Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier
dreier@ac.tuwien.ac.at
Courcelle's theorem is a very powerful tool to solve problems on bounded treewidth. It comes in various flavours.

- MSO_1: base variant,
- MSO_2: edge quantifiers,
- CMSO: parity/modulo counting,
- LinEMSOL: optimization,
- and any combination thereof.
We now want to prove the following.

Courcelle’s Theorem

For a MSO$_1$ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(tw(G), |\varphi|)n$ for some function f.
Proving Courcelle's Theorem

We now want to prove the following.

Courcelle's Theorem

For a MSO_1 formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$ for some function f.

- Historically proven by converting MSO_1-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.
We now want to prove the following.

Courcelle’s Theorem

For a MSO$_1$ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(tw(G), |\varphi|)n$ for some function f.

- Historically proven by converting MSO$_1$-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.

- We prove it using a powerful logic-theorem by Fefermann and Vaught as a blackbox.
Join Nodes

We can assume we are given a nice tree decomposition. If we manage the \textit{join} operation, \textit{introduce} and \textit{forget} are easy.
Fefermann–Vaught

Let H be a graph with boundary v_1, \ldots, v_k. We define q-type($H; v_1, \ldots, v_k$) to be the set of all MSO$_1$-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.
Let H be a graph with boundary v_1, \ldots, v_k. We define $q\text{-type}(H; v_1, \ldots, v_k)$ to be the set of all MSO$_1$-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.

Theorem (Fefermann–Vaught)

Let F and H be graphs with $V(F) \cap V(H) = \{v_1, \ldots, v_k\}$. If we know

- $q\text{-type}(F; v_1, \ldots, v_k)$
- $q\text{-type}(H; v_1, \ldots, v_k)$

then we can compute $q\text{-type}(F \cup H; v_1, \ldots, v_k)$.

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate q-types when joining two subgraphs.
Dynamic Programming

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate q-types when joining two subgraphs.

For bag i (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \ldots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$
Dynamic Programming

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate q-types when joining two subgraphs.

For bag i (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \ldots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

Let r be the root-node. Then $G \models \varphi$ iff $G[V_r] \models \varphi$ iff $M_r(\varphi) = 1$.
We want to decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.
We want to decide whether \(G \models \varphi \) in time \(f(\text{tw}(G), |\varphi|)n \). Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas \(\xi \) of quantifier-rank \(\leq q \) with \(\leq \text{tw}(G) + 1 \) free variables is bounded by some function \(f(\text{tw}(G), |\varphi|) \). This bounds the number table entries \(\xi \) in \(M_i(\xi) \).
We want to decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \text{tw}(G) + 1$ free variables is bounded by some function $f(\text{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- Remove all colors except for the $\leq |\varphi|$ many that occur in φ.

Size of q-types

We want to decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \text{tw}(G) + 1$ free variables is bounded by some function $f(\text{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- Remove all colors except for the $\leq |\varphi|$ many that occur in φ.
- “Normalize” all formulas:

 $$\exists x \ x = x \land \ldots$$
We want to decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \text{tw}(G) + 1$ free variables is bounded by some function $f(\text{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- Remove all colors except for the $\leq |\varphi|$ many that occur in φ.
- “Normalize” all formulas:
 $$\exists x \ x = x$$
We want to decide whether $G \models \varphi$ in time $f(tw(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- Remove all colors except for the $\leq |\varphi|$ many that occur in φ.
- “Normalize” all formulas:
 $$\exists x \ x = x$$

Show the claim by induction.
We want to decide whether $G \models \varphi$ in time $f(\text{tw}(G), |\varphi|)n$. Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \text{tw}(G) + 1$ free variables is bounded by some function $f(\text{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- Remove all colors except for the $\leq |\varphi|$ many that occur in φ.
- “Normalize” all formulas:

$$\exists x \ x = x$$

Show the claim by induction. Base case $q = 0$: There are only $2^{2^{O(k^2 \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.
Show the claim by induction. Base case $q = 0$: There are only $2^{2O(k^2 \cdot |\varphi|)}$ many quantifier-free formulas with $\leq k$ variables.
Show the claim by induction. Base case $q = 0$: There are only $2^{2^{O(k^2 \cdot \| \varphi \|)}}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses).
Show the claim by induction. Base case $q = 0$: There are only $2^{2^{O(k^2 \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are
Show the claim by induction. Base case $q = 0$: There are only $2^{2^{O(k^2 \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
Show the claim by induction. Base case $q = 0$: There are only $2^{O(k^2 \cdot |\varphi|)}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
Show the claim by induction. Base case $q = 0$: There are only $2^{2^{O(k^2 \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
- $x_i \sim x_j$ for $1 \leq i, j \leq k$
Show the claim by induction. Base case $q = 0$: There are only \(2^{2^{O(k^2 \cdot |\varphi|)}} \) many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
- $x_i \sim x_j$ for $1 \leq i, j \leq k$

