Algorithmic Meta-Theorems

192122
WS21/22
Jan Dreier
dreier@ac.tuwien.ac.at

ac I I I [ALGORITHMS AND

COMPLEXITY GROUP

B Informatics

Reminder: Treewidth

A tree decomposition of a graph G = (V, E)) is a tree whose vertices
are bags (subsets of V) and

O every vertex v € V is contained in some bag,
O every edge uv € V is contained in some bag,
O forevery v € V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size —1
Treewidth of G (tw(G)): minimum width of a decomposition of G

abe bfg

\ /

bce — beg

/ \

cde egh 2

> —— o ——

Reminder: Treewidth

O Choose an arbitrary bag r as root and

orient the tree accordingly. > | abe
root r
O For bag i let B; be the vertices of G |
contained in ¢ and V; be the vertices b
. . ce
contained in ¢ or a successor of i. /
cde
bag i
TT—— beg
a 0N SR
. . egh bfg
[NO T
d e h 3

Reminder: Logic

For a given signature 7, monadic second-order logic has ...

O element-variables (x, v, z, .. .) and set-variables (X, Y, Z,...)

O relations = (equality) and z € X (membership), as well as the
relations from 7.

O quantifiers 3 and V, as well as operators A, V and =

We mostly work on colored undirected graphs with
T ={~,c1,ca,...}. Here, we call the logic MSO;.

If ¢ is a sentence (a formula without free variables), we write
G = ¢ toindicate that ¢ holds on G (i.e., G is a model of).

Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

What is the complexity of the problem?

Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

What is the complexity of the problem?
Theorem (Vardi 1982)

MSO; Model-Checking is PSPACE-complete.

Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO; Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |¢|?

Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

What is the complexity of the problem?
Theorem (Vardi 1982)

MSO; Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |¢|?

‘ Parameterized MSO; Model-Checking is paraNP-complete. \
5

Courcelle’s Theorem

Courcelle’s Theorem

Fora MSO; sentence ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Courcelle’s Theorem

Courcelle’s Theorem

Fora MSO; sentence ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Assume a problem is expressible by a sentence of length &. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem

Courcelle’s Theorem

Fora MSO; sentence ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Assume a problem is expressible by a sentence of length &. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’'s Theorem (alternative)

Every graph problem expressible in MSO; can be solved in
time ¢g(tw(G))n for some function f.

Courcelle’s Theorem

Courcelle’s Theorem

Fora MSO; sentence ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Assume a problem is expressible by a sentence of length &. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’'s Theorem (alternative)

Every graph problem expressible in MSO; can be solved in
time ¢g(tw(G))n for some function f.

Proof: complicated, later on

3-Coloring

3-COLORING can be solved in time ¢g(tw(G))n.

How do we prove this?

3-Coloring

3-COLORING can be solved in time ¢g(tw(G))n.

How do we prove this? We write down a MSO; sentence ¢ such
that for every graph G holds G = ¢ iff G is 3-colorable.

3-Coloring

3-COLORING can be solved in time ¢g(tw(G))n.

How do we prove this? We write down a MSO; sentence ¢ such
that for every graph G holds G = ¢ iff G is 3-colorable.

¢ =3JRIG3B

(VmweR\/xeG\/xeB)
/\(Vaﬁ(azeR/\xeG)/\ﬂ(xEG/\xEB)/\ﬂ(J:ER/\xEB))
A (VaVy((x€e RAye R)V (z € GAyeG)V(z € BAy € B))

Courcelle: This formula can be evaluated in time f(tw(G), 100)n.

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some

function f.

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some

function f.

Problem?

Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO;.

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some

function f.

Problem?

Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO;.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).

Allowing Edge Quantification

We consider the more powerful logic MSOs.

O We allow quantification over edges, vertices, sets of edges or
sets of vertices.
O To be more readable, we use the letters

o e, f,... foredges,

o u,uv,... forvertices,

o E,F,... orsets of edges,

o U,V,... for sets of vertices.

O Arelation u~w if two vertices are connected.

