20(k?|])

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
220(k2-|w>

many quantifier-free formulas with < k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

O ci(xj)forl <i<|pland1l < j <k
O ;ri:xjforlgi,jﬁkz
O wi~vxjforl <i,j <k

plus their negations.
Number of literals: O (k?|¢]).
Number of clauses (after removing duplicate literals): 20(k?|])

2
Number of formulas (after removing duplicate clauses): 22" 8

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables.

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables. Assume we have formulas &1, . . ., § with
quantifier-rank < ¢ — 1 and < k + 1 free variables.

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables. Assume we have formulas &1, . . ., § with
quantifier-rank < ¢ — 1 and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(Vo&r AJz&a AT A ...)V

(&3 AVaba A Fuég AVZE AL)V

(3x&s AVZE A ...) V...

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables. Assume we have formulas &1, . . ., § with
quantifier-rank < ¢ — 1 and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(Vo&r AJz&a AT A ...)V

(&3 AVaba A Fuég AVZE AL)V

(3x&s AVZE A ...) V...

There are at most 22 of them.

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables. Assume we have formulas &1, . . ., § with
quantifier-rank < ¢ — 1 and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(Vo&r AJz&a AT A ...)V
(&3 AVaba A Fuég AVZE AL)V
(3x&s AVZE A ...) V...

There are at most 22”' of them. In total, the number of formulas is
roughly

L0(W(&)?-Je))
2 .
N—_————
2q

Size of ¢-types

Next, we bound number of formulas with quantifier-rank < ¢ and
< k free variables. Assume we have formulas &1, . . ., § with
quantifier-rank < ¢ — 1 and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(Vo&r AJz&a AT A ...)V
(&3 AVaba A Fuég AVZE AL)V
(3x&s AVZE A ...) V...

There are at most 22* of them. In total, the number of formulas is
roughly
L0(W(&)?-Je))
2 .
2q
This bound cannot be improved much.

Dynamic Programming

Remember: For bag i (with boundary vy, . .., v;) we store for each
formula {(z1, . .., x) with quantifier-rank < ¢ a table entry

M;(€) = {1 GVi] E&(vr, - vg)

0 otherwise.

We now compute these values bottom-up.

Leaf Nodes

G[V;] is the empty graph.

¢ bagi

Leaf Nodes

G[V;] is the empty graph.
M;(&): All sentences of quantifier-rank < ¢
that hold in the empty graph.

¢ bagi

Leaf Nodes

G[V;] is the empty graph.
M;(&): All sentences of quantifier-rank < ¢
that hold in the empty graph.

Simply evaluate them.

¢ bagi

bag i

bag j bag

bag i

bag j bag

GVi|2FUH : bagi

M;(€) = g-type(F U Hivi, ...

bag j bag

12

Introduce Nodes

Introduce Nodes

Introduce Nodes

G[{Ul, ce ,Uk_|_1}] =H

Compute
q-type(H; Viyeoo 7UI~:+1)

bag

bag j

Introduce Nodes

G[{Ul, ce ,Uk_|_1}] =H

GlV]=FUH compute
My(€) = g-type(F U Hvn, .. vopyy) CYPEU VL vksn)

bag

bag j

Introduce Nodes

G[{Ul, ce ,Uk+1}] =H

GlV]=FUH compute
M,(€) 2 gtype(F U H oy, ... vpey) CYPEUT VL Ukg)

bag i
Theorem (Fefermann—Vaught)
If we know bag j
O q-type(F; Pigooo ,”Uk)
O C]'tYPe(HWla---avk)
then we can compute
q-type(FUH;vl,...,vk)

13

Introduce Nodes

G[{Ul, ce ,Uk+1}] =H

GlV]=FUH compute
M,(€) 2 gtype(F U H oy, ... vpey) CYPEUT VL Ukg)

bag i
Theorem (Fefermann—Vaught)
If we know bag j
O q-type(F; Pigooo ,”Uk)
O gq-type(H;v1, ..., vk, Vgy1)

then we can compute
q_type(F U H7 U1y -5 Uk, Uk+1)-

13

Forget Nodes

Forget Nodes

Glvi] = GVj]

Forget Nodes

Glvi] = GVj]

M;(€): Formulas over z1, . .., zj.