plus their negations.
Show the claim by induction. Base case $q = 0$: There are only $2^{O(k^2 \cdot |\varphi|)}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
- $x_i \sim x_j$ for $1 \leq i, j \leq k$

plus their negations.

Number of literals: $O(k^2 |\varphi|)$.
Show the claim by induction. Base case $q = 0$: There are only $2^{O(k^2|\varphi|)}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
- $x_i \sim x_j$ for $1 \leq i, j \leq k$

plus their negations.

Number of literals: $O(k^2|\varphi|)$.

Number of clauses (after removing duplicate literals): $2^{O(k^2|\varphi|)}$.
Show the claim by induction. Base case $q = 0$: There are only $2^{O(k^2 \cdot |\varphi|)}$ many quantifier-free formulas with $\leq k$ variables.

We can assume the formula to be in CNF (conjunction of disjunctive clauses). The possible literals are

- $c_i(x_j)$ for $1 \leq i \leq |\varphi|$ and $1 \leq j \leq k$
- $x_i = x_j$ for $1 \leq i, j \leq k$
- $x_i \sim x_j$ for $1 \leq i, j \leq k$

plus their negations.

Number of literals: $O(k^2 |\varphi|)$.

Number of clauses (after removing duplicate literals): $2^{O(k^2 |\varphi|)}$

Number of formulas (after removing duplicate clauses): $2^{2^{O(k^2 |\varphi|)}}$
Next, we bound number of formulas with quantifier-rank \(\leq q \) and \(\leq k \) free variables.
Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.
Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x \xi_1 \land \exists x \xi_4 \land \exists x \xi_8 \land \ldots) \lor$$
$$(\exists x \xi_3 \land \forall x \xi_2 \land \exists x \xi_9 \land \forall x \xi_1 \land \ldots) \lor$$
$$(\exists x \xi_5 \land \forall x \xi_8 \land \ldots) \lor \ldots$$

There are at most 2^{2^q} of them.

In total, the number of formulas is roughly $2 \cdot \cdots \cdot 2^{O(tw(G)^2 \cdot |\varphi|)}$.

This bound cannot be improved much.
Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$\left(\forall x \xi_1 \land \exists x \xi_4 \land \exists x \xi_8 \land \ldots \right) \lor$$

$$\left(\exists x \xi_3 \land \forall x \xi_2 \land \exists x \xi_9 \land \forall x \xi_1 \land \ldots \right) \lor$$

$$\left(\exists x \xi_5 \land \forall x \xi_8 \land \ldots \right) \lor \ldots$$

There are at most 2^{2^l} of them.
Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x \xi_1 \land \exists x \xi_4 \land \exists x \xi_8 \land \ldots) \lor$$

$$(\exists x \xi_3 \land \forall x \xi_2 \land \exists x \xi_9 \land \forall x \xi_1 \land \ldots) \lor$$

$$(\exists x \xi_5 \land \forall x \xi_8 \land \ldots) \lor \ldots$$

There are at most 2^{2^l} of them. In total, the number of formulas is roughly

$$2^{O(tw(G)^2 \cdot |\varphi|)} \cdot 2q.$$
Next, we bound number of formulas with quantifier-rank $\leq q$ and $\leq k$ free variables. Assume we have formulas ξ_1, \ldots, ξ_l with quantifier-rank $\leq q - 1$ and $\leq k + 1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x \xi_1 \land \exists x \xi_4 \land \exists x \xi_8 \land \ldots) \lor$$
$$(\exists x \xi_3 \land \forall x \xi_2 \land \exists x \xi_9 \land \forall x \xi_1 \land \ldots) \lor$$
$$(\exists x \xi_5 \land \forall x \xi_8 \land \ldots) \lor \ldots$$

There are at most 2^{2^l} of them. In total, the number of formulas is roughly

$$2^{O(tw(G)^2 \cdot |\varphi|)}.$$

This bound cannot be improved much.
Remember: For bag i (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \ldots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

We now compute these values bottom-up.
$G[V_i]$ is the empty graph.
$G[V_i]$ is the empty graph.