O Arelation inc(u, e) if a vertex u is incident with an edge e.

Expressing Hamilton Cycle

Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

¥Pcycle cover (B) =

Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)

Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)
Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)

Pconnected (E) =

Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)

Pconnected (E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

Courcelle’s Theorem

Courcelle's Theorem (Edge Set Quantification)

Fora MSO; sentence ¢ and graph G one can decide whether
G = gintime f(tw(G), |¢|)n for some function f.

Courcelle’s Theorem

Courcelle's Theorem (Edge Set Quantification)

Fora MSO; sentence ¢ and graph G one can decide whether
G = gintime f(tw(G), |¢|)n for some function f.

For an MSO;, sentence ¢ and a graph G, we construct an MSO;
sentence ¢’ and a graph G’ such that

GEp < GEY.

Courcelle’s Theorem

Courcelle's Theorem (Edge Set Quantification)

Fora MSO; sentence ¢ and graph G one can decide whether
G = gintime f(tw(G), |¢|)n for some function f.

For an MSO;, sentence ¢ and a graph G, we construct an MSO;
sentence ¢’ and a graph G’ such that

GEp < GEY.

What else do we want/need?

Courcelle’s Theorem

Courcelle's Theorem (Edge Set Quantification)

Fora MSO; sentence ¢ and graph G one can decide whether
G = gintime f(tw(G), |¢|)n for some function f.

For an MSO;, sentence ¢ and a graph G, we construct an MSO;
sentence ¢’ and a graph G’ such that

GEe < G E/.
What else do we want/need?
O tw(G) = tw(G)
O n' = O0(tw(G)n)
O ¢l = g(|el) 1

Proof

O G'": Color vertices violet and subdivide edges
using yellow vertices.

G with treewidth w

VEERVAN

-/
/
N
|/

G’ with treewidth w o

Proof

O G'": Color vertices violet and subdivide edges
using yellow vertices.

o Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

G with treewidth w

VEERVAN

-/
/
N
|/

G’ with treewidth w o

Proof

O G'": Color vertices violet and subdivide edges
using yellow vertices.

o Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

o Size n’ stays bounded: Every graph with

treewidth w has O(wn) edges. G with treewidth w

VEERVAN

-/
/
N
|/

G’ with treewidth w o

Proof

O G'": Color vertices violet and subdivide edges
using yellow vertices.

o Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

o Size n’ stays bounded: Every graph with

treewidth w has O(wn) edges. G with treewidth w

O 't Relativize quantifiers /
o Jvp ~ Jvviolet(v) A P, / / N\
o Jetp ~ Fuyellow(e) A1), |\ WA N\

G’ with treewidth w o

Proof

O G": Color vertices violet and subdivide edges
using yellow vertices.
o Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.
o Size n’ stays bounded: Every graph with
treewidth w has O(wn) edges. G with treewidth w

O ¢': Relativize quantifiers /
o Fvp ~ Jvviolet(v) A 1, / /
o Jep ~ Fvyellow(e) A1, |\ -/ AN
o ... N
and replace relations | \

o u~v ~ deur~e N e~v, ;o .
. G’ with treewidth w
o inc(u,e) ~ ure. 12

Why MSO;?

If we can also do model-checking for MSO, why do we care about
MS0;?

O MSO; model-checking is a simple corollary.

O MSO;, is hard on dense graphs, while MSO; is not.

13

Optimization

So far, we know how to deal with yes/no-problems such as

O s there a 3-coloring?

O s there a Hamilton cycle?

Optimization

So far, we know how to deal with yes/no-problems such as

O s there a 3-coloring?

O s there a Hamilton cycle?

How do we deal with optimization problems such as

O is there an independent set of size at least £?
O is there a dominating set of size at most k?

O is there a vertex cover of size at most k?

Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).

15

Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).

Independent set of size at least i expressed by

15

Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ ceXNnyeX /\a:wy).
Independent set of size at least i expressed by

IXQ(X) Adwy . Foe(\wi € XA N\ i # 25).
i i

15

Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).

