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Summary

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

# MSO1: base variant,
# MSO2: edge quantifiers,
# CMSO: parity/modulo counting,
# LinEMSOL: optimization,
# and any combination thereof.
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Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

# Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

# We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.
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Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

F H

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.
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Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F ) ∩ V (H) = {v1, . . . , vk}.
If we know
# q-type(F ; v1, . . . , vk)
# q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk).
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Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.
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Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), |ϕ|)n.
Dynamic programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

# Remove all colors except for the≤ |ϕ|many that occur in ϕ.
# “Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.
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Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses).

The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k

# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k

# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.

Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).

Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)

8



Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k2·|ϕ|) many quantifier-free formulas with≤ k variables.

We can assume the formula to be in CNF (conjunction of
disjunctive clauses). The possible literals are

# ci(xj) for 1 ≤ i ≤ |ϕ| and 1 ≤ j ≤ k
# xi = xj for 1 ≤ i, j ≤ k
# xi∼xj for 1 ≤ i, j ≤ k

plus their negations.
Number of literals: O(k2|ϕ|).
Number of clauses (after removing duplicate literals): 2O(k2|ϕ|)

Number of formulas (after removing duplicate clauses): 22O(k2|ϕ|)
8



Size of q-types
Next, we bound number of formulas with quantifier-rank≤ q and
≤ k free variables.

Assume we have formulas ξ1, . . . , ξl with
quantifier-rank≤ q − 1 and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)2·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.
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Dynamic Programming

Remember: For bag i (with boundary v1, . . . , vk) we store for each
formula ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

We now compute these values bottom-up.
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Leaf Nodes

∅ bag i

G[Vi] is the empty graph.

Mi(ξ): All sentences of quantifier-rank≤ q
that hold in the empty graph.
Simply evaluate them.
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Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

bag j bag l

bag i
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Introduce Nodes

v1, . . . , vk+1

v1, . . . , vk bag j

bag i

Theorem (Fefermann–Vaught)

If we know
# q-type(F ; v1, . . . , vk)
# q-type(H; v1, . . . , vk

, vk+1

)

then we can compute
q-type(F ∪H; v1, . . . , vk

, vk+1

).
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Forget Nodes

v1, . . . , vk−1

v1, . . . , vk bag j

bag i

Mj(ξ)

G[Vi] = G[Vj ]

Mj(ξ): Formulas over x1, . . . , xk .
Mi(ξ): Formulas over x1, . . . , xk−1.
Remove all formulas that mention xk .
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Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15



Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15



Final Result

For a MSO1 formula ϕ and graph G one can decide whether G |= ϕ

in time

2·
··
2O(tw(G)2|ϕ|)︸ ︷︷ ︸

2|ϕ|

n.

Can this be improved?

No. It cannot be done without such a tower of powers
(Frick, Grohe 2004).

15



Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool.

But it has been implemented by Kneis, Langer,
and Rossmanith.

# Doing it naively has horrible, horrible run time . . .

# By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso


Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

# Doing it naively has horrible, horrible run time . . .

# By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso


Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

# Doing it naively has horrible, horrible run time . . .

# By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso


Implementations

Usually, Courcelle’s theorem is considered a theoretical
classification tool. But it has been implemented by Kneis, Langer,
and Rossmanith.

# Doing it naively has horrible, horrible run time . . .

# By storing “game trees” instead, it becomes feasible
https://github.com/sequoia-mso.

16

https://github.com/sequoia-mso


How to formulate Problems for Sequoia

-- More efficient formula for three-coloring; tests whether
-- (R, G, V\setminus (R\cup G)) is a proper three-coloring of the graph

ThreeCol(R, B) :=
All x (

(x notin R or x notin B)
and

All y (
~adj(x,y) or (

(x notin R or y notin R) and
(x notin B or y notin B) and
((x in R) or (x in B)

or
(y in R) or (y in B))

)
)

)

17



Proof for Extensions

# We saw the proof for the base variant MSO1.

# By swapping in FV theorem for CMSO, we get the proof for
the parity/modulo variant CMSO.

# Also we already know how to reduce MSO2 to MSO1.

# The proof for the optimization variant LinEMSOL works
similarly by also keeping track of the largest satisfying
assignment.

18
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How about Dense Graphs?