$M_i(\xi)$: All sentences of quantifier-rank $\leq q$ that hold in the empty graph.
$G[V_i]$ is the empty graph.

$M_i(\xi)$: All sentences of quantifier-rank $\leq q$ that hold in the empty graph.

Simply evaluate them.
Join Nodes

$\{v_1, \ldots, v_k\}$

$\text{bag } i$

$\text{bag } j$

$\text{bag } l$
Join Nodes

$G[V_j] \cong F$

$M_j(\xi) \cong q\text{-type}(F; v_1, \ldots)$

$G[V_l] \cong H$

$M_l(\xi) \cong q\text{-type}(H; v_1, \ldots)$
Join Nodes

\[G[V_i] \cong F \cup H \]

\[M_i(\xi) \cong q\text{-type}(F \cup H; v_1, \ldots) \]

\[G[V_j] \cong F \]

\[M_j(\xi) \cong q\text{-type}(F; v_1, \ldots) \]

\[G[V_l] \cong H \]

\[M_l(\xi) \cong q\text{-type}(H; v_1, \ldots) \]
Introduce Nodes

Theorem (Fefermann–Vaught)

If we know \(\#q\)-type \((F; v_1, \ldots, v_k)\)
and \(\#q\)-type \((H; v_1, \ldots, v_k, v_{k+1})\),
then we can compute \(\#q\)-type \((F \cup H; v_1, \ldots, v_{k+1})\).
Introduce Nodes

\[G[V_j] \cong F \]

\[M_j(\xi) \cong q\text{-type}(F; v_1, \ldots, v_k) \]
Theorem (Fefermann–Vaught)

If we know
\[\# q\text{-type}(F; v_1, \ldots, v_k) \]
then we can compute
\[\# q\text{-type}(H; v_1, \ldots, v_{k+1}) \]

\[G[V_j] \cong F \]
\[M_j(\xi) \cong \]
\[q\text{-type}(F; v_1, \ldots, v_k) \]
Introduce Nodes

\[G[V_i] \cong F \cup H \]
\[M_i(\xi) \cong q\text{-type}(F \cup H; v_1, \ldots, v_{k+1}) \]

\[G[V_j] \cong F \]
\[M_j(\xi) \cong q\text{-type}(F; v_1, \ldots, v_k) \]

\[G[\{v_1, \ldots, v_{k+1}\}] \cong H \]

compute
\[q\text{-type}(H; v_1, \ldots, v_{k+1}) \]
Theorem (Fefermann–Vaught)

If we know

- \(q\text{-type}(F; v_1, \ldots, v_k) \)
- \(q\text{-type}(H; v_1, \ldots, v_k) \)

then we can compute

\(q\text{-type}(F \cup H; v_1, \ldots, v_k) \).

\[G[V_i] \models F \cup H \]
\[M_i(\xi) \models q\text{-type}(F \cup H; v_1, \ldots, v_k+1) \]

\[G[V_j] \models F \]
\[M_j(\xi) \models q\text{-type}(F; v_1, \ldots, v_k) \]

\[G[\{v_1, \ldots, v_k+1\}] \models H \]

compute

\(q\text{-type}(H; v_1, \ldots, v_k+1) \)

bag \(i\)

bag \(j\)
Introduce Nodes

\[G[V_i] \cong F \cup H \]
\[M_i(\xi) \cong \text{type}(F \cup H; v_1, \ldots, v_{k+1}) \]

Theorem (Fefermann-Vaught)

If we know

- \(\text{q-type}(F; v_1, \ldots, v_k) \)
- \(\text{q-type}(H; v_1, \ldots, v_k, v_{k+1}) \)

then we can compute

\(\text{q-type}(F \cup H; v_1, \ldots, v_{k+1}) \).

\[G[\{v_1, \ldots, v_{k+1}\}] \cong H \]

compute

\[\text{q-type}(H; v_1, \ldots, v_{k+1}) \]

\[G[V_j] \cong F \]
\[M_j(\xi) \cong \text{q-type}(F; v_1, \ldots, v_k) \]
Forget Nodes

$G[V_i] = G[V_j]$

$M_j(\xi)$: Formulas over x_1, \ldots, x_{k-1}.

