Algorithmic Meta-Theorems

192.122 WS21/22 Jan Dreier dreier@ac.tuwien.ac.at

1

Courcelle's theorem is a very powerful tool to solve problems on bounded treewidth. It comes in various flavours.

- MSO₁: base variant,
- MSO₂: edge quantifiers,
- CMSO: parity/modulo counting,
- LinEMSOL: optimization,
- \bigcirc and any combination thereof.

We now want to prove the following.

Courcelle's Theorem

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

We now want to prove the following.

Courcelle's Theorem

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

 Historically proven by converting MSO₁-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.

We now want to prove the following.

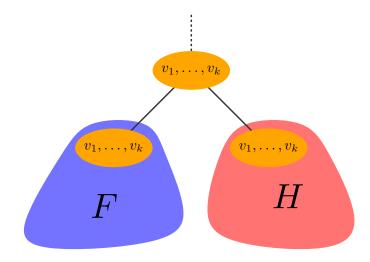
Courcelle's Theorem

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

- Historically proven by converting MSO₁-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.
- We prove it using a powerful logic-theorem by Fefermann and Vaught as a blackbox.

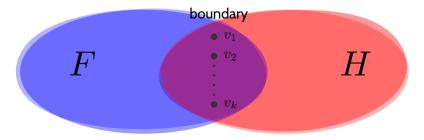
Join Nodes

We can assume we are given a nice tree decomposition. If we manage the *join* operation, *introduce* and *forget* are easy.



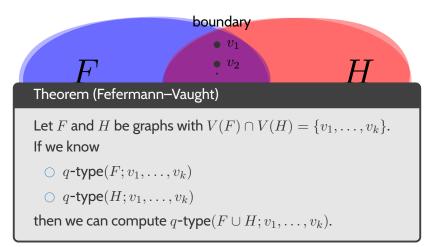
Fefermann–Vaught

Let H be a graph with boundary v_1, \ldots, v_k . We define q-type $(H; v_1, \ldots, v_k)$ to be the set of all MSO₁-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.



Fefermann–Vaught

Let *H* be a graph with boundary v_1, \ldots, v_k . We define q-type $(H; v_1, \ldots, v_k)$ to be the set of all MSO₁-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.



We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

For bag *i* (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \dots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

For bag *i* (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \dots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

Let r be the root-node. Then $G \models \varphi$ iff $G[V_r] \models \varphi$ iff $M_r(\varphi) = 1$.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

 \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x \wedge \dots$

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x\, x = x$

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x$

Show the claim by induction.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x$

Show the claim by induction. Base case q = 0: There are only $2^{2^{O(k^2 \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses).

```
\bigcirc c_i(x_j) for 1 \le i \le |\varphi| and 1 \le j \le k
```

$$\bigcirc c_i(x_j) \text{ for } 1 \le i \le |\varphi| \text{ and } 1 \le j \le k$$
$$\bigcirc x_i = x_j \text{ for } 1 \le i, j \le k$$

$$\bigcirc c_i(x_j) \text{ for } 1 \le i \le |\varphi| \text{ and } 1 \le j \le k$$

$$\bigcirc x_i = x_j \text{ for } 1 \le i, j \le k$$

$$\bigcirc x_i \sim x_j \text{ for } 1 \le i, j \le k$$

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

$$\bigcirc c_i(x_j) \text{ for } 1 \le i \le |\varphi| \text{ and } 1 \le j \le k$$

$$\bigcirc x_i = x_j \text{ for } 1 \le i, j \le k$$

$$\bigcirc x_i \sim x_j \text{ for } 1 \le i, j \le k$$

plus their negations.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

$$\bigcirc c_i(x_j) \text{ for } 1 \leq i \leq |\varphi| \text{ and } 1 \leq j \leq k$$

$$\bigcirc x_i = x_j \text{ for } 1 \leq i, j \leq k$$

$$\bigcirc x_i \sim x_j \text{ for } 1 \leq i, j \leq k$$

plus their negations. Number of literals: $O(k^2|\varphi|)$.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

$$\begin{array}{l} \bigcirc \ c_i(x_j) \ \text{for} \ 1 \leq i \leq |\varphi| \ \text{and} \ 1 \leq j \leq k \\ \bigcirc \ x_i = x_j \ \text{for} \ 1 \leq i, j \leq k \\ \bigcirc \ x_i \sim x_j \ \text{for} \ 1 \leq i, j \leq k \end{array}$$

plus their negations.