# A graph containing a clique of size k has treewidth at least
k − 1.

# There is a width measure cliquewidth similar to treewidth for
which cliques have width one.

# Courcelle’s theorem for MSO1 also holds for cliquewidth.

# On the other hand MSO2 only holds for treewidth.
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Cliquewidth

Cliquewidth cw(G): Minimum
number of colors needed to con-
struct G using these operations.

# Creation of new vertex with
color i

# Disjoint union of two graphs

# Joining by an edge every
vertex with color i to every
vertex with color j

# Changing color i to color j

Graphs of treewidth w have cliquewidth at most 3 · 2w−1.

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(cw(G), |ϕ|)n3 for some function f .
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And Now For Something Completely Different...

21



Let us go back to the first lecture.

22



Independent Set on Trees

INDEPENDENTSET can be solved in linear time on trees.

Idea: Root the tree and do dynamic programming. Starting at the
leafs, compute for each subtree the maximum size of a solution
with and without its root.

23



First Main Result

# This approach can be extended to tree-like graphs (bounded
treewidth).

# First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

# This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .
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Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.
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Algorithm

One can decide whether a planar graph has an independent set of
size k in time O(6kn).

IS(G, k):
if G is empty return k == 0

find vertex v with degree≤ 5 in G
for all w ∈ N(v):

if IS(G \N(w), k − 1) return True
return False

26



Summary

INDEPENDENTSET is hard on general graphs. However,

# on trees, we can solve it in linear time
# on planar graphs, it is still fixed parameter tractable.

trees

planar graphs
general graphs

We will observe a similar behaviour for many other problems!
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Summary

INDEPENDENTSET is hard on general graphs. However,

# on bounded treewidth, we can solve it in linear time
# on nowhere dense graphs, it is still fixed parameter tractable.

bounded treewidth

nowhere dense
general graphs

We will observe a similar behaviour for many other problems!
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Graph Classes

# Width measures (treewidth, degree, . . . ) capture the structure of
a graph using one number. Sometimes, we may need more
numbers to describe something.

# From now on, we work with (infinite) graph classes.
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Graph Classes

# A class C has bounded treewidth if there exists a constant c such
that for all G ∈ C holds tw(G) ≤ c.

# Attention! Bounded treewidth is a property of graph classes not
of graphs!

# Generally, a class has bounded X if there is a constant c such
that for all G ∈ C holds X ≤ c.

# Assume we have a bounded treewidth class C. On this class,
Coucelle’s theorem solves MSO1 formulas in time
f(|ϕ|, tw(G))n ≤ f(|ϕ|, c)n = f ′(|ϕ|)n.
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Restating Courcelle

Courcelle’s Theorem

Let C be a graph class with bounded treewidth. There exsists
a function f (depending on C!) such that for every MSO1 sen-
tence ϕ and graph G ∈ C one can decide whether G |= ϕ in
time f(|ϕ|)n.

If a fixed problem is expressible by some formula ϕ, then
f(|ϕ|) = O(1).

Courcelle’s Theorem (most succinct formulation)

On graph classes with bounded treewidth, one can decide
MSO1-expressible problems in linear time.
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Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Forests

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

31



Sparsity

# What do these graphs have in common?
◦ Graphs with treewidth w have at most wn edges.
◦ Planar graphs have at most 3n edges.
◦ Graphs with constant degree have O(n) edges.

# Problems seem to be easier if the graphs are sparse!
# What does it really mean to be sparse?
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Sparsity

# Every graph is “sparse” if you subdivide the edges.

# Do we consider such subdivisions sparse?
◦ Yes: Degeneracy
◦ No: Bounded expansion and nowhere dense graph classes

# We say “No” because it has nicer algorithmic theory.
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subdivision adds 1/2
vertex per edge
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Inclusion Diagrams

Each box represents a
property of graph classes.

What do the arrows mean?

Forests

Nowhere
Dense

Planar
Graphs

Bounded
Degree

Bounded
Treewidth

Bounded
Expansion

Locally
Bounded
Treewidth
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Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a 
topological minor

Bounded expansion

Outerplanar

Planar

Bounded 
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding 
a minor

Forests

r

rr

∇∇ Locally bounded 
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
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First-Order Logic

For sparse graphs, MSO1 is too powerful. For example Independent
Set, Coloring, Dominating Set are NP-complete on planar graphs
or bounded degree graph classes. However, first-order logic fits just
right.