$M_i(\xi)$: Formulas over x_1, \ldots, x_k.

Remove all formulas that mention x_k.

$\{v_1, \ldots, v_{k-1}\}$

$\{v_1, \ldots, v_k\}$

$\text{bag } i$

$\text{bag } j$
$G[V_i] = G[V_j]$
$G[V_i] = G[V_j]$

$M_j(\xi)$: Formulas over x_1, \ldots, x_k.

$M_j(\xi)$
\[G[V_i] = G[V_j] \]

\[M_j(\xi) : \text{Formulas over } x_1, \ldots, x_k. \]

\[M_i(\xi) : \text{Formulas over } x_1, \ldots, x_{k-1}. \]
Forget Nodes

\[G[V_i] = G[V_j] \]

\(M_j(\xi) \): Formulas over \(x_1, \ldots, x_k \).

\(M_i(\xi) \): Formulas over \(x_1, \ldots, x_{k-1} \).

Remove all formulas that mention \(x_k \).
For a MSO_1 formula φ and graph G one can decide whether $G \models \varphi$ in time

$$\underbrace{2 \cdot \ldots \cdot 2}_{2^{O(tw(G)^2 |\varphi|)}}^{O(tw(G)^2 |\varphi|)} n.$$
For a MSO$_1$ formula φ and graph G one can decide whether $G \models \varphi$ in time

$$2 \cdot 2^{O(tw(G)^2 |\varphi|)} 2^{n} \cdot 2|\varphi|$$

Can this be improved?
For a MSO$_1$ formula φ and graph G one can decide whether $G \models \varphi$ in time

$$2^{2 \cdot 2^{O(tw(G)^2 |\varphi|)}} \cdot 2^{2|\varphi|} n.$$

Can this be improved?

No. It cannot be done without such a tower of powers (Frick, Grohe 2004).
Usually, Courcelle’s theorem is considered a theoretical classification tool.
Usually, Courcelle’s theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.
Implementations

Usually, Courcelle’s theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.

- Doing it naively has horrible, horrible run time …
Usually, Courcelle’s theorem is considered a theoretical classification tool. But it has been implemented by Kneis, Langer, and Rossmanith.

- Doing it naively has horrible, horrible run time …

- By storing “game trees” instead, it becomes feasible
-- More efficient formula for three-coloring; tests whether
-- (R, G, V\setminus (R\cup G)) is a proper three-coloring of the graph

ThreeCol(R, B) :=
 All x (
 (x notin R or x notin B)
 and
 All y (
 ~adj(x,y) or (
 (x notin R or y notin R) and
 (x notin B or y notin B) and
 ((x in R) or (x in B)
 or
 (y in R) or (y in B))
)
)
)
)
We saw the proof for the base variant MSO_1.

By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.

Also we already know how to reduce MSO_2 to MSO_1.

The proof for the optimization variant LinEMSOL works similarly by also keeping track of the largest satisfying assignment.
Proof for Extensions

- We saw the proof for the base variant MSO_1.
- By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.
We saw the proof for the base variant MSO_1.

By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.

Also we already know how to reduce MSO_2 to MSO_1.
Proof for Extensions

- We saw the proof for the base variant MSO_1.
- By swapping in FV theorem for CMSO, we get the proof for the parity/modulo variant CMSO.
- Also we already know how to reduce MSO_2 to MSO_1.
- The proof for the optimization variant LinEMSOL works similarly by also keeping track of the largest satisfying assignment.
How about Dense Graphs?

- A graph containing a clique of size k has treewidth at least $k - 1$.
How about Dense Graphs?

- A graph containing a clique of size k has treewidth at least $k - 1$.
- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.
How about Dense Graphs?

- A graph containing a clique of size k has treewidth at least $k - 1$.

- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.

- Courcelle's theorem for MSO$_1$ also holds for cliquewidth.
How about Dense Graphs?

- A graph containing a clique of size k has treewidth at least $k - 1$.

- There is a width measure *cliquewidth* similar to treewidth for which cliques have width one.

- Courcelle’s theorem for MSO_1 also holds for cliquewidth.

- On the other hand MSO_2 only holds for treewidth.
Cliquewidth $cw(G)$: Minimum number of colors needed to construct G using these operations.

