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Reminder: Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V ) and

# every vertex v ∈ V is contained in some bag,
# every edge uv ∈ V is contained in some bag,
# for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G
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Reminder: Treewidth

# Choose an arbitrary bag r as root and
orient the tree accordingly.

# For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

3



Reminder: Logic

For a given signature τ , monadic second-order logic has . . .

# element-variables (x, y, z, . . . ) and set-variables (X,Y, Z, . . . )
# relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
# quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

If ϕ is a sentence (a formula without free variables), we write
G |= ϕ to indicate that ϕ holds on G (i.e., G is a model of ϕ).
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Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.
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Courcelle’s Theorem

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Assume a problem is expressible by a sentence of length k. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem (alternative)

Every graph problem expressible in MSO1 can be solved in
time g(tw(G))n for some function f .

Proof: complicated, later on
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3-Coloring

3-COLORING can be solved in time g(tw(G))n.

How do we prove this?

We write down a MSO1 sentence ϕ such
that for every graph G holds G |= ϕ iff G is 3-colorable.

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)
Courcelle: This formula can be evaluated in time f(tw(G), 100)n.
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Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some
function f .

Problem?
Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO1.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).
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Allowing Edge Quantification

We consider the more powerful logic MSO2.

# We allow quantification over edges, vertices, sets of edges or
sets of vertices.

# To be more readable, we use the letters
◦ e, f, . . . for edges,
◦ u, v, . . . for vertices,
◦ E,F, . . . or sets of edges,
◦ U, V, . . . for sets of vertices.

# A relation u∼v if two vertices are connected.
# A relation inc(u, e) if a vertex u is incident with an edge e.

9



Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”
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Courcelle’s Theorem

Courcelle’s Theorem (Edge Set Quantification)

For a MSO2 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

For an MSO2 sentence ϕ and a graph G, we construct an MSO1

sentence ϕ′ and a graph G′ such that

G |= ϕ ⇐⇒ G′ |= ϕ′.

What else do we want/need?

# tw(G′) = tw(G)

# n′ = O(tw(G)n)

# |ϕ′| = g(|ϕ|)
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Proof

⇓
G with treewidth w

G′ with treewidth w

# G′: Color vertices violet and subdivide edges
using yellow vertices.

◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

# ϕ′: Relativize quantifiers
◦ ∃v ψ  ∃v violet(v) ∧ ψ,
◦ ∃eψ  ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v  ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e.
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Why MSO1?

If we can also do model-checking for MSO2, why do we care about
MSO1?

# MSO2 model-checking is a simple corollary.
# MSO2 is hard on dense graphs, while MSO1 is not.
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Optimization

So far, we know how to deal with yes/no-problems such as

# Is there a 3-coloring?
# Is there a Hamilton cycle?

How do we deal with optimization problems such as

# is there an independent set of size at least k?
# is there a dominating set of size at most k?
# is there a vertex cover of size at most k?
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Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?
Formula very long, since k can be as large as n.
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Optimization Theorem

Optimization Theorem (Courcelle, Makowsky, Rotics 2000)

For a MSO1 formula ϕ(X) and graph G one can compute in
time f(tw(G), |ϕ|)n a set S∗ ⊆ V (G) such that G |= ϕ(S∗)

and
|S∗| = max{|S| : G |= ϕ(S), S ⊆ V (G)}

or
|S∗| = min{|S| : G |= ϕ(S), S ⊆ V (G)}

(or get the answer that no such S∗ exists).
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Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

By finding a set S∗ that maximizes

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
,

and then checking if |S|∗ ≥ k.
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Parity

Can we express this property in MSO1 (or MSO2)?

# “G has an even number of green vertices”

No, but we can express it in CMSO1:

# Allow quantifiers #k,mxϕ

# “There are, modulo m, exactly k elements x satisfying ϕ”
# Property expressed by formula #0,2x green(x).
# Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18
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Summary

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

# MSO1: base variant,
# MSO2: edge quantifiers,
# CMSO: parity/modulo counting,
# LinEMSOL: optimization,
# and any combination thereof.
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Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

# Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

# We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.
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Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

F H

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.
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Independent set: store how independent sets intersect the boundary
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Observation
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then we can compute in F ∪ H how subgraphs of size ≤ q
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Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F ) ∩ V (H) = {v1, . . . , vk}.
If we know
# q-type(F ; v1, . . . , vk)
# q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk).
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Fefermann–Vaught (Classical)

The “boundaried version” of Fefermann–Vaught is a direct
consequence of the “classical version”.
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Fefermann–Vaught (Classical)

F H

q-type(H) is the set of all MSO1-sentences ξ of quantifier-rank
≤ q with H |= ξ.

Theorem (Classical Fefermann–Vaught)

Let F and H be graphs with V (F ) ∩ V (H) = ∅.
Then q-type(F ∪ H) is complexity determined by (and can
be computed from)
# q-type(F ),
# q-type(H).
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Reduction

# Proof that classical
version implies boundaried
version.

# q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

# q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .
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Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.
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Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

# Remove all colors except for the≤ |ϕ|many that occur in ϕ.
# “Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.
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Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.
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Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.
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