
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Reminder: Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

2

Reminder: Treewidth

Choose an arbitrary bag r as root and
orient the tree accordingly.

For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

3

Reminder: Logic

For a given signature τ , monadic second-order logic has . . .

element-variables (x, y, z, . . .) and set-variables (X,Y, Z, . . .)
relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

If ϕ is a sentence (a formula without free variables), we write
G |= ϕ to indicate that ϕ holds on G (i.e., G is a model of ϕ).

4

Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.

5

Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.

5

Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.

5

Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.

5

Model-Checking

MSO1 Model-Checking Problem

Input: Graph G and MSO1-sentence ϕ
Question: G |= ϕ?

What is the complexity of the problem?

Theorem (Vardi 1982)

MSO1 Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |ϕ|?

Parameterized MSO1 Model-Checking is paraNP-complete.
5

Courcelle’s Theorem

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Assume a problem is expressible by a sentence of length k. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem (alternative)

Every graph problem expressible in