- Creation of new vertex with color i
- Disjoint union of two graphs
- Joining by an edge every vertex with color i to every vertex with color j
- Changing color i to color j
Cliquewidth $cw(G)$: Minimum number of colors needed to construct G using these operations.

Graphs of treewidth w have cliquewidth at most $3 \cdot 2^{w-1}$.

- Disjoint union of two graphs
- Joining by an edge every vertex with color i to every vertex with color j
- Changing color i to color j
Cliquewidth cw(G): Minimum number of colors needed to construct G using these operations.

- Creation of new vertex with color i
- Disjoint union of two graphs
- Joining by an edge every vertex with color i to every vertex with color j
- Changing color i to color j

Graphs of treewidth w have cliquewidth at most $3 \cdot 2^{w-1}$.

Courcelle’s Theorem
For a MSO$_1$ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(cw(G), |\varphi|)n^3$ for some function f.
And Now For Something Completely Different...
Let us go back to the first lecture.
Independent Set on Trees

INDEPENDENTSET can be solved in linear time on trees.

Idea: Root the tree and do dynamic programming. Starting at the leafs, compute for each subtree the maximum size of a solution with and without its root.
This approach can be extended to tree-like graphs (bounded treewidth).
This approach can be extended to tree-like graphs (bounded treewidth).

First main result of the lecture (Courcelle’s theorem): Every problem definable in monadic second-order logic can be solved in linear time on graphs of bounded treewidth.

This includes
- coloring
- independent set
- clique
- dominating set
- feedback vertex set
- hamilton path
- ...

[Diagram of tree-like graph]
How about planar graphs?
Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.
One can decide whether a planar graph has an independent set of size k in time $O(6^k n)$.

\begin{algorithm}
\textbf{IS}(G, k):

 if G is empty return $k == 0$

 find vertex v with degree ≤ 5 in G

 for all $w \in N(v)$:

 if IS($G \setminus N(w)$, $k - 1$) return True

 return False
\end{algorithm}
INDEPENDENTSET is hard on general graphs. However,

- on trees, we can solve it in linear time
- on planar graphs, it is still fixed parameter tractable.

We will observe a similar behaviour for many other problems!
INDEPENDENTSET is hard on general graphs. However,

- on bounded treewidth, we can solve it in linear time
- on nowhere dense graphs, it is still fixed parameter tractable.

We will observe a similar behaviour for many other problems!
Graph Classes

- **Width measures** (treewidth, degree, ...) capture the structure of a graph using *one number*. Sometimes, we may need more numbers to describe something.
Graph Classes

- *Width measures* (treewidth, degree, …) capture the structure of a graph using *one number*. Sometimes, we may need more numbers to describe something.

- From now on, we work with *(infinite)* graph classes.
A class C has **bounded treewidth** if there exists a constant c such that for all $G \in C$ holds $\text{tw}(G) \leq c$.

Attention! Bounded treewidth is a property of graph classes *not* of graphs!

Generally, a class has bounded X if there is a constant c such that for all $G \in C$ holds $X \leq c$.

Assume we have a bounded treewidth class C. On this class, Coucelle’s theorem solves MSO$_1$ formulas in time $f(|\phi|, \text{tw}(G)) n \leq f(|\phi|, c)n = f'(|\phi|)n$.

```bash
|graph_classes|
```

29
A class \mathcal{C} has **bounded treewidth** if there exists a constant c such that for all $G \in \mathcal{C}$ holds $\text{tw}(G) \leq c$.

Attention! **Bounded treewidth** is a property of graph **classes** not of graphs!
A class C has *bounded treewidth* if there exists a constant c such that for all $G \in C$ holds $\text{tw}(G) \leq c$.

Attention! *Bounded treewidth* is a property of graph *classes* not of graphs!

Generally, a class has bounded X if there is a constant c such that for all $G \in C$ holds $X \leq c$.
Graph Classes

- A class \mathcal{C} has **bounded treewidth** if there exists a constant c such that for all $G \in \mathcal{C}$ holds $\text{tw}(G) \leq c$.

- **Attention!** *Bounded treewidth* is a property of graph *classes* not of graphs!

- Generally, a class has bounded X if there is a constant c such that for all $G \in \mathcal{C}$ holds $X \leq c$.