Forget Nodes

G[Vi] = G[Vj]
M;(€): Formulas over z1, . .., zj.
M;(&): Formulas over z1, . .., zk_1.

Forget Nodes

G[Vi] = G[Vj]
M;(€): Formulas over z1, . .., zj.
M;(&): Formulas over z1, . .., zk_1.

Remove all formulas that mention xy,.

Final Result

For a MSO; formula ¢ and graph G one can decide whether G = ¢
in time
20(w(G)?e])
2 n.
| S —
2|

15

Final Result

For a MSO; formula ¢ and graph G one can decide whether G = ¢
in time
20(w(G)?e])
2 n.
| S —
2|

Can this be improved?

15

Final Result

For a MSO; formula ¢ and graph G one can decide whether G = ¢
in time
20(w(G)?e])
2 n.
| S —
2|

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool.

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

O Doing it naively has horrible, horrible run time ...

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

O Doing it naively has horrible, horrible run time ...

O By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

https://github.com/sequoia-mso

How to formulate Problems for Sequoia

-- More efficient formula for three-coloring; tests whether
-- (R, G, V\setminus (R\cup G)) is a proper three-coloring of the graph

ThreeCol(R, B) :=

A1l x (
(x notin R or x notin B)
and
A1l y (
~adj(x,y) or (
(x notin R or y notin R) and
(x notin B or y notin B) and
((x in R) or (x in B)
or
(y in R) or (y in B))
)
)
)

Proof for Extensions

O We saw the proof for the base variant MSO;.

Proof for Extensions

O We saw the proof for the base variant MSO;.

O By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

Proof for Extensions

O We saw the proof for the base variant MSO;.

O By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

O Also we already know how to reduce MSO5 to MSO;.

Proof for Extensions

O We saw the proof for the base variant MSO;.

O By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

O Also we already know how to reduce MSO5 to MSO;.

O The proof for the optimization variant LInEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

How about Dense Graphs?

O A graph containing a clique of size £ has treewidth at least
k—1.

How about Dense Graphs?

O A graph containing a clique of size £ has treewidth at least
k—1.

O There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

How about Dense Graphs?

O A graph containing a clique of size £ has treewidth at least
k—1.

O There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

O Courcelle’s theorem for MSO; also holds for cliquewidth.

How about Dense Graphs?

O A graph containing a clique of size £ has treewidth at least
k—1.

O There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

O Courcelle’s theorem for MSO; also holds for cliquewidth.

O On the other hand MSO, only holds for treewidth.

Cliquewidth

Cliquewidth cw(G): Minimum e (o (@
number of colors needed to con-

struct G using these operations. oo 2 o
o o |o
o-e ®
I o © °<: :<:
O Creation of new vertex with °

color ¢
O Disjoint union of two graphs

O Joining by an edge every
vertex with color i to every

vertex with color j %

A M

O Changing color i to color j
20

Cliquewidth

Cliquewidth cw(G): Minimum e (o (@
number of colors needed to con- g 2 o
struct G using these operations. oo o ° o ®

Graphs of treewidth w have cliquewidth atmost 3 - 2¥—L,

PR
O Disjoint union of two graphs

O Joining by an edge every § § I<: I<:

vertex with color i to every

vertex with color j
O Changing color i to color j %

20

Cliquewidth

Cliquewidth cw(G): Minimum e (o (@

number of colors needed to con- g 2 o

struct G using these operations. oo o ° o ®
e o o

O

Graphs of treewidth w have cliquewidth at most 3 - 2¢ 1, ’

)
O Courcelle’s Theorem
O

Fora MSO; sentence ¢ and graph G one can decide whether
G E pintime f(cw(G), |¢|)n? for some function f.

crecrvrrrrooToT
O Changing color i to color j %<:

And Now For Something Completely Different..

