Algorithmic Meta-Theorems

192.122 WS21/22 Jan Dreier dreier@ac.tuwien.ac.at

1

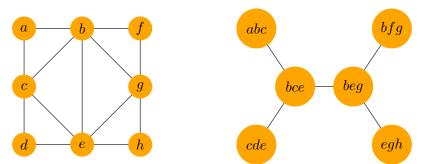
Reminder: Treewidth

A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree

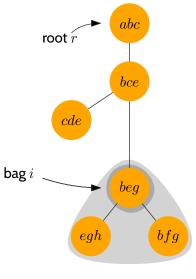
Width of decomposition: maximum bag size -1

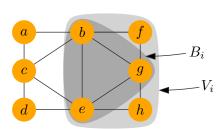
Treewidth of G (tw(G)): minimum width of a decomposition of G



Reminder: Treewidth

- Choose an arbitrary bag r as root and orient the tree accordingly.
- For bag *i* let B_i be the vertices of G contained in *i* and V_i be the vertices contained in *i* or a successor of *i*.





For a given signature τ , monadic second-order logic has ...

- \bigcirc element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equality) and $x \in X$ (membership), as well as the relations from τ .
- $\, \bigcirc \,$ quantifiers \exists and \forall , as well as operators \wedge, \vee and \neg

We mostly work on colored undirected graphs with $\tau = \{\sim, c_1, c_2, \dots\}$. Here, we call the logic MSO₁.

If φ is a sentence (a formula without free variables), we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ).

MSO1 Model-Checking Problem

Input:Graph G and MSO1-sentence φ Question: $G \models \varphi$?

MSO1 Model-Checking Problem		
Input:	Graph G and MSO ₁ -sentence φ	
Question:	$G \models \varphi$?	

What is the complexity of the problem?

MSO_1 Model-Checking Problem		
Input:	Graph G and MSO ₁ -sentence φ	
Question:	$G \models \varphi$?	

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO₁ Model-Checking is PSPACE-complete.

MSO1 Model-Checking Problem		
Input:	Graph G and MSO ₁ -sentence φ	
Question:	$G \models \varphi$?	

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO₁ Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by $|\varphi|$?

MSO_1 Model-Checking Problem		
Input:	Graph G and MSO ₁ -sentence φ	
Question:	$G \models \varphi$?	

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO₁ Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by $|\varphi|$?

Parameterized MSO₁ Model-Checking is paraNP-complete.

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

Assume a problem is expressible by a sentence of length k. Then we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

Assume a problem is expressible by a sentence of length k. Then we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle's Theorem (alternative)

Every graph problem expressible in MSO_1 can be solved in time g(tw(G))n for some function f.

For a MSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

Assume a problem is expressible by a sentence of length k. Then we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle's Theorem (alternative)

Every graph problem expressible in MSO_1 can be solved in time g(tw(G))n for some function f.

Proof: complicated, later on

3-Coloring

3-COLORING can be solved in time g(tw(G))n.

How do we prove this?

3-Coloring

3-COLORING can be solved in time $g(\mathsf{tw}(G))n$.

How do we prove this? We write down a MSO₁ sentence φ such that for every graph *G* holds $G \models \varphi$ iff *G* is 3-colorable.

3-COLORING can be solved in time $g(\mathsf{tw}(G))n$.

How do we prove this? We write down a MSO₁ sentence φ such that for every graph *G* holds $G \models \varphi$ iff *G* is 3-colorable.

$$\begin{split} \varphi &\equiv \exists R \exists G \exists B \\ \left(\forall xx \in R \lor x \in G \lor x \in B \right) \\ &\wedge \left(\forall x \neg (x \in R \land x \in G) \land \neg (x \in G \land x \in B) \land \neg (x \in R \land x \in B) \right) \\ &\wedge \left(\forall x \forall y \left((x \in R \land y \in R) \lor (x \in G \land y \in G) \lor (x \in B \land y \in B) \right) \\ &\rightarrow \neg x \sim y \right) \end{split}$$

Courcelle: This formula can be evaluated in time f(tw(G), 100)n.