Independent set of size at least i expressed by
IXQ(X) Adwy . Foe(\wi € XA N\ i # 25).
i i#j

What is the problem?

15

Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).

Independent set of size at least i expressed by

IXQ(X) Adwy . Foe(\wi € XA N\ i # 25).
i i

What is the problem?
Formula very long, since & can be as large as n.

15

Optimization Theorem

Optimization Theorem (Courcelle, Makowsky, Rotics 2000)

For a MSO; formula ¢(X) and graph G one can compute in
time f(tw(G), |p|)n aset S* C V(G) such that G = ¢(S*)
and

57| = max{[S]: G = ¢(5),5 S V(G)}

or
57| = min{|S]: G = ¢(5),5 € V(G)}

(or get the answer that no such S* exists).

Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

By finding a set S* that maximizes
o(X)=-Jzdy(z € X ANy € X Nar~y),

and then checking if |S|* > k.

Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

No, but we can express it in CMSO;:

O Allow quantifiers #j, ,,,x ¢
O “There are, modulo m, exactly &k elements x satisfying ¢”

Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

No, but we can express it in CMSO;:

O Allow quantifiers #j, ,,,x ¢
O “There are, modulo m, exactly &k elements x satisfying ¢”
O Property expressed by formula # 2x green(x).

Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

No, but we can express it in CMSO;:

O Allow quantifiers #j, ,,,x ¢

O “There are, modulo m, exactly &k elements x satisfying ¢”
O Property expressed by formula # 2x green(x).

O Can we express that a graph has a Euler cycle?

Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

No, but we can express it in CMSO;:

O Allow quantifiers #j, ,,,x ¢

O “There are, modulo m, exactly &k elements x satisfying ¢”
O Property expressed by formula # 2x green(x).

O Can we express that a graph has a Euler cycle?

Courcelle’'s Theorem (Modulo Extension)

For a CMSO; sentence ¢ and graph G one can decide
whether G = ¢ in time f(tw(G), |¢|, m)n for some func-
tion f, where m is the largest modulo-base in .

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

O MSO;: base variant,

O MSO,: edge quantifiers,

O CMSO: parity/modulo counting,
O LinEMSOL: optimization,

O and any combination thereof.

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

20

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

O Historically proven by converting MSO; -formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

20

Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

O Historically proven by converting MSO; -formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

O We prove it using a powerful logic-theorem by Fefermann and

Vaught as a blackbox.
20

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.

Information of F' + boundary Information of H + boundary

\ Y

Information of F' U H + boundary 22

Independent set: store how independent sets intersect the boundary

F': 7 hidden + 5boundary H: 9 hidden + 5 boundary

\ Y

F U H: 16 hidden + 5 boundary 22

Subgraphs: store how subgraphs < ¢ intersect the boundary

\ U1 /

V2

Subgraphs: store how subgraphs < ¢ intersect the boundary

Observation

If we know
O in F how subgraphs of size < ¢ intersect the boundary
O in H how subgraphs of size < ¢ intersect the boundary

then we can compute in F' U H how subgraphs of size < ¢
intersect the boundary. 2

Subgraphs: store how subgraphs < ¢ intersect the boundary

\ U1 /

V2

Subgraphs: store how subgraphs < ¢ intersect the boundary

Existential FO: store how formulas < ¢ intersect the boundary

Jb3c v1~b
Ja a~v1 N\ a~vy <: (%1 U1 o 1/\)
\ U1 /

<::| Ja3b3c vi~b A va~c A
22

Uy b~c A a~v1 A a~vg

Subgraphs: store how subgraphs < ¢ intersect the boundary

Existential FO: store how formulas < ¢ intersect the boundary

Observation

If we know
O in F how formulas of length < ¢ intersect the boundary
O in H how formulas of length < ¢ intersect the boundary

then we can compute in F' U H how formulas of length < ¢
intersect the boundary. 2

Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

n

23

Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

Theorem (Fefermann—Vaught)

Let F'and H be graphs with V(F) NV (H) = {v1,..., v}
If we know

O q_type(F7 U1, .- ,’Uk;)
@) q-type(H; Pigooo ,”Uk)
then we can compute g-type(F' U H; vy, ..., vg).