21

Let us go back to the first lecture.

22

Independent Set on Trees
| INDEPENDENTSET can be solved in linear time on trees. \

Idea: Root the tree and do dynamic programming. Starting at the
leafs, compute for each subtree the maximum size of a solution
with and without its root.

23

First Main Result

O This approach can be extended to tree-like graphs (bounded
treewidth).

First Main Result

O This approach can be extended to tree-like graphs (bounded
treewidth).

O First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

O This includes
o coloring
o independent set
o clique
o dominating set
o feedback vertex set
o hamilton path

Independent Set on Planar Graphs

How about planar graphs?

25

Independent Set on Planar Graphs

How about planar graphs?

‘ INDEPENDENTSET is NP-complete on planar graphs. \

25

One can decide whether a planar graph has an independent set of
size k in time O(6n).

IS(G, k):
if G is empty return k == 0
find vertex v with degree < 5in G
forallw € N(v):
if IS(G'\ N(w), k — 1) return True
return False

26

INDEPENDENTSET is hard on general graphs. However,

O on trees, we can solve it in linear time
O on planar graphs, it is still fixed parameter tractable.

We will observe a similar behaviour for many other problems!
27

INDEPENDENTSET is hard on general graphs. However,

O on bounded treewidth, we can solve it in linear time
O on nowhere dense graphs, it is still fixed parameter tractable.

nowhere dense

bounded treewidth

We will observe a similar behaviour for many other problems!
27

Graph Classes

O Width measures (treewidth, degree, ...) capture the structure of
a graph using one number. Sometimes, we may need more
numbers to describe something.

28

Graph Classes

O Width measures (treewidth, degree, ...) capture the structure of
a graph using one number. Sometimes, we may need more
numbers to describe something.

O From now on, we work with (infinite) graph classes.

28

Graph Classes

O Aclass C has bounded treewidth if there exists a constant ¢ such
that for all G € C holds tw(G) < c.

29

Graph Classes

O Aclass C has bounded treewidth if there exists a constant ¢ such
that for all G € C holds tw(G) < c.

O Attention! Bounded treewidth is a property of graph classes not
of graphs!

29

Graph Classes

O Aclass C has bounded treewidth if there exists a constant ¢ such
that for all G € C holds tw(G) < c.

O Attention! Bounded treewidth is a property of graph classes not
of graphs!

O Generally, a class has bounded X if there is a constant ¢ such
that forall G € C holds X < c.

29

Graph Classes

O Aclass C has bounded treewidth if there exists a constant ¢ such
that for all G € C holds tw(G) < c.

O Attention! Bounded treewidth is a property of graph classes not
of graphs!

O Generally, a class has bounded X if there is a constant ¢ such
that forall G € C holds X < c.

O Assume we have a bounded treewidth class C. On this class,
Coucelle's theorem solves MSO; formulas in time

fel, tw(G))n < f(lel, e)n = f'(l¢l)n.

29

Restating Courcelle

Courcelle’s Theorem

Let C be a graph class with bounded treewidth. There exsists
afunction f (depending on C!) such that for every MSO; sen-
tence ¢ and graph G € C one can decide whether G = ¢ in

time f(|¢|)n.

30

Restating Courcelle

Courcelle’s Theorem

Let C be a graph class with bounded treewidth. There exsists
afunction f (depending on C!) such that for every MSO; sen-
tence ¢ and graph G € C one can decide whether G = ¢ in

time f(|¢|)n.

If a fixed problem is expressible by some formula ¢, then

f(lel) = O(1).

Courcelle’s Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide

MSO; -expressible problems in linear time. 0

Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Bounded Planar Bounded
Treewidth Graphs Degree

N\

Forests
31

O What do these graphs have in common?

o Graphs with treewidth w have at most wn edges.
o Planar graphs have at most 3n edges.
o Graphs with constant degree have O(n) edges.

32

O What do these graphs have in common?

o Graphs with treewidth w have at most wn edges.
o Planar graphs have at most 3n edges.
o Graphs with constant degree have O(n) edges.