- Assume we have a bounded treewidth class \mathcal{C}. On this class, Coucelle’s theorem solves MSO_1 formulas in time $f(|\varphi|, \text{tw}(G))n \leq f(|\varphi|, c)n = f’(|\varphi|)n$.
Courcelle’s Theorem

Let \mathcal{C} be a graph class with bounded treewidth. There exists a function f (depending on \mathcal{C}!) such that for every MSO$_1$ sentence φ and graph $G \in \mathcal{C}$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.
Courcelle's Theorem

Let \mathcal{C} be a graph class with bounded treewidth. There exists a function f (depending on \mathcal{C}!) such that for every MSO$_1$ sentence φ and graph $G \in \mathcal{C}$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$.

If a fixed problem is expressible by some formula φ, then $f(|\varphi|) = O(1)$.

Courcelle's Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide MSO$_1$-expressible problems in linear time.
Each box represents a property of graph classes.

What do the arrows mean?
Sparsity

What do these graphs have in common?

- Graphs with treewidth w have at most wn edges.
- Planar graphs have at most $3n$ edges.
- Graphs with constant degree have $O(n)$ edges.

Problems seem to be easier if the graphs are sparse!
What do these graphs have in common?
- Graphs with treewidth w have at most wn edges.
- Planar graphs have at most $3n$ edges.
- Graphs with constant degree have $O(n)$ edges.

Problems seem to be easier if the graphs are *sparse*!

What does it really mean to be sparse?
Every graph is “sparse” if you subdivide the edges.
Every graph is “sparse” if you subdivide the edges.

subdivision adds $1/2$ vertex per edge
Every graph is “sparse” if you subdivide the edges. Subdivision adds $1/2$ vertex per edge.

Do we consider such subdivisions sparse?

- Yes: Degeneracy
- No: Bounded expansion and nowhere dense graph classes
Every graph is “sparse” if you subdivide the edges.

Do we consider such subdivisions sparse?

- Yes: Degeneracy
- No: Bounded expansion and nowhere dense graph classes

We say “No” because it has nicer algorithmic theory.
Inclusion Diagrams

Each box represents a property of graph classes.

What do the arrows mean?
Inclusion Diagrams

Each box represents a property of graph classes.

What do the arrows mean?
Many Sparse Graph Classes

- Bounded expansion
- Excluding a topological minor
- Excluding a minor
- Bounded treewidth
- Bounded treedepth
- Star forests
- Planar
- Outerplanar
- Locally bounded treewidth
- Locally excluding a minor
- Bounded degree
- Linear forests
- Bounded genus
- Nowhere dense

Figure by Felix Reidl
For sparse graphs, MSO_1 is too powerful. For example Independent Set, Coloring, Dominating Set are NP-complete on planar graphs or bounded degree graph classes. However, *first-order logic* fits just right.
For sparse graphs, MSO_1 is too powerful. For example Independent Set, Coloring, Dominating Set are NP-complete on planar graphs or bounded degree graph classes. However, \textit{first-order logic} fits just right.

Main Result (roughly)

Let \mathcal{C} be a sparse graph class. For an FO formula φ and graph $G \in \mathcal{C}$ one can decide whether $G \models \varphi$ in time $f(|\varphi|)n$ for some function f.
For a given signature \(\tau \), first-order logic has ...

- element-variables \((x, y, z, \ldots)\)
- the equality relation \(=\) as well as the relations from \(\tau\).
- quantifiers \(\exists\) and \(\forall\), as well as operators \(\land\), \(\lor\) and \(\neg\).

We mostly work on colored undirected graphs with \(\tau = \{\sim, c_1, c_2, \ldots\}\). Here, we call the logic FO.
Can these properties be expressed in FO logic?
Expressiveness

Can these properties be expressed in FO logic?

- There exists an independent set of size k.

 $\exists x_1 \ldots \exists x_k \neg x_i \sim x_j \land \neg x_i = x_j$

- There exists a dominating set of size k.

 $\exists x_1 \ldots \exists x_k \forall y \lor y \sim x_i \lor y = x_i$

- The number of vertices is even.

 No.

- The graph is connected.

 No.
Expressiveness

Can these properties be expressed in FO logic?

- There exists an independent set of size k.

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

- There exists a dominating set of size k.

- The number of vertices is even.

- No.

- The graph is connected.

- No.
Expressiveness

Can these properties be expressed in FO logic?

- There exists an independent set of size k.
 \[
 \exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j
 \]

- There exists a dominating set of size k.

The number of vertices is even. No.

The graph is connected. No.
Can these properties be expressed in FO logic?

- There exists an independent set of size k.