Number of literals: $O(k^2|\varphi|)$.

Number of clauses (after removing duplicate literals): $2^{O(k^2|\varphi|)}$

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

$$\begin{array}{l} \bigcirc \ c_i(x_j) \ \text{for} \ 1 \leq i \leq |\varphi| \ \text{and} \ 1 \leq j \leq k \\ \bigcirc \ x_i = x_j \ \text{for} \ 1 \leq i, j \leq k \\ \bigcirc \ x_i \sim x_j \ \text{for} \ 1 \leq i, j \leq k \end{array}$$

plus their negations.

Number of literals: $O(k^2|\varphi|)$.

Number of clauses (after removing duplicate literals): $2^{O(k^2|\varphi|)}$ Number of formulas (after removing duplicate clauses): $2^{2^{O(k^2|\varphi|)}}$

Size of \overline{q} -types

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables.

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them.

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them. In total, the number of formulas is roughly

Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them. In total, the number of formulas is roughly

This bound cannot be improved much.

Remember: For bag *i* (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

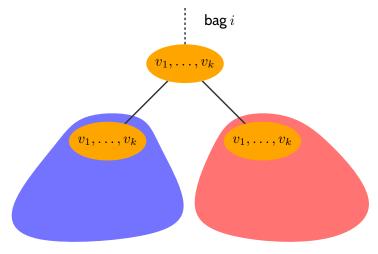
$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \dots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

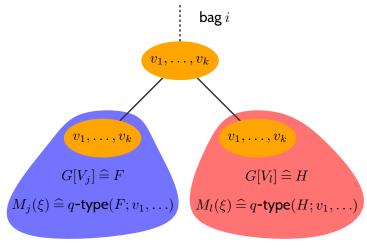
We now compute these values bottom-up.

$G[V_i]$ is the empty graph.

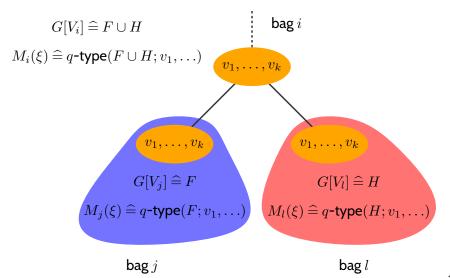
 $G[V_i]$ is the empty graph. $M_i(\xi)$: All sentences of quantifier-rank $\leq q$ that hold in the empty graph.

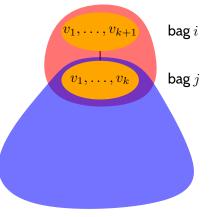
 $G[V_i]$ is the empty graph. $M_i(\xi)$: All sentences of quantifier-rank $\leq q$ that hold in the empty graph. Simply evaluate them.

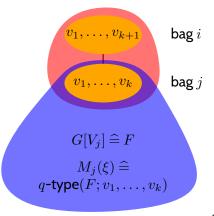




bag l

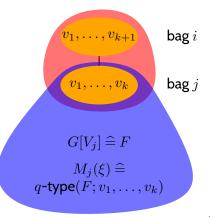






$$G[\{v_1,\ldots,v_{k+1}\}] \widehat{=} H$$

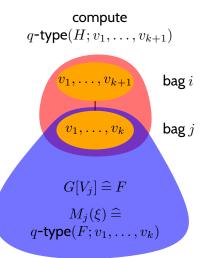
 $\begin{array}{c} \text{compute} \\ q\text{-type}(H; v_1, \dots, v_{k+1}) \end{array}$