O Problems seem to be easier if the graphs are sparse!

O What does it really mean to be sparse?

32

O Every graph is “sparse” if you subdivide the edges.

33

O Every graph is “sparse” if you subdivide the edges.

subdivision adds 1/2
vertex per edge

33

O Every graph is “sparse” if you subdivide the edges.

subdivision adds 1/2
vertex per edge

O Do we consider such subdivisions sparse?
o Yes: Degeneracy
o No: Bounded expansion and nowhere dense graph classes

33

O Every graph is “sparse” if you subdivide the edges.

subdivision adds 1/2
vertex per edge

O Do we consider such subdivisions sparse?
o Yes: Degeneracy
o No: Bounded expansion and nowhere dense graph classes
O We say “No” because it has nicer algorithmic theory.
33

Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Bounded Planar Bounded
Treewidth Graphs Degree
Forests

34

Inclusion Diagrams

Nowhere

Each box represents a Banee

property of graph classes. /4

What do the arrows mean? Locally Bounded

Bounded :
Bounded Planar Bounded
Treewidth Graphs Degree
Forests

34

Many Sparse Graph Classes

Nowhere dense

. Locally bounded T3 i
Bounded expansion \“‘;5" expansion / Iéor%&inrlllgrexcludmg
&4
Excluding a 2
topological minor | 7
4 r
Excluding a minor e Locally bounded
9 VY Jf%? treew%jth
__~..—_ Bounded
O OENUE
Bounded treewidth 5% = — Planar "’ Bounded degree
C °

NSRy.
S5, &9 Outerplanar
Bounded treedepth JAa Y

** \,e‘{{ Forests PN

Star forests 7~ Linear forests

Figure by Felix Reidl

35

First-Order Logic

For sparse graphs, MSO; is too powerful. For example Independent
Set, Coloring, Dominating Set are NP-complete on planar graphs
or bounded degree graph classes. However, first-order logic fits just
right.

36

First-Order Logic

For sparse graphs, MSO; is too powerful. For example Independent
Set, Coloring, Dominating Set are NP-complete on planar graphs
or bounded degree graph classes. However, first-order logic fits just
right.

Main Result (roughly)

Let C be a sparse graph class. For an FO formula ¢ and graph
G € C one can decide whether G = ¢ in time f(|p|)n for
some function f.

36

First-Order Logic

For a given signature 7, first-order logic has ...

O element-variables (z, v, z, .. .)
O the equality relation = as well as the relations from 7.

O quantifiers 3 and V, as well as operators A, V and =

We mostly work on colored undirected graphs with
T ={~,c1,ca,...}. Here, we call the logic FO.

37

Expressiveness

Can these properties be expressed in FO logic?

38

Expressiveness

Can these properties be expressed in FO logic?

O There exists an independent set of size .

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .

dxq ... doy, /\ﬂxiwxj/\ﬂa:i:xj
i#j

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .

dxq ... doy, /\ﬂxiwxj/\ﬂa:i:xj
i#j

O There exists a dominating set of size .

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .
dxq ... doy, /\ﬂxiwxj/\ﬂxi:xj
i#j
O There exists a dominating set of size .

dxy ... dap Yy \/ywxi\/y:xi

)

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .
dxq ... doy, /\ﬂxiwxj/\ﬂxi:xj
i#j
O There exists a dominating set of size .

dxy ... dap Yy \/ywxi\/y:xi

)

O The number of vertices is even.

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .
dxq ... doy, /\ﬂxiwxj/\ﬂxi:xj
i#j
O There exists a dominating set of size .

dxy ... dap Yy \/ywxi\/y:xi

)

O The number of vertices is even. No.

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .
dxq ... doy, /\ﬂxiwxj/\ﬂxi:xj
i#j
O There exists a dominating set of size .

dxy ... dap Yy \/ywxi\/y:xi

)

O The number of vertices is even. No.
O The graph is connected.