HAMILTONCYCLE can be solved in time $f(\mathsf{tw}(G))n$ for some function f.

HAMILTONCYCLE can be solved in time $f(\mathsf{tw}(G))n$ for some function f.

Problem?

Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO₁.

HAMILTONCYCLE can be solved in time $f(\mathsf{tw}(G))n$ for some function f.

Problem?

Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO₁.

Solution: We extend the logic (and use the fact that subdividing edges of a graph does not increase the treewidth).

We consider the more powerful logic MSO_2 .

- We allow quantification over edges, vertices, sets of edges or sets of vertices.
- To be more readable, we use the letters
 - $\circ \ e, f, \ldots$ for edges,
 - $\circ \ u, v, \dots$ for vertices,
 - $\circ \ E, F, \ldots \ {\rm or \ sets} \ {\rm of \ edges}$,
 - $\circ \ U,V,\ldots \text{ for sets of vertices.}$
- \bigcirc A relation $u \sim v$ if two vertices are connected.
- \bigcirc A relation inc(u, e) if a vertex u is incident with an edge e.

$\varphi_{\mathsf{Hamilton}} = \exists E \, \varphi_{\mathsf{cycle \, cover}}(E) \land \varphi_{\mathsf{connected}}(E)$

$$\varphi_{\mathsf{Hamilton}} = \exists E \, \varphi_{\mathsf{cycle cover}}(E) \land \varphi_{\mathsf{connected}}(E)$$

 $\varphi_{\rm cycle\, cover}(E) =$

$$\varphi_{\mathsf{Hamilton}} = \exists E \, \varphi_{\mathsf{cycle cover}}(E) \land \varphi_{\mathsf{connected}}(E)$$

$$\varphi_{\text{cycle cover}}(E) =$$

$$\forall v \exists e_1 \exists e_2 e_1 \neq e_2 \land \text{inc}(e_1, v) \land \text{inc}(e_2, v)$$

$$\land \neg \exists e_3 e_3 \neq e_1 \land e_3 \neq e_2 \land \text{inc}(e_3, v)$$

$$\varphi_{\mathsf{Hamilton}} = \exists E \, \varphi_{\mathsf{cycle cover}}(E) \land \varphi_{\mathsf{connected}}(E)$$

$$\begin{split} \varphi_{\text{cycle cover}}(E) &= \\ \forall v \, \exists e_1 \, \exists e_2 \, e_1 \neq e_2 \wedge \operatorname{inc}(e_1, v) \wedge \operatorname{inc}(e_2, v) \\ \wedge \neg \exists e_3 \, e_3 \neq e_1 \wedge e_3 \neq e_2 \wedge \operatorname{inc}(e_3, v) \end{split}$$

 $\varphi_{\mathsf{connected}}(E) =$

$$\varphi_{\mathsf{Hamilton}} = \exists E \, \varphi_{\mathsf{cycle cover}}(E) \land \varphi_{\mathsf{connected}}(E)$$

$$\begin{split} \varphi_{\text{cycle cover}}(E) &= \\ \forall v \, \exists e_1 \, \exists e_2 \, e_1 \neq e_2 \wedge \operatorname{inc}(e_1, v) \wedge \operatorname{inc}(e_2, v) \\ \wedge \neg \exists e_3 \, e_3 \neq e_1 \wedge e_3 \neq e_2 \wedge \operatorname{inc}(e_3, v) \end{split}$$

 $\varphi_{\text{connected}}(E) =$

"For every partition of G[E] in two halfs, there is an edge between these halfs"

For a MSO₂ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

For a MSO₂ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

For an MSO₂ sentence φ and a graph G, we construct an MSO₁ sentence φ' and a graph G' such that

$$G\models\varphi\iff G'\models\varphi'.$$

For a MSO₂ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

For an MSO₂ sentence φ and a graph G, we construct an MSO₁ sentence φ' and a graph G' such that

$$G \models \varphi \iff G' \models \varphi'.$$

What else do we want/need?