23

Fefermann—Vaught (Classical)

The “boundaried version” of Fefermann—Vaught is a direct
consequence of the “classical version”.

24

Fefermann—Vaught (Classical)

g-type(H) is the set of all MSO, -sentences ¢ of quantifier-rank
< qwith H = ¢.

25

Fefermann—Vaught (Classical)

g-type(H) is the set of all MSO, -sentences ¢ of quantifier-rank
< qwith H = ¢.

Theorem (Classical Fefermann—Vaught)

Let F and H be graphs with V(F) NV (H) = 0.
Then g-type(F U H) is complexity determined by (and can
be computed from)

O gq-type(F),
O q-type(H).

25

O Proof that classical
version implies boundaried
version.

26

Reduction

- F. R - N ...
O Proof that classical g-type(£ vy, - .., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

26

Reduction

- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

q-type(F") q-type(H’)

Reduction

- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

O g-type(F;v1,...,vg)
implies g-type(F”):
replace s;(z) with

q-type(F") q-type(H’)

Tr = Vj.

Reduction

- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

O g-type(F;v1,...,vg)
implies g-type(F”):
replace s;(z) with

q-type(F") q-type(H’)

Tr = Vj.

classical FV gives us ¢-type(F’' U H')

- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

O g-type(F;v1,...,vg)
implies g-type(F”):
replace s;(z) with

q-type(F") q-type(H’)

Tr = Vj.

classical FV gives us ¢-type(F’' U H')

q_type(F U H;Ul, e 7Uk)

- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

O g-type(F;v1,...,vg)
implies g-type(F”):
replace s;(z) with

q-type(F") q-type(H’)

Tr = Vj.

O g-type(F’" U H') implies
g-type(F U H;vy,. .., vg):
replace x = y withz =y
VA, si(x) Asi(y), ...

classical FV gives us ¢-type(F’' U H')

q_type(F U H;Ul, e 7Uk)

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

27

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

For bag i (with boundary vy, . . ., v;) we store for each formula
&(xq,. .., xx) with quantifier-rank < ¢ a table entry

M;(€) = {1 O)

0 otherwise.

27

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

For bag i (with boundary vy, . . ., v;) we store for each formula
&(xq,. .., xx) with quantifier-rank < ¢ a table entry

M;(€) = {1 O)

0 otherwise.

Let be the root-node. Then G = ¢ iff G|V, | = ¢ iff M, (¢) = 1. .

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:

drx=axANr=xANz=zANr=xANr=xANx=TANT=TA...

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:

drx=ux

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:

drx=ux

Show the claim by induction.

28

Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:

drx=ux

Show the claim by induction. Base case ¢ = 0: There are only
227D many quantifier-free formulas with < & variables.

28

Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
227D many quantifier-free formulas with < & variables.

29

Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

30

Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(V$£1 A dxéy A JxEg A .. .)\/
(Hx&, AVx€s N dx&g ANVTEL A ...)\/
(31‘55/\V.T§8/\...) V...

30

Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(V$£1 A dxéy A JxEg A .. .)\/
(Hx&, AVx€s N dx&g ANVTEL A ...)\/
(31‘55/\V.T§8/\...) V...

There are at most 22”' of them.

30

Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(V$£1 A dxéy A JxEg A .. .)\/
(Hx&, AVx€s N dx&g ANVTEL A ...)\/
(31‘55/\V.T§8/\...) V...

There are at most 22”' of them. In total, the number of formulas is
roughly
20(W(G)-)
2 .
| —
2q

30

Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
the form

(V$£1 A dxéy A JxEg A .. .)\/
(Hx&, AVx€s N dx&g ANVTEL A ...)\/
(31‘55/\V.T§8/\...) V...

There are at most 22”' of them. In total, the number of formulas is
roughly

20(w(G)-[el)
2 .
—_—
2q

This bound cannot be improved much. 3