38

Expressiveness

Can these properties be expressed in FO logic?
O There exists an independent set of size .
dxq ... doy, /\ﬂxiwxj/\ﬂxi:xj
i#j
O There exists a dominating set of size .

dxy ... dap Yy \/ywxi\/y:xi

)

O The number of vertices is even. No.
O The graph is connected. No.

38

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

O Enumerate all answers to a database query <
Enumerate all vy, ..., v With G |= p(v1, ..., vg)-

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

O Enumerate all answers to a database query <
Enumerate all vy, ..., v With G |= p(v1, ..., vg)-

O Boolean query < Decide whether G = .

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

O Enumerate all answers to a database query <
Enumerate all vy, ..., v With G |= p(v1, ..., vg)-

O Boolean query < Decide whether G = .

O There exist extensions of first-order logic simulating SQL's
COUNT operator.

39

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ¢
Question: G |= ¢?

40

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ¢
Question: G |= ¢?

First-Order Query Enumeration

Input: Graph G and first-order formula ¢(x1, . . ., zk)
Question: Enumerate all vy, . . ., v with

G): gO(Ul,... ,Uk).

40

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ¢
Question: G |= ¢?

First-Order Query Enumeration

Input: Graph G and first-order formula ¢(x1, . . ., zk)
Question: Enumerate all vy, . . ., v with

G): 90(111,... ,Uk).

First-Order Query Counting

Input: Graph G and first-order formula ¢(x1, . . ., z)
Question: Count number of tuples v, . . . , vy with

G)Zw(vlv"'avk)' 40

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

41

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

.

Proof: Reduction from Independent Set.

dzq ... dxy /\ﬁxi ~xj N\ T =T
i#£]

41

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

.

Proof: Reduction from Independent Set.

dzq ... dxy /\ﬁxi ~xj N\ T =T
i#]
However, usually database queries are very small compared to the
size of the database. Parameterize by ||

41

Parameterized Complexity (Upper Bound)

One can decide whether G = ¢ in time O(|G|!#]).

42

Evaluation Trees

Proof: We can assume ¢ to be in prenex normal form. Construct an
evaluation tree of size O(|G|!?)).

eVy3zp(x,y, 2)

43

Parameterized Complexity (Lower Bound)

Conjecture (based on SETH)

It is believed one cannot decide whether G = ¢ in time
O(|G|9=1=#) for any € > 0 where q is the number of quanti-
fiers of .

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to a faster algorithm
for many other problems.

On certain graph classes, we can do much better though.

44

Expressiveness

Can these properties be expressed in FO logic?

O There exists an independent set of size k.
i#]

O There exists a dominating set of size k.

dxq ... dxp Yy \/ywxi\/y:xi

7

O The number of vertices is even. No.

O The graph is connected. No.

45

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

46

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

O The quantifier-rank of a formula is the maximum number of
nested quantifiers.

46

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

O The quantifier-rank of a formula is the maximum number of
nested quantifiers.

O We write G =, H if for all first-order sentences ¢ of
quantifier-rank < gholds G = ¢ <= H = ¢.

46

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

O The quantifier-rank of a formula is the maximum number of
nested quantifiers.

O We write G =, H if for all first-order sentences ¢ of
quantifier-rank < gholds G = ¢ <= H = ¢.

O Show that for every ¢ there is a connected graph G, and a
disconnected graph H, with G, =, H,,.

46

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

O The quantifier-rank of a formula is the maximum number of
nested quantifiers.

O We write G =, H if for all first-order sentences ¢ of
quantifier-rank < gholds G = ¢ <= H = ¢.

O Show that for every ¢ there is a connected graph G, and a
disconnected graph H, with G, =, H,,.

O If there was a formula to decide connectivity it would have
quantifier-rank ¢ for some ¢. But this formula cannot tell G,

and H, apart. A contradiction.
46

Ehrenfeucht—Fraissé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ¢ such that G = ¢ iff G is
connected. How do we prove that?

O The quantifier-rank of a formula is the maximum number of
nested quantifiers.

O We write G =, H if for all first-order sentences ¢ of
quantifier-rank < gholds G = ¢ <= H = ¢.

O Show that for every ¢ there is a connected graph G, and a
disconnected graph H, with G, =, H,,.

O If there was a formula to decide connectivity it would have
quantifier-rank ¢ for some ¢. But this formula cannot tell G,
and H, apart. A contradiction.

O Show G =, H using Ehrenfeucht—Fraissé games. 46

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

G

—0 000 0 0 °

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

O Spoiler picks g; € V(G) or h; € H(G) G

O—eo—eo—0 0000
81

H
oo 0o o o o oo

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

O Spoiler picks g; € V(G) or h; € H(G) G

O Duplicator picks partner vertex in other @0 oo o o oo
graph. 81

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

O Spoiler picks g; € V(G) or h; € H(G) G
O Duplicator picks partner vertex in other @0 oo o o oo

graph. 81
O Repeat g timesto get g1,...,9, € V(G) I
and hy, ..., hy € V(H) (pairwise distinct). @ ¢ 6 ¢ 6 ¢ oo
hg hi

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

O Spoiler picks g; € V(G) or h; € H(G)
O Duplicator picks partner vertex in other ® 09 oo o o oo

graph. g1 82
O Repeat g timesto get g1,...,9, € V(G) I
and hy, ..., hy € V(H) (pairwise distinct). @ ¢ 6 ¢ 6 ¢ oo
hg hi

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other 00 o oo oo
graph. 8182 83

Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). @ ¢ 6 ¢ 6 ¢ oo
Duplicator wins if g;~g; <= h;~h; for ha h1

all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other 00 o oo oo
graph. 8182 83

Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). @ ¢ 06 0 o oo
Duplicator wins if g;~g; <= h;~h; for ha h1

all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other o o 6 6 06 6 oo
graph.
Repeat ¢ times to get g1, ..., 9, € V(G)

H

*—0—0 00 0 0 00

and hy, ..., hy € V(H) (pairwise distinct).

Duplicator wins if g;~g; <= h;~h; for
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo o o oo
graph. 81

Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). > 6 o 6 6 6 o o o

Duplicator wins if g;~g; <= h;~h; for
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo o o oo
graph. g1

Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). o 6 o 6 o 6 o 6
Duplicator wins if g;~g; <= h;~h; for h1

all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo o o 0@
graph. 81 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). o 6 o 6 o 6 o 6
Duplicator wins if g;~g; <= h;~h; for h1

all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo o o 0@
graph. 81 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). o 6 o 6 o o o
Duplicator wins if g;~g; <= h;~h; for h1 he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo o o 0@
graph. 81 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). > o o o o o
Duplicator wins if g;~g; <= h;~h; for h1 hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo @ oo @
graph. 81 83 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). > o o o o o
Duplicator wins if g;~g; <= h;~h; for h1 hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other @0 oo @ oo @
graph. 81 83 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). e ® 0@ o o o
Duplicator wins if g;~g; <= h;~h; for hi ha hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other PP PP AP
graph. 81 84 83 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). e ® 0@ o o o
Duplicator wins if g;~g; <= h;~h; for hi ha hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other PP PP AP
graph. 81 84 83 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). e @0 0 o @ o
Duplicator wins if g;~g; <= h;~h; for hi ha hs hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other O 0000
graph. 81 84 8385 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). e @0 0 o @ o
Duplicator wins if g;~g; <= h;~h; for hi ha hs hs he
all 4, 5.

47

Ehrenfeucht—Fraissé Games

The g-round Ehrenfeucht—Fraissé game between the Duplicator
and the Spoiler is played on two graphs G and H.

Spoiler picks g; € V(G) or h; € H(G) G

Duplicator picks partner vertex in other O 0000
graph. 81 84 8385 82
Repeat ¢ times to get g1, ..., 9, € V(G) I

and hy, ..., hy € V(H) (pairwise distinct). e @0 0 o @ o
Duplicator wins if g;~g; <= h;~h; for hi ha hs hs he
all 4, 5.

G =, H iff the Duplicator wins the g-round Ehrenfeucht—
Fraissé game. 47