For a MSO₂ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

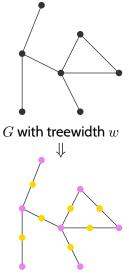
For an MSO₂ sentence φ and a graph G, we construct an MSO₁ sentence φ' and a graph G' such that

$$G \models \varphi \iff G' \models \varphi'.$$

What else do we want/need?

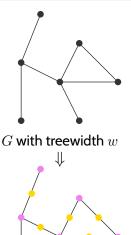
$$\bigcirc \operatorname{\mathsf{tw}}(G') = \operatorname{\mathsf{tw}}(G)$$
$$\bigcirc n' = O(\operatorname{\mathsf{tw}}(G)n)$$
$$\bigcirc |\varphi'| = g(|\varphi|)$$

○ *G'*: Color vertices violet and subdivide edges using yellow vertices.

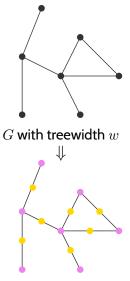


 G^\prime with treewidth w

- *G'*: Color vertices violet and subdivide edges using yellow vertices.
 - Does not increase treewidth: When subdividing uv with vertex e, add bag uve below bag containing uv.



- *G*': Color vertices violet and subdivide edges using yellow vertices.
 - Does not increase treewidth: When subdividing uv with vertex e, add bag uve below bag containing uv.
 - Size n' stays bounded: Every graph with treewidth w has O(wn) edges.

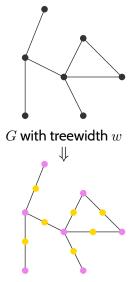


 G^\prime with treewidth w

- *G'*: Color vertices violet and subdivide edges using yellow vertices.
 - Does not increase treewidth: When subdividing uv with vertex e, add bag uve below bag containing uv.
 - Size n' stays bounded: Every graph with treewidth w has O(wn) edges.

$\bigcirc \varphi'$: Relativize quantifiers

- $\circ \ \exists v \ \psi \rightsquigarrow \exists v \ {\rm violet}(v) \land \psi,$
- $\circ \ \exists e \ \psi \rightsquigarrow \exists v \ \mathbf{yellow}(e) \land \psi,$
- o ...



- *G'*: Color vertices violet and subdivide edges using yellow vertices.
 - Does not increase treewidth: When subdividing uv with vertex e, add bag uve below bag containing uv.
 - \circ Size n' stays bounded: Every graph with treewidth w has O(wn) edges.

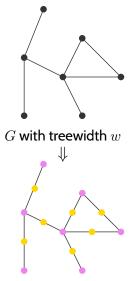
$\bigcirc \varphi'$: Relativize quantifiers

- $\exists v \psi \rightsquigarrow \exists v \operatorname{violet}(v) \land \psi$,
- $\circ \ \exists e \ \psi \rightsquigarrow \exists v \ \mathbf{yellow}(e) \land \psi,$

o ...

and replace relations

- $u \sim v \rightsquigarrow \exists e u \sim e \land e \sim v$,
- $\operatorname{inc}(u, e) \rightsquigarrow u \sim e$.



G' with treewidth w

If we can also do model-checking for MSO₂, why do we care about MSO₁?

- MSO₂ model-checking is a simple corollary.
- \bigcirc MSO₂ is hard on dense graphs, while MSO₁ is not.

So far, we know how to deal with yes/no-problems such as

- Is there a 3-coloring?
- Is there a Hamilton cycle?

So far, we know how to deal with yes/no-problems such as

- Is there a 3-coloring?
- Is there a Hamilton cycle?

How do we deal with optimization problems such as

- is there an independent set of size at least *k*?
- is there a dominating set of size at most k?
- is there a vertex cover of size at most *k*?