$$G[\{v_1,\ldots,v_{k+1}\}] \widehat{=} H$$

$$G[V_i] \cong F \cup H$$

$$M_i(\xi) \cong q\text{-type}(F \cup H; v_1, \dots, v_{k+1})$$

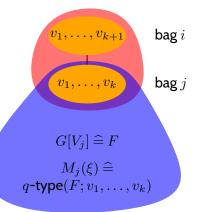


$$\begin{aligned} G[V_i] &\cong F \cup H \\ M_i(\xi) &\cong q\text{-type}(F \cup H; v_1, \dots, v_{k+1}) \end{aligned}$$

Theorem (Fefermann–Vaught) If we know $\bigcirc q$ -type $(F; v_1, \ldots, v_k)$ $\bigcirc q$ -type $(H; v_1, \ldots, v_k)$) then we can compute q-type $(F \cup H; v_1, \ldots, v_k)$).

$$G[\{v_1,\ldots,v_{k+1}\}] \widehat{=} H$$

compute
$$q$$
-type $(H; v_1, \ldots, v_{k+1})$



$$\begin{aligned} G[V_i] &\cong F \cup H \\ M_i(\xi) &\cong q\text{-type}(F \cup H; v_1, \dots, v_{k+1}) \end{aligned}$$

Theorem (Fefermann–Vaught)

If we know

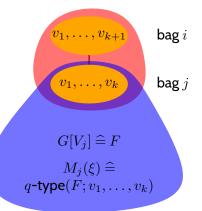
- \bigcirc q-type($F; v_1, \ldots, v_k$)
- \bigcirc q-type($H; v_1, \ldots, v_k, v_{k+1}$)

then we can compute

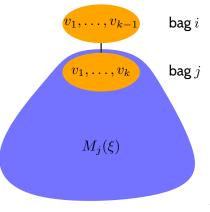
q-type $(F \cup H; v_1, ..., v_k, v_{k+1})$.

$$G[\{v_1,\ldots,v_{k+1}\}] \widehat{=} H$$

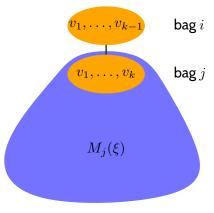
compute q-type $(H; v_1, \dots, v_{k+1})$



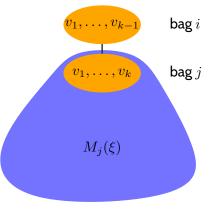
Forget Nodes



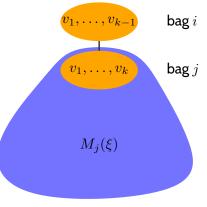
$G[V_i] = G[V_j]$



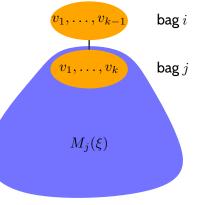
 $G[V_i] = G[V_j]$ $M_j(\xi)$: Formulas over $x_1, \ldots, x_k.$



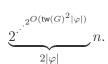
 $G[V_i] = G[V_j]$ $M_j(\xi)$: Formulas over x_1, \ldots, x_k . $M_i(\xi)$: Formulas over x_1, \ldots, x_{k-1} .



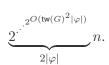
 $G[V_i] = G[V_j]$ $M_j(\xi)$: Formulas over x_1, \ldots, x_k . $M_i(\xi)$: Formulas over x_1, \ldots, x_{k-1} . Remove all formulas that mention x_k .



For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time

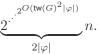


For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time



Can this be improved?

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time



Can this be improved?

No. It cannot be done without such a tower of powers (Frick, Grohe 2004).

Usually, Courcelle's theorem is considered a theoretical classification tool.

Usually, Courcelle's theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.

Usually, Courcelle's theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.

○ Doing it naively has horrible, horrible run time ...

Usually, Courcelle's theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.

