
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Summary

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

MSO1: base variant,
MSO2: edge quantifiers,
CMSO: parity/modulo counting,
LinEMSOL: optimization,
and any combination thereof.

2

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

3

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

3

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

3

Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

F H

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.

4

Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = {v1, . . . , vk}.
If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk).

5

Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = {v1, . . . , vk}.
If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk). 5

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.

6

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.

6

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.
6

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.

“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction.

Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

7

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.
7

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses).

The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k

xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k

xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.

Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).

Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
xi = xj for 1 ≤ i, j ≤ k
xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)
8

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables.

Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

9

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables. Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

9

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables. Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

9

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables. Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them.

In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

9

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables. Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

9

Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables. Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.
9

Dynamic Programming

Remember: For bag i (with boundary v1, . . . , vk) we store for each
formula ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

We now compute these values bottom-up.

10

Leaf Nodes

∅ bag i

G[Vi] is the empty graph.

Mi(ξ): All sentences of quantifier-rank≤ q
that hold in the empty graph.
Simply evaluate them.

11

Leaf Nodes

∅ bag i

G[Vi] is the empty graph.
Mi(ξ): All sentences of quantifier-rank≤ q
that hold in the empty graph.

Simply evaluate them.

11

Leaf Nodes

∅ bag i

G[Vi] is the empty graph.
Mi(ξ): All sentences of quantifier-rank≤ q
that hold in the empty graph.
Simply evaluate them.

11

Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

bag j bag l

bag i

12

Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

G[Vj] =̂ F G[Vl] =̂H

bag j bag l

bag i

Mj(ξ) =̂ q-type(F ; v1, . . .) Ml(ξ) =̂ q-type(H; v1, . . .)

12

Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

G[Vj] =̂ F G[Vl] =̂H

bag j bag l

bag i

Mj(ξ) =̂ q-type(F ; v1, . . .) Ml(ξ) =̂ q-type(H; v1, . . .)

G[Vi] =̂ F ∪H

Mi(ξ) =̂ q-type(F ∪H; v1, . . .)

12

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk bag j

bag i

Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).

13

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk

G[Vj] =̂ F

Mj(ξ) =̂
q-type(F ; v1, . . . , vk)

bag j

bag i

Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).

13

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk

G[Vj] =̂ F

G[{v1, . . . , vk+1}] =̂H

compute
q-type(H; v1, . . . , vk+1)

Mj(ξ) =̂
q-type(F ; v1, . . . , vk)

bag j

bag i

Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).

13

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk

G[Vj] =̂ F

G[Vi] =̂ F ∪H
Mi(ξ) =̂ q-type(F ∪H; v1, . . . , vk+1)

G[{v1, . . . , vk+1}] =̂H

compute
q-type(H; v1, . . . , vk+1)

Mj(ξ) =̂
q-type(F ; v1, . . . , vk)

bag j

bag i

Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).

13

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk

G[Vj] =̂ F

G[Vi] =̂ F ∪H
Mi(ξ) =̂ q-type(F ∪H; v1, . . . , vk+1)

G[{v1, . . . , vk+1}] =̂H

compute
q-type(H; v1, . . . , vk+1)

Mj(ξ) =̂
q-type(F ; v1, . . . , vk)

bag j

bag i
Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).

13

Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk

G[Vj] =̂ F

G[Vi] =̂ F ∪H
Mi(ξ) =̂ q-type(F ∪H; v1, . . . , vk+1)

G[{v1, . . . , vk+1}] =̂H

compute
q-type(H; v1, . . . , vk+1)

Mj(ξ) =̂
q-type(F ; v1, . . . , vk)

bag j

bag i
Theorem (Fefermann–Vaught)

If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk, vk+1)

then we can compute
q-type(F ∪H; v1, . . . , vk, vk+1).

13

Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj]

Mj(ξ): Formulas over x1, . . . , xk .
Mi(ξ): Formulas over x1, . . . , xk−1.
Remove all formulas that mention xk .

14

Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj]

Mj(ξ): Formulas over x1, . . . , xk .
Mi(ξ): Formulas over x1, . . . , xk−1.
Remove all formulas that mention xk .

14

Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj]

Mj(ξ): Formulas over x1, . . . , xk .

Mi(ξ): Formulas over x1, . . . , xk−1.
Remove all formulas that mention xk .

14

Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj]

Mj(ξ): Formulas over x1, . . . , xk .
Mi(ξ): Formulas over x1, . . . , xk−1.

Remove all formulas that mention xk .

14

Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj]

Mj(ξ): Formulas over x1, . . . , xk .
Mi(ξ): Formulas over x1, . . . , xk−1.
Remove all formulas that mention xk .

14

Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15

Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15

Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool.

But it has been implemented by Kneis, Langer,
and Rossmanith.

Doing it naively has horrible, horrible run time . . .

By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

Doing it naively has horrible, horrible run time . . .

By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

Doing it naively has horrible, horrible run time . . .

By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso

Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

Doing it naively has horrible, horrible run time . . .

By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso

How to formulate Problems for Sequoia

-- More efficient formula for three-coloring; tests whether
-- (R, G, V\setminus (R\cup G)) is a proper three-coloring of the graph

ThreeCol(R, B) :=
All x (

(x notin R or x notin B)
and

All y (
~adj(x,y) or (

(x notin R or y notin R) and
(x notin B or y notin B) and
((x in R) or (x in B)

or
(y in R) or (y in B))

)
)

)

17

Proof for Extensions

We saw the proof for the base variant MSO1.

By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

Also we already know how to reduce MSO2 to MSO1.

The proof for the optimization variant LinEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

18

Proof for Extensions

We saw the proof for the base variant MSO1.

By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

Also we already know how to reduce MSO2 to MSO1.

The proof for the optimization variant LinEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

18

Proof for Extensions

We saw the proof for the base variant MSO1.

By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

Also we already know how to reduce MSO2 to MSO1.

The proof for the optimization variant LinEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

18

Proof for Extensions

We saw the proof for the base variant MSO1.

By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

Also we already know how to reduce MSO2 to MSO1.

The proof for the optimization variant LinEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

18

How about Dense Graphs?

A graph containing a clique of size k has treewidth at least
k − 1.

There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

Courcelle’s theorem for MSO1 also holds for cliquewidth.

On the other hand MSO2 only holds for treewidth.

19

How about Dense Graphs?

A graph containing a clique of size k has treewidth at least
k − 1.

There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

Courcelle’s theorem for MSO1 also holds for cliquewidth.

On the other hand MSO2 only holds for treewidth.

19

How about Dense Graphs?

A graph containing a clique of size k has treewidth at least
k − 1.

There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

Courcelle’s theorem for MSO1 also holds for cliquewidth.

On the other hand MSO2 only holds for treewidth.

19

How about Dense Graphs?

A graph containing a clique of size k has treewidth at least
k − 1.

There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

Courcelle’s theorem for MSO1 also holds for cliquewidth.

On the other hand MSO2 only holds for treewidth.

19

Cliquewidth

Cliquewidth cw(G): Minimum
number of colors needed to con-
struct G using these operations.

Creation of new vertex with
color i

Disjoint union of two graphs

Joining by an edge every
vertex with color i to every
vertex with color j

Changing color i to color j

Graphs of treewidth w have cliquewidth at most 3 · 2w−1.

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(cw(G), |ϕ|)n3 for some function f .

20

Cliquewidth

Cliquewidth cw(G): Minimum
number of colors needed to con-
struct G using these operations.

Creation of new vertex with
color i

Disjoint union of two graphs

Joining by an edge every
vertex with color i to every
vertex with color j

Changing color i to color j

Graphs of treewidth w have cliquewidth at most 3 · 2w−1.

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(cw(G), |ϕ|)n3 for some function f .

20

Cliquewidth

Cliquewidth cw(G): Minimum
number of colors needed to con-
struct G using these operations.

Creation of new vertex with
color i

Disjoint union of two graphs

Joining by an edge every
vertex with color i to every
vertex with color j

Changing color i to color j

Graphs of treewidth w have cliquewidth at most 3 · 2w−1.

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(cw(G), |ϕ|)n3 for some function f .

20

And Now For Something Completely Different...

21

Let us go back to the first lecture.

22

Independent Set on Trees

INDEPENDENTSET can be solved in linear time on trees.

Idea: Root the tree and do dynamic programming. Starting at the
leafs, compute for each subtree the maximum size of a solution
with and without its root.

23

First Main Result

This approach can be extended to tree-like graphs (bounded
treewidth).

First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

24

First Main Result

This approach can be extended to tree-like graphs (bounded
treewidth).

First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

24

Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

25

Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

25

Algorithm

One can decide whether a planar graph has an independent set of
size k in time O(6kn).

IS(G, k):
if G is empty return k == 0

find vertex v with degree≤ 5 in G
for all w ∈ N(v):

if IS(G \N(w), k − 1) return True
return False

26

Summary

INDEPENDENTSET is hard on general graphs. However,

on trees, we can solve it in linear time
on planar graphs, it is still fixed parameter tractable.

trees

planar graphs
general graphs

We will observe a similar behaviour for many other problems!
27

Summary

INDEPENDENTSET is hard on general graphs. However,

on bounded treewidth, we can solve it in linear time
on nowhere dense graphs, it is still fixed parameter tractable.

bounded treewidth

nowhere dense
general graphs

We will observe a similar behaviour for many other problems!
27

Graph Classes

Width measures (treewidth, degree, . . .) capture the structure of
a graph using one number. Sometimes, we may need more
numbers to describe something.

From now on, we work with (infinite) graph classes.

28

Graph Classes

Width measures (treewidth, degree, . . .) capture the structure of
a graph using one number. Sometimes, we may need more
numbers to describe something.

From now on, we work with (infinite) graph classes.

28

Graph Classes

A class C has bounded treewidth if there exists a constant c such
that for all G ∈ C holds tw(G) ≤ c.

Attention! Bounded treewidth is a property of graph classes not
of graphs!

Generally, a class has bounded X if there is a constant c such
that for all G ∈ C holds X ≤ c.

Assume we have a bounded treewidth class C. On this class,
Coucelle’s theorem solves MSO1 formulas in time
f(|ϕ|, tw(G))n ≤ f(|ϕ|, c)n = f ′(|ϕ|)n.

29

Graph Classes

A class C has bounded treewidth if there exists a constant c such
that for all G ∈ C holds tw(G) ≤ c.

Attention! Bounded treewidth is a property of graph classes not
of graphs!

Generally, a class has bounded X if there is a constant c such
that for all G ∈ C holds X ≤ c.

Assume we have a bounded treewidth class C. On this class,
Coucelle’s theorem solves MSO1 formulas in time
f(|ϕ|, tw(G))n ≤ f(|ϕ|, c)n = f ′(|ϕ|)n.

29

Graph Classes

A class C has bounded treewidth if there exists a constant c such
that for all G ∈ C holds tw(G) ≤ c.

Attention! Bounded treewidth is a property of graph classes not
of graphs!

Generally, a class has bounded X if there is a constant c such
that for all G ∈ C holds X ≤ c.

Assume we have a bounded treewidth class C. On this class,
Coucelle’s theorem solves MSO1 formulas in time
f(|ϕ|, tw(G))n ≤ f(|ϕ|, c)n = f ′(|ϕ|)n.

29

Graph Classes

A class C has bounded treewidth if there exists a constant c such
that for all G ∈ C holds tw(G) ≤ c.

Attention! Bounded treewidth is a property of graph classes not
of graphs!

Generally, a class has bounded X if there is a constant c such
that for all G ∈ C holds X ≤ c.

Assume we have a bounded treewidth class C. On this class,
Coucelle’s theorem solves MSO1 formulas in time
f(|ϕ|, tw(G))n ≤ f(|ϕ|, c)n = f ′(|ϕ|)n.

29

Restating Courcelle

Courcelle’s Theorem

Let C be a graph class with bounded treewidth. There exsists
a function f (depending on C!) such that for every MSO1 sen-
tence ϕ and graph G ∈ C one can decide whether G |= ϕ in
time f(|ϕ|)n.

If a fixed problem is expressible by some formula ϕ, then
f(|ϕ|) = O(1).

Courcelle’s Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide
MSO1-expressible problems in linear time.

30

Restating Courcelle

Courcelle’s Theorem

Let C be a graph class with bounded treewidth. There exsists
a function f (depending on C!) such that for every MSO1 sen-
tence ϕ and graph G ∈ C one can decide whether G |= ϕ in
time f(|ϕ|)n.

If a fixed problem is expressible by some formula ϕ, then
f(|ϕ|) = O(1).

Courcelle’s Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide
MSO1-expressible problems in linear time.

30

Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Forests

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

31

Sparsity

What do these graphs have in common?
◦ Graphs with treewidth w have at most wn edges.
◦ Planar graphs have at most 3n edges.
◦ Graphs with constant degree have O(n) edges.

Problems seem to be easier if the graphs are sparse!
What does it really mean to be sparse?

32

Sparsity

What do these graphs have in common?
◦ Graphs with treewidth w have at most wn edges.
◦ Planar graphs have at most 3n edges.
◦ Graphs with constant degree have O(n) edges.

Problems seem to be easier if the graphs are sparse!
What does it really mean to be sparse?

32

Sparsity

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

We say “No” because it has nicer algorithmic theory.

33

Sparsity

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

We say “No” because it has nicer algorithmic theory.

subdivision adds 1/2
vertex per edge

33

Sparsity

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

We say “No” because it has nicer algorithmic theory.

subdivision adds 1/2
vertex per edge

33

Sparsity

Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

We say “No” because it has nicer algorithmic theory.

subdivision adds 1/2
vertex per edge

33

Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Forests

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

34

Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth

34

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
35

First-Order Logic

For sparse graphs, MSO1 is too powerful. For example Independent
Set, Coloring, Dominating Set are NP-complete on planar graphs
or bounded degree graph classes. However, first-order logic fits just
right.

Main Result (roughly)

Let C be a sparse graph class. For an FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n for
some function f .

36

First-Order Logic

For sparse graphs, MSO1 is too powerful. For example Independent
Set, Coloring, Dominating Set are NP-complete on planar graphs
or bounded degree graph classes. However, first-order logic fits just
right.

Main Result (roughly)

Let C be a sparse graph class. For an FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n for
some function f .

36

First-Order Logic

For a given signature τ , first-order logic has . . .

element-variables (x, y, z, . . .)
the equality relation = as well as the relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic FO.

37

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even.

No.
The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.

The graph is connected. No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected.

No.

38

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

38

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

Enumerate all answers to a database query⇔
Enumerate all v1, . . . , vk with G |= ϕ(v1, . . . , vk).

Boolean query⇔ Decide whether G |= ϕ.
There exist extensions of first-order logic simulating SQL’s

COUNT operator.

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

Enumerate all answers to a database query⇔
Enumerate all v1, . . . , vk with G |= ϕ(v1, . . . , vk).

Boolean query⇔ Decide whether G |= ϕ.
There exist extensions of first-order logic simulating SQL’s

COUNT operator.

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

Enumerate all answers to a database query⇔
Enumerate all v1, . . . , vk with G |= ϕ(v1, . . . , vk).

Boolean query⇔ Decide whether G |= ϕ.

There exist extensions of first-order logic simulating SQL’s
COUNT operator.

39

Connection to Database Queries

Database languages such as SQL build upon first-order logic.

Enumerate all answers to a database query⇔
Enumerate all v1, . . . , vk with G |= ϕ(v1, . . . , vk).

Boolean query⇔ Decide whether G |= ϕ.
There exist extensions of first-order logic simulating SQL’s

COUNT operator.

39

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ϕ
Question: G |= ϕ?

First-Order Query Enumeration

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Enumerate all v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

First-Order Query Counting

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Count number of tuples v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

40

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ϕ
Question: G |= ϕ?

First-Order Query Enumeration

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Enumerate all v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

First-Order Query Counting

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Count number of tuples v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

40

Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ϕ
Question: G |= ϕ?

First-Order Query Enumeration

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Enumerate all v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

First-Order Query Counting

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Count number of tuples v1, . . . , vk with

G |= ϕ(v1, . . . , vk). 40

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

However, usually database queries are very small compared to the
size of the database. Parameterize by |ϕ|.

41

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

However, usually database queries are very small compared to the
size of the database. Parameterize by |ϕ|.

41

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

However, usually database queries are very small compared to the
size of the database. Parameterize by |ϕ|.

41

Parameterized Complexity (Upper Bound)

Theorem

One can decide whether G |= ϕ in time O(|G||ϕ|).

42

Evaluation Trees

Proof: We can assume ϕ to be in prenex normal form. Construct an
evaluation tree of size O(|G||ϕ|).

∃x∀y∃zϕ(x, y, z)

. . .v1 v2 v3 vn
∀y∃zϕ(v3, y, z)

. . .v1 v2 v3 vn
∃zϕ(v3, v3, z)

. . .v1 v2 v3 vn
ϕ(v3, v3, v3) 43

Parameterized Complexity (Lower Bound)

Conjecture (based on SETH)

It is believed one cannot decide whether G |= ϕ in time
O(|G|q−1−ε) for any ε > 0 where q is the number of quanti-
fiers of ϕ.

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to a faster algorithm
for many other problems.

On certain graph classes, we can do much better though.

44

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

45

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
Show G ≡q H using Ehrenfeucht–Fraïssé games.

46

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
Show G ≡q H using Ehrenfeucht–Fraïssé games.

46

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
Show G ≡q H using Ehrenfeucht–Fraïssé games.

46

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
Show G ≡q H using Ehrenfeucht–Fraïssé games.

46

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.

Show G ≡q H using Ehrenfeucht–Fraïssé games.

46

Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

The quantifier-rank of a formula is the maximum number of
nested quantifiers.

We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
Show G ≡q H using Ehrenfeucht–Fraïssé games. 46

Ehrenfeucht–Fraïssé Games

G

H

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1h2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).

Duplicator wins if gi∼gj ⇐⇒ hi∼hj for
all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1h2

g2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).

Duplicator wins if gi∼gj ⇐⇒ hi∼hj for
all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1h2

g2 g3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1h2

g2 g3

E

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

h4

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

h4

g4

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

h4

g4

h5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

h4

g4

h5

E
g5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.

47

Ehrenfeucht–Fraïssé Games

G

H

g1

h1

g2

h2h3

g3

h4

g4

h5

E
g5

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

Spoiler picks gi ∈ V (G) or hi ∈ H(G)

Duplicator picks partner vertex in other
graph.

Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game. 47