X is independent set in G iff $G\models\varphi(X)$ with

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big).$$

X is independent set in G iff $G\models\varphi(X)$ with

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big).$$

Independent set of size at least k expressed by

X is independent set in G iff $G \models \varphi(X)$ with

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big).$$

Independent set of size at least k expressed by

$$\exists X\varphi(X) \land \exists x_1 \ldots \exists x_k \bigl(\bigwedge_i x_i \in X \land \bigwedge_{i \neq j} x_i \neq x_j\bigr).$$

X is independent set in G iff $G \models \varphi(X)$ with

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big).$$

Independent set of size at least k expressed by

$$\exists X\varphi(X) \land \exists x_1 \ldots \exists x_k \bigl(\bigwedge_i x_i \in X \land \bigwedge_{i \neq j} x_i \neq x_j\bigr).$$

What is the problem?

X is independent set in G iff $G\models\varphi(X)$ with

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big).$$

Independent set of size at least k expressed by

$$\exists X\varphi(X) \land \exists x_1 \ldots \exists x_k \bigl(\bigwedge_i x_i \in X \land \bigwedge_{i \neq j} x_i \neq x_j\bigr).$$

What is the problem? Formula very long, since *k* can be as large as *n*.

Optimization Theorem (Courcelle, Makowsky, Rotics 2000)

For a MSO₁ formula $\varphi(X)$ and graph G one can compute in time $f(\mathsf{tw}(G), |\varphi|)n$ a set $S^* \subseteq V(G)$ such that $G \models \varphi(S^*)$ and

$$|S^*| = \max\{|S| \colon G \models \varphi(S), S \subseteq V(G)\}$$

or

$$|S^*| = \min\{|S| \colon G \models \varphi(S), S \subseteq V(G)\}$$

(or get the answer that no such S^* exists).

How can we use this theorem to solve independent set?

INDEPENDENTSET

Input: Graph G and integer k

Question: Does G have an independent set of size k?

How can we use this theorem to solve independent set?

INDEPENDENTSET

Input:	Graph G and integer k
Question:	Does G have an independent set of size k ?

By finding a set S^* that maximizes

$$\varphi(X) \equiv \neg \exists x \exists y \big(x \in X \land y \in X \land x \sim y \big),$$

and then checking if $|S|^* \ge k$.

 \bigcirc "G has an even number of green vertices"

 \bigcirc "G has an even number of green vertices"

No, but we can express it in CMSO₁:

- \bigcirc Allow quantifiers $\#_{k,m} x \varphi$
- \bigcirc "There are, modulo m, exactly k elements x satisfying arphi"

 \bigcirc "G has an even number of green vertices"

No, but we can express it in CMSO₁:

- \bigcirc Allow quantifiers $\#_{k,m} x \varphi$
- \bigcirc "There are, modulo m, exactly k elements x satisfying arphi"
- Property expressed by formula $\#_{0,2}x$ green(x).

 \bigcirc "G has an even number of green vertices"

No, but we can express it in CMSO₁:

- \bigcirc Allow quantifiers $\#_{k,m} x \varphi$
- \bigcirc "There are, modulo m, exactly k elements x satisfying arphi"
- Property expressed by formula $\#_{0,2}x$ green(x).
- Can we express that a graph has a Euler cycle?

 \bigcirc "G has an even number of green vertices"

No, but we can express it in CMSO₁:

- \bigcirc Allow quantifiers $\#_{k,m} x \varphi$
- \bigcirc "There are, modulo m, exactly k elements x satisfying arphi"
- Property expressed by formula $\#_{0,2}x$ green(x).
- Can we express that a graph has a Euler cycle?

Courcelle's Theorem (Modulo Extension)

For a CMSO₁ sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|, m)n$ for some function f, where m is the largest modulo-base in φ . Courcelle's theorem is a very powerful tool to solve problems on bounded treewidth. It comes in various flavours.

- MSO₁: base variant,
- MSO₂: edge quantifiers,
- CMSO: parity/modulo counting,
- LinEMSOL: optimization,
- \bigcirc and any combination thereof.

We now want to prove the following.

Courcelle's Theorem

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

We now want to prove the following.

Courcelle's Theorem

For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

 Historically proven by converting MSO₁-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.