- Doing it naively has horrible, horrible run time ...
- By storing "game trees" instead, it becomes feasible https://github.com/sequoia-mso.

How to formulate Problems for Sequoia

```
-- More efficient formula for three-coloring; tests whether -- (R, G, V\setminus (R\cup G)) is a proper three-coloring of the graph
```

```
ThreeCol(R, B) :=

All x (

(x notin R or x notin B)

and

All y (

~adj(x,y) or (

(x notin R or y notin R) and

(x notin B or y notin B) and

((x in R) or (x in B)

or

(y in R) or (y in B))

)

)
```

\bigcirc We saw the proof for the base variant MSO₁.

- \bigcirc We saw the proof for the base variant MSO₁.
- By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.

- \bigcirc We saw the proof for the base variant MSO₁.
- By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.
- \bigcirc Also we already know how to reduce MSO₂ to MSO₁.

- \bigcirc We saw the proof for the base variant MSO₁.
- By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.
- \bigcirc Also we already know how to reduce MSO₂ to MSO₁.
- The proof for the optimization variant LinEMSOL works similarly by also keeping track of the largest satisfying assignment.

 \bigcirc A graph containing a clique of size k has treewidth at least k-1.

- \bigcirc A graph containing a clique of size k has treewidth at least k-1.
- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.

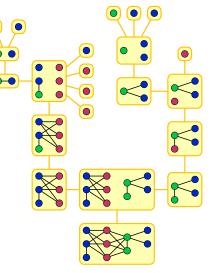
- A graph containing a clique of size k has treewidth at least k 1.
- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.
- \bigcirc Courcelle's theorem for MSO₁ also holds for cliquewidth.

- A graph containing a clique of size k has treewidth at least k 1.
- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.
- \bigcirc Courcelle's theorem for MSO₁ also holds for cliquewidth.
- \bigcirc On the other hand MSO₂ only holds for treewidth.

Cliquewidth

Cliquewidth cw(G): Minimum number of colors needed to construct G using these operations.

- Creation of new vertex with color i
- Disjoint union of two graphs
- Joining by an edge every vertex with color *i* to every vertex with color *j*
- \bigcirc Changing color i to color j

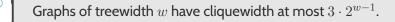


Cliquewidth cw(G): Minimum number of colors needed to construct G using these operations.

Graphs of treewidth w have cliquewidth at most $3 \cdot 2^{w-1}$.

- Disjoint union of two graphs
- Joining by an edge every vertex with color *i* to every vertex with color *j*
- \bigcirc Changing color *i* to color *j*

Cliquewidth cw(G): Minimum number of colors needed to construct G using these operations.



Courcelle's Theorem

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{cw}(G), |\varphi|)n^3$ for some function f.

Vertex with color J

 \bigcirc Changing color *i* to color *j*

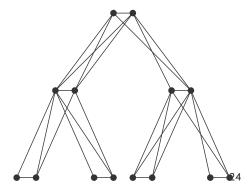
And Now For Something Completely Different...

Let us go back to the first lecture.

INDEPENDENTSET can be solved in linear time on trees.

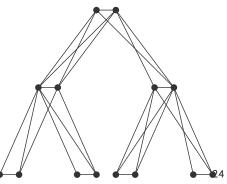
Idea: Root the tree and do dynamic programming. Starting at the leafs, compute for each subtree the maximum size of a solution with and without its root.

 This approach can be extended to tree-like graphs (bounded treewidth).

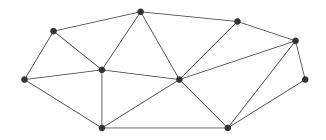


First Main Result

- This approach can be extended to tree-like graphs (bounded treewidth).
- First main result of the lecture (Courcelle's theorem): Every problem definable in monadic second-order logic can be solved in linear time on graphs of bounded treewidth.
- This includes
 - coloring
 - independent set
 - o clique
 - dominating set
 - feedback vertex set
 - hamilton path
 - o ...