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

- There exists a dominating set of size k.

$$\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i$$
Can these properties be expressed in FO logic?

- There exists an independent set of size \(k \).
 \[
 \exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j
 \]

- There exists a dominating set of size \(k \).
 \[
 \exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i
 \]

- The number of vertices is even.
Can these properties be expressed in FO logic?

- There exists an independent set of size k.

\[
\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j
\]

- There exists a dominating set of size k.

\[
\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i
\]

- The number of vertices is even. No.
Expressiveness

Can these properties be expressed in FO logic?

- There exists an independent set of size k.

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

- There exists a dominating set of size k.

$$\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.
- The graph is connected.
Can these properties be expressed in FO logic?

- There exists an independent set of size k.

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

- There exists a dominating set of size k.

$$\exists x_1 \ldots \exists x_k \forall y \bigvee_{i} y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.
- The graph is connected. No.
Database languages such as SQL build upon first-order logic.
Database languages such as SQL build upon first-order logic.

- Enumerate all answers to a database query ⇔
 Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.
Database languages such as SQL build upon first-order logic.

- Enumerate all answers to a database query ⇔
 Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.
- Boolean query ⇔ Decide whether $G \models \varphi$.
Database languages such as SQL build upon first-order logic.

- Enumerate all answers to a database query \iff Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.
- Boolean query \iff Decide whether $G \models \varphi$.
- There exist extensions of first-order logic simulating SQL’s COUNT operator.
First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence φ
Question: $G \models \varphi$?
Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence φ

Question: $G \models \varphi$?

First-Order Query Enumeration

Input: Graph G and first-order formula $\varphi(x_1, \ldots, x_k)$

Question: Enumerate all v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.

First-Order Query Counting

Input: Graph G and first-order formula $\varphi(x_1, \ldots, x_k)$

Question: Count number of tuples v_1, \ldots, v_k with $G \models \varphi(v_1, \ldots, v_k)$.

Central Problems

<table>
<thead>
<tr>
<th>First-Order Model-Checking (Query Evaluation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Graph G and first-order sentence φ</td>
</tr>
<tr>
<td>Question: $G \models \varphi$?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First-Order Query Enumeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Graph G and first-order formula $\varphi(x_1, \ldots, x_k)$</td>
</tr>
</tbody>
</table>
| **Question:** Enumerate all v_1, \ldots, v_k with
$G \models \varphi(v_1, \ldots, v_k)$.

<table>
<thead>
<tr>
<th>First-Order Query Counting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: Graph G and first-order formula $\varphi(x_1, \ldots, x_k)$</td>
</tr>
</tbody>
</table>
| **Question:** Count number of tuples v_1, \ldots, v_k with
$G \models \varphi(v_1, \ldots, v_k)$.

40
Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.
Complexity

Theorem (Vardi 1982)
The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

\[\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j \]
Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

\[
\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j
\]

However, usually database queries are very small compared to the size of the database. Parameterize by \(|\varphi|\).
Theorem

One can decide whether $G \models \varphi$ in time $O(|G|^{|\varphi|})$.
Proof: We can assume φ to be in prenex normal form. Construct an evaluation tree of size $O(|G| |\varphi|)$.
Parameterized Complexity (Lower Bound)

Conjecture (based on SETH)

It is believed one cannot decide whether \(G \models \varphi \) in time \(O(|G|^{q-1-\varepsilon}) \) for any \(\varepsilon > 0 \) where \(q \) is the number of quantifiers of \(\varphi \).

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to a faster algorithm for many other problems.

On certain graph classes, we can do much better though.
Expressiveness

Can these properties be expressed in FO logic?

- There exists an independent set of size k.

$$\exists x_1 \ldots \exists x_k \bigwedge_{i \neq j} \neg x_i \sim x_j \land \neg x_i = x_j$$

- There exists a dominating set of size k.

$$\exists x_1 \ldots \exists x_k \forall y \bigvee_i y \sim x_i \lor y = x_i$$

- The number of vertices is even. No.

- The graph is connected. No.
Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?
Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.

Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.

If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G_q and H_q apart. A contradiction.

Show $G_q \equiv_q H_q$ using Ehrenfeucht–Fraïssé games.
Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.

Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G_q and H_q apart. A contradiction.
Certain properties cannot be decided in first-order logic. For example, there is no first-order formula φ such that $G \models \varphi$ iff G is connected. How do we prove that?