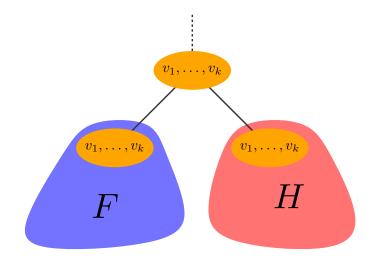
We now want to prove the following.

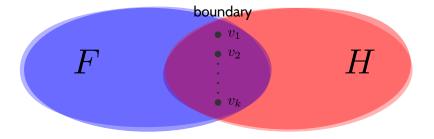
Courcelle's Theorem

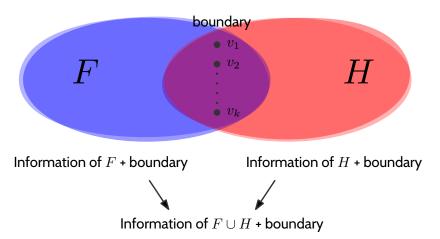
For a MSO₁ formula φ and graph G one can decide whether $G \models \varphi$ in time $f(\mathsf{tw}(G), |\varphi|)n$ for some function f.

- Historically proven by converting MSO₁-formulas into tree-automata. Use this automaton to traverse the tree-decomposition.
- We prove it using a powerful logic-theorem by Fefermann and Vaught as a blackbox.

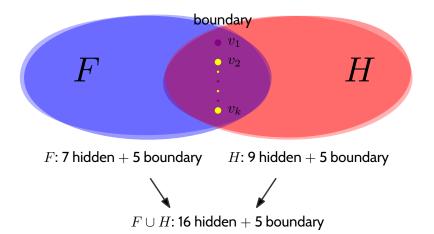
We can assume we are given a nice tree decomposition. If we manage the *join* operation, *introduce* and *forget* are easy.



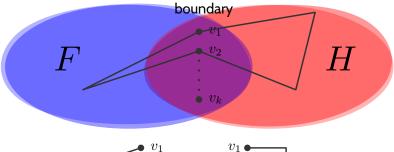


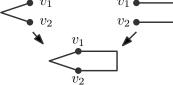


Independent set: store how independent sets intersect the boundary

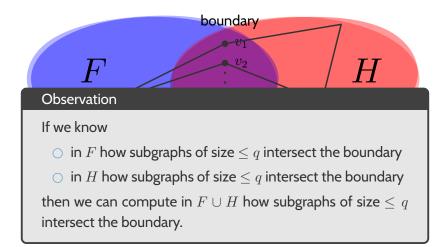


Subgraphs: store how subgraphs $\leq q$ intersect the boundary

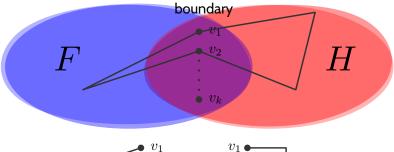


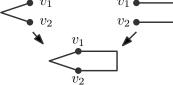


Subgraphs: store how subgraphs $\leq q$ intersect the boundary

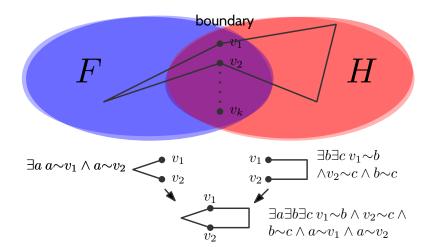


Subgraphs: store how subgraphs $\leq q$ intersect the boundary



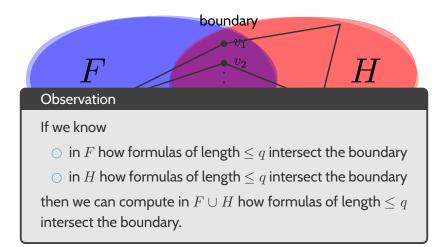


Subgraphs: store how subgraphs $\leq q$ intersect the boundary Existential FO: store how formulas $\leq q$ intersect the boundary



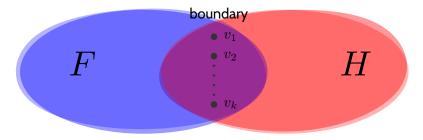
22

Subgraphs: store how subgraphs $\leq q$ intersect the boundary Existential FO: store how formulas $\leq q$ intersect the boundary