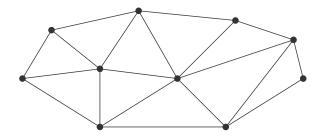


How about planar graphs?



How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.



One can decide whether a planar graph has an independent set of size k in time $O(6^k n)$.

```
IS(G, k):

if G is empty return k == 0

find vertex v with degree \leq 5 in G

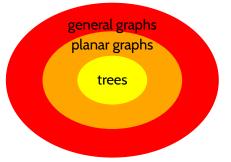
for all w \in N(v):

if IS(G \setminus N(w), k - 1) return True

return False
```

INDEPENDENTSET is hard on general graphs. However,

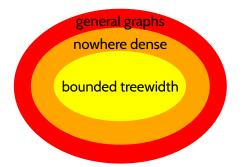
- \bigcirc on trees, we can solve it in linear time
- on planar graphs, it is still fixed parameter tractable.



We will observe a similar behaviour for many other problems!

INDEPENDENTSET is hard on general graphs. However,

- on bounded treewidth, we can solve it in linear time
- on nowhere dense graphs, it is still fixed parameter tractable.



We will observe a similar behaviour for many other problems!

 Width measures (treewidth, degree, ...) capture the structure of a graph using one number. Sometimes, we may need more numbers to describe something.

- Width measures (treewidth, degree, ...) capture the structure of a graph using one number. Sometimes, we may need more numbers to describe something.
- From now on, we work with (infinite) graph classes.

○ A class C has *bounded treewidth* if there exists a constant c such that for all $G \in C$ holds tw $(G) \leq c$.

- A class C has *bounded treewidth* if there exists a constant c such that for all $G \in C$ holds tw $(G) \leq c$.
- Attention! Bounded treewidth is a property of graph classes not of graphs!

- A class C has *bounded treewidth* if there exists a constant c such that for all $G \in C$ holds tw $(G) \leq c$.
- Attention! Bounded treewidth is a property of graph classes not of graphs!
- Generally, a class has bounded X if there is a constant c such that for all $G \in C$ holds $X \leq c$.

- A class C has *bounded treewidth* if there exists a constant c such that for all $G \in C$ holds tw $(G) \leq c$.
- Attention! Bounded treewidth is a property of graph classes not of graphs!
- Generally, a class has bounded X if there is a constant c such that for all $G \in C$ holds $X \leq c$.
- Assume we have a bounded treewidth class C. On this class, Coucelle's theorem solves MSO_1 formulas in time $f(|\varphi|, tw(G))n \le f(|\varphi|, c)n = f'(|\varphi|)n.$

Courcelle's Theorem

Let C be a graph class with bounded treewidth. There exsists a function f (depending on C!) such that for every MSO₁ sentence φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

Courcelle's Theorem

Let C be a graph class with bounded treewidth. There exsists a function f (depending on C!) such that for every MSO₁ sentence φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

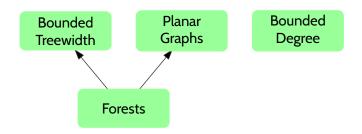
If a fixed problem is expressible by some formula $\varphi,$ then $f(|\varphi|)=O(1).$

Courcelle's Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide MSO₁-expressible problems in linear time.

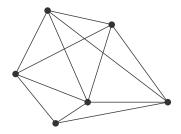
Each box represents a property of graph classes.

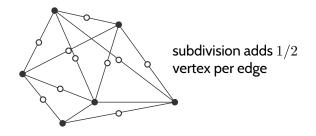
What do the arrows mean?

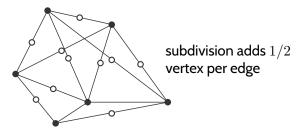


- What do these graphs have in common?
 - \circ Graphs with treewidth w have at most wn edges.
 - Planar graphs have at most 3n edges.
 - $\circ~$ Graphs with constant degree have O(n) edges.

- O What do these graphs have in common?
 - $\circ~$ Graphs with treewidth w have at most wn edges.
 - Planar graphs have at most 3n edges.
 - $\circ~$ Graphs with constant degree have O(n) edges.
- Problems seem to be easier if the graphs are *sparse*!
- What does it really mean to be sparse?

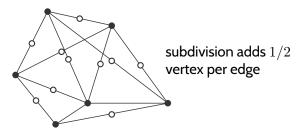






○ Do we consider such subdivisions sparse?

- Yes: Degeneracy
- No: Bounded expansion and nowhere dense graph classes

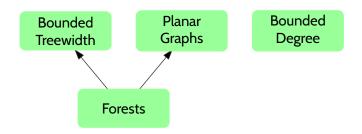


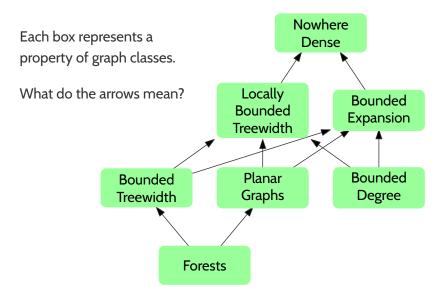
○ Do we consider such subdivisions sparse?

- Yes: Degeneracy
- No: Bounded expansion and nowhere dense graph classes
- We say "No" because it has nicer algorithmic theory.

Each box represents a property of graph classes.

What do the arrows mean?





Many Sparse Graph Classes

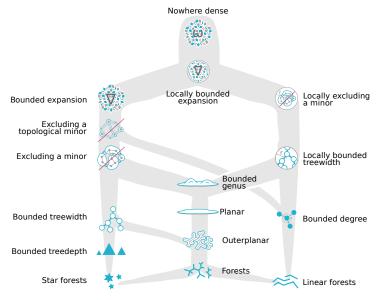


Figure by Felix Reidl

For sparse graphs, MSO₁ is too powerful. For example Independent Set, Coloring, Dominating Set are NP-complete on planar graphs or bounded degree graph classes. However, *first-order logic* fits just right.

For sparse graphs, MSO₁ is too powerful. For example Independent Set, Coloring, Dominating Set are NP-complete on planar graphs or bounded degree graph classes. However, *first-order logic* fits just right.

Main Result (roughly)

Let C be a sparse graph class. For an FO formula φ and graph $G \in C$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$ for some function f.

For a given signature τ , first-order logic has ...

- \bigcirc element-variables (x, y, z, \dots)
- \bigcirc the equality relation = as well as the relations from τ .
- \bigcirc quantifiers \exists and \forall , as well as operators \land , \lor and \neg

We mostly work on colored undirected graphs with $\tau = \{\sim, c_1, c_2, \dots\}$. Here, we call the logic FO.

 \bigcirc There exists an independent set of size k.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

○ The number of vertices is even.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

○ The number of vertices is even. No.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.
- The graph is connected.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.
- The graph is connected. No.

○ Enumerate all answers to a database query \Leftrightarrow Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.

- Enumerate all answers to a database query \Leftrightarrow Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.
- \bigcirc Boolean query \Leftrightarrow Decide whether $G \models \varphi$.

- Enumerate all answers to a database query \Leftrightarrow Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.
- \bigcirc Boolean query \Leftrightarrow Decide whether $G \models \varphi$.
- There exist extensions of first-order logic simulating SQL's COUNT operator.

Central Problems

Input:Graph G and first-order sentence φ Question: $G \models \varphi$?

Central Problems

First-Order Model-Checking (Query Evaluation)

Input:Graph G and first-order sentence φ Question: $G \models \varphi$?

First-Order Query Enumeration

Input:	Graph G and first-order formula $\varphi(x_1,\ldots,x_k)$
Question:	Enumerate all v_1, \ldots, v_k with
	$G \models \varphi(v_1, \ldots, v_k).$

Central Problems

First-Order Model-Checking (Query Evaluation)

Input:Graph G and first-order sentence φ Question: $G \models \varphi$?