Main Result (roughly)

Let C be a sparse graph class. For an FO formula ϕ and graph
G ∈ C one can decide whether G |= ϕ in time f(|ϕ|)n for
some function f .
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First-Order Logic

For a given signature τ , first-order logic has . . .

# element-variables (x, y, z, . . . )
# the equality relation = as well as the relations from τ .
# quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic FO.
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Expressiveness

Can these properties be expressed in FO logic?

# There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

# There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# The number of vertices is even. No.
# The graph is connected. No.
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Connection to Database Queries

Database languages such as SQL build upon first-order logic.

# Enumerate all answers to a database query⇔
Enumerate all v1, . . . , vk with G |= ϕ(v1, . . . , vk).

# Boolean query⇔ Decide whether G |= ϕ.
# There exist extensions of first-order logic simulating SQL’s

COUNT operator.

39
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Central Problems

First-Order Model-Checking (Query Evaluation)

Input: Graph G and first-order sentence ϕ
Question: G |= ϕ?

First-Order Query Enumeration

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Enumerate all v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

First-Order Query Counting

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Count number of tuples v1, . . . , vk with

G |= ϕ(v1, . . . , vk).
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Question: Enumerate all v1, . . . , vk with

G |= ϕ(v1, . . . , vk).

First-Order Query Counting

Input: Graph G and first-order formula ϕ(x1, . . . , xk)
Question: Count number of tuples v1, . . . , vk with

G |= ϕ(v1, . . . , vk). 40



Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-complete.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

However, usually database queries are very small compared to the
size of the database. Parameterize by |ϕ|.
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Parameterized Complexity (Upper Bound)

Theorem

One can decide whether G |= ϕ in time O(|G||ϕ|).
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Evaluation Trees

Proof: We can assume ϕ to be in prenex normal form. Construct an
evaluation tree of size O(|G||ϕ|).

∃x∀y∃zϕ(x, y, z)

. . .v1 v2 v3 vn
∀y∃zϕ(v3, y, z)

. . .v1 v2 v3 vn
∃zϕ(v3, v3, z)

. . .v1 v2 v3 vn
ϕ(v3, v3, v3) 43



Parameterized Complexity (Lower Bound)

Conjecture (based on SETH)

It is believed one cannot decide whether G |= ϕ in time
O(|G|q−1−ε) for any ε > 0 where q is the number of quanti-
fiers of ϕ.

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to a faster algorithm
for many other problems.

On certain graph classes, we can do much better though.
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Expressiveness

Can these properties be expressed in FO logic?

# There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i 6=j

¬xi ∼ xj ∧ ¬xi = xj

# There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

y ∼ xi ∨ y = xi

# The number of vertices is even. No.
# The graph is connected. No.
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Ehrenfeucht–Fraïssé Games

Certain properties cannot be decided in first-order logic. For
example, there is no first-order formula ϕ such that G |= ϕ iff G is
connected. How do we prove that?

# The quantifier-rank of a formula is the maximum number of
nested quantifiers.

# We write G ≡q H if for all first-order sentences ϕ of
quantifier-rank≤ q holds G |= ϕ ⇐⇒ H |= ϕ.

# Show that for every q there is a connected graph Gq and a
disconnected graph Hq with Gq ≡q Hq .

# If there was a formula to decide connectivity it would have
quantifier-rank q for some q. But this formula cannot tell Gq

and Hq apart. A contradiction.
# Show G ≡q H using Ehrenfeucht–Fraïssé games.
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Ehrenfeucht–Fraïssé Games

G

H

The q-round Ehrenfeucht–Fraïssé game between the Duplicator
and the Spoiler is played on two graphs G and H .

# Spoiler picks gi ∈ V (G) or hi ∈ H(G)

# Duplicator picks partner vertex in other
graph.

# Repeat q times to get g1, . . . , gq ∈ V (G)

and h1, . . . , hq ∈ V (H) (pairwise distinct).
# Duplicator wins if gi∼gj ⇐⇒ hi∼hj for

all i, j.

Theorem

G ≡q H iff the Duplicator wins the q-round Ehrenfeucht–
Fraïssé game.
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