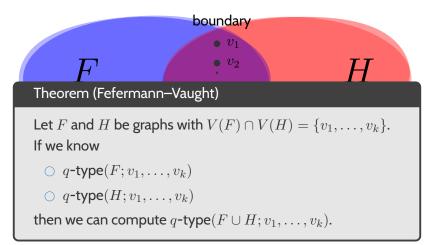
Fefermann–Vaught

Let H be a graph with boundary v_1, \ldots, v_k . We define q-type $(H; v_1, \ldots, v_k)$ to be the set of all MSO₁-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.



Fefermann–Vaught

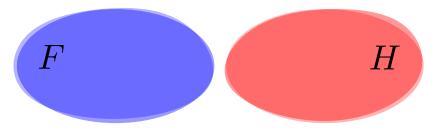
Let H be a graph with boundary v_1, \ldots, v_k . We define q-type $(H; v_1, \ldots, v_k)$ to be the set of all MSO₁-formulas $\xi(x_1, \ldots, x_k)$ of quantifier-rank $\leq q$ with $H \models \xi(v_1, \ldots, v_k)$.



The "boundaried version" of Fefermann–Vaught is a direct consequence of the "classical version".

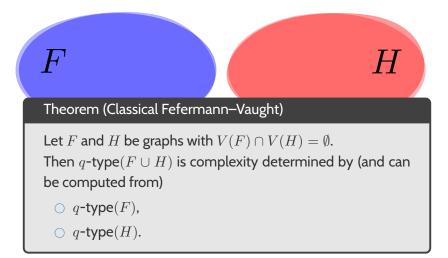
Fefermann–Vaught (Classical)

q-type(H) is the set of all MSO₁-sentences ξ of quantifier-rank $\leq q$ with $H \models \xi$.



Fefermann–Vaught (Classical)

q-type(H) is the set of all MSO₁-sentences ξ of quantifier-rank $\leq q$ with $H \models \xi$.

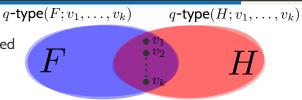


Reduction

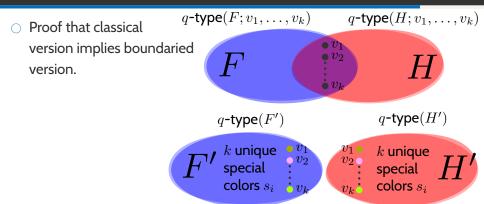
 Proof that classical version implies boundaried version.

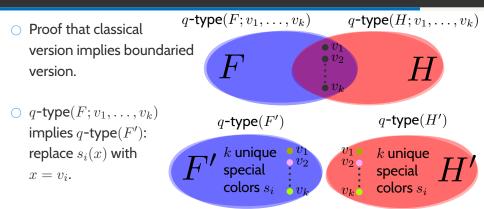
Reduction

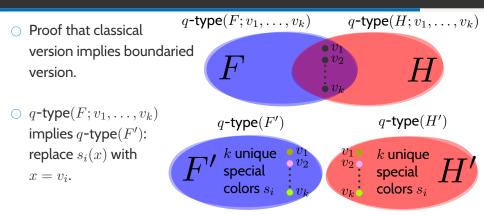
 Proof that classical version implies boundaried version.