- The *quantifier-rank* of a formula is the maximum number of nested quantifiers.
- We write $G \equiv_q H$ if for all first-order sentences φ of quantifier-rank $\leq q$ holds $G \models \varphi \iff H \models \varphi$.
- Show that for every q there is a connected graph G_q and a disconnected graph H_q with $G_q \equiv_q H_q$.
- If there was a formula to decide connectivity it would have quantifier-rank q for some q. But this formula cannot tell G_q and H_q apart. A contradiction.
- Show $G \equiv_q H$ using *Ehrenfeucht–Fraïssé games*.
The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

Theorem

$G \equiv q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$

G

g_1

H
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

Theorem

$G \equiv_H q$ if the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

- **Spoiler** picks $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator** picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).

Theorem $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

\[G \]
\begin{center}
\begin{tikzpicture}

\node[vertex] (g1) at (0,0) {};
\node[vertex] (g2) at (1,0) {};
\node[vertex] (g3) at (2,0) {};
\node[vertex] (g4) at (3,0) {};
\node[vertex] (g5) at (4,0) {};
\node[vertex] (g6) at (5,0) {};
\node[vertex] (g7) at (6,0) {};
\node[vertex] (g8) at (7,0) {};
\node[vertex] (g9) at (8,0) {};
\node[vertex] (g10) at (9,0) {};

\draw (g1) -- (g2);
\draw (g2) -- (g3);
\draw (g3) -- (g4);
\draw (g4) -- (g5);
\draw (g5) -- (g6);
\draw (g6) -- (g7);
\draw (g7) -- (g8);
\draw (g8) -- (g9);
\draw (g9) -- (g10);
\end{tikzpicture}
\end{center}

\[H \]
\begin{center}
\begin{tikzpicture}

\node[vertex] (h1) at (0,0) {};
\node[vertex] (h2) at (1,0) {};
\node[vertex] (h3) at (2,0) {};
\node[vertex] (h4) at (3,0) {};
\node[vertex] (h5) at (4,0) {};
\node[vertex] (h6) at (5,0) {};
\node[vertex] (h7) at (6,0) {};
\node[vertex] (h8) at (7,0) {};
\node[vertex] (h9) at (8,0) {};
\node[vertex] (h10) at (9,0) {};

\draw (h1) -- (h2);
\draw (h2) -- (h3);
\end{tikzpicture}
\end{center}
The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

- **Spoiler picks** $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator picks** partner vertex in other graph.
- **Repeat** q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- **Duplicator wins** if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem

$G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

\[G \]
\[H \]
The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

- **Spoiler** picks $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator** picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- **Duplicator** wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The \(q \)-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs \(G \) and \(H \).

- **Spoiler picks** \(g_i \in V(G) \) or \(h_i \in H(G) \).
- **Duplicator picks** partner vertex in other graph.
- **Repeat** \(q \) times to get \(g_1, \ldots, g_q \in V(G) \) and \(h_1, \ldots, h_q \in V(H) \) (pairwise distinct).
- **Duplicator wins** if
\[
\forall i, j \quad g_i \sim g_j \iff h_i \sim h_j
\]

Theorem \(G \equiv_q H \) iff the Duplicator wins the \(q \)-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

![Diagram of graphs G and H](image)
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem: $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem

$G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- **Spoiler** picks $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator** picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- **Duplicator** wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv_H q \iff$ the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- **Spoiler** picks $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator** picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- **Duplicator wins** if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv q$ H iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
Ehrenfeucht–Fraïssé Games

The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the *Duplicator* and the *Spoiler* is played on two graphs G and H.

- **Spoiler** picks $g_i \in V(G)$ or $h_i \in H(G)$
- **Duplicator** picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- **Duplicator** wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem $G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.
The q-round Ehrenfeucht–Fraïssé game between the Duplicator and the Spoiler is played on two graphs G and H.

- Spoiler picks $g_i \in V(G)$ or $h_i \in H(G)$.
- Duplicator picks partner vertex in other graph.
- Repeat q times to get $g_1, \ldots, g_q \in V(G)$ and $h_1, \ldots, h_q \in V(H)$ (pairwise distinct).
- Duplicator wins if $g_i \sim g_j \iff h_i \sim h_j$ for all i, j.

Theorem

$G \equiv_q H$ iff the Duplicator wins the q-round Ehrenfeucht–Fraïssé game.