First-Order Query Enumeration

Input:	Graph G and first-order formula $\varphi(x_1,\ldots,x_k)$
Question:	Enumerate all v_1,\ldots,v_k with
	$G \models \varphi(v_1, \ldots, v_k).$

First-Order Query Counting

Input: Graph G and first-order formula $\varphi(x_1, \dots, x_k)$ Question: Count number of tuples v_1, \dots, v_k with $G \models \varphi(v_1, \dots, v_k)$.

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

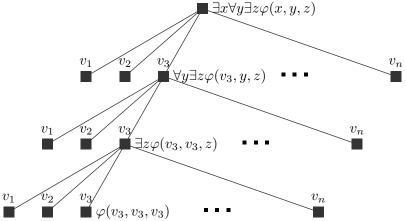
However, usually database queries are very small compared to the size of the database. Parameterize by $|\varphi|$.

Parameterized Complexity (Upper Bound)

Theorem

One can decide whether $G \models \varphi$ in time $O(|G|^{|\varphi|})$.

Proof: We can assume φ to be in prenex normal form. Construct an evaluation tree of size $O(|G|^{|\varphi|})$.



Conjecture (based on SETH)

It is believed one cannot decide whether $G \models \varphi$ in time $O(|G|^{q-1-\varepsilon})$ for any $\varepsilon > 0$ where q is the number of quantifiers of φ .

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to a faster algorithm for many other problems.

On certain graph classes, we can do much better though.

 \bigcirc There exists an independent set of size k.

$$\exists x_1 \dots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

 \bigcirc There exists a dominating set of size k.

$$\exists x_1 \dots \exists x_k \, \forall y \, \bigvee_i y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.
- The graph is connected. No.

 The *quantifier-rank* of a formula is the maximum number of nested quantifiers.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.

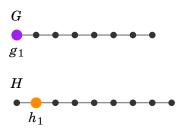
- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell Gq and Hq apart. A contradiction.

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G_q and H_q apart. A contradiction.
- Show $G \equiv_q H$ using Ehrenfeucht–Fraïssé games.

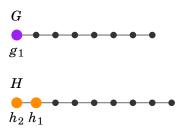


○ Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$

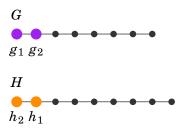
- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.



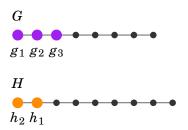
- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).



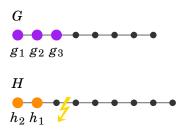
- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).



- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$

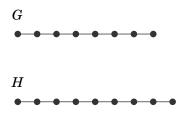


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



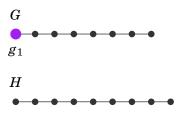
- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

$\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

$\bigcirc \ \, \text{Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } \\ \text{ all } i, j.$

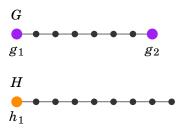


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

○ Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

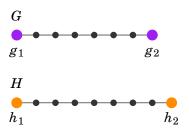
- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

○ Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

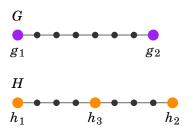


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

$\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all i, j.$

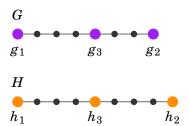


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$

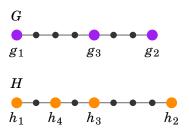


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

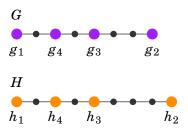
$\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$

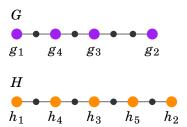


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$

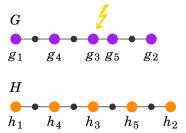


- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

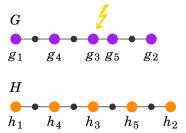
$\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat *q* times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- $\bigcirc \text{ Duplicator wins if } g_i \sim g_j \iff h_i \sim h_j \text{ for } all \ i, j.$



Theorem

 $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht- Fraïssé game.