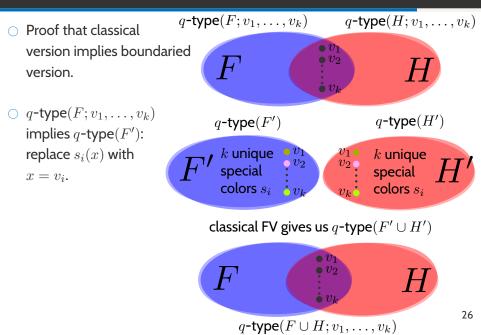
Reduction







classical FV gives us q-type $(F' \cup H')$



q-type $(F; v_1, \ldots, v_k)$ q-type $(H; v_1, \ldots, v_k)$ Proof that classical version implies boundaried v_2 Н version. $\mathbf{i} v_k$ \bigcirc q-type(F; v_1, \ldots, v_k) q-type(H')q-type(F')implies q-type(F'): k unique replace $s_i(x)$ with k unique v_2 v_2 H'special special $x = v_i$. colors s_i colors s_i iv_k v_k \bigcirc q-type($F' \cup H'$) implies classical FV gives us q-type $(F' \cup H')$ q-type $(F \cup H; v_1, \ldots, v_k)$: replace x = y with x = y $\vee \bigwedge_i s_i(x) \wedge s_i(y), \dots$ $\mathbf{i} v_k$ 26 q-type $(F \cup H; v_1, \ldots, v_k)$

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

For bag *i* (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \dots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

We have a nice tree decomposition of a graph G and want to know whether $G \models \varphi$ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to aggregate *q*-types when joining two subgraphs.

For bag *i* (with boundary v_1, \ldots, v_k) we store for each formula $\xi(x_1, \ldots, x_k)$ with quantifier-rank $\leq q$ a table entry

$$M_i(\xi) = \begin{cases} 1 & G[V_i] \models \xi(v_1, \dots, v_k) \\ 0 & \text{otherwise.} \end{cases}$$

Let r be the root-node. Then $G \models \varphi$ iff $G[V_r] \models \varphi$ iff $M_r(\varphi) = 1$.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \mathsf{tw}(G) + 1$ free variables is bounded by some function $f(\mathsf{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

 \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq tw(G) + 1$ free variables is bounded by some function $f(tw(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x \wedge \dots$

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \mathsf{tw}(G) + 1$ free variables is bounded by some function $f(\mathsf{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x\, x = x$

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \mathsf{tw}(G) + 1$ free variables is bounded by some function $f(\mathsf{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x$

Show the claim by induction.

We have to show that the number of formulas ξ of quantifier-rank $\leq q$ with $\leq \mathsf{tw}(G) + 1$ free variables is bounded by some function $f(\mathsf{tw}(G), |\varphi|)$. This bounds the number table entries ξ in $M_i(\xi)$.

- \bigcirc Remove all colors except for the $\leq |\varphi|$ many that occur in φ .
- "Normalize" all formulas:

 $\exists x \, x = x$

Show the claim by induction. Base case q = 0: There are only $2^{2^{O(k \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

Show the claim by induction. Base case q = 0: There are only $2^{2^{O(k \cdot |\varphi|)}}$ many quantifier-free formulas with $\leq k$ variables.

Assume we have formulas ξ_1, \ldots, ξ_l with of quantifier-rank $\leq q-1$ and $\leq k+1$ free variables.

Assume we have formulas ξ_1, \ldots, ξ_l with of quantifier-rank $\leq q-1$ and $\leq k+1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

Assume we have formulas ξ_1, \ldots, ξ_l with of quantifier-rank $\leq q-1$ and $\leq k+1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them.

Assume we have formulas ξ_1, \ldots, ξ_l with of quantifier-rank $\leq q-1$ and $\leq k+1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them. In total, the number of formulas is roughly

Assume we have formulas ξ_1, \ldots, ξ_l with of quantifier-rank $\leq q-1$ and $\leq k+1$ free variables.

Formulas with of quantifier-rank $\leq q$ and $\leq k$ free variables are of the form

$$(\forall x\xi_1 \land \exists x\xi_4 \land \exists x\xi_8 \land \dots) \lor (\exists x\xi_3 \land \forall x\xi_2 \land \exists x\xi_9 \land \forall x\xi_1 \land \dots) \lor (\exists x\xi_5 \land \forall x\xi_8 \land \dots) \lor \dots$$

There are at most $2^{2^{2l}}$ of them. In total, the number of formulas is roughly ${}_{\scriptscriptstyle 2^O(\mathsf{tw}(G)\cdot|\varphi|)}$

2a

This bound cannot be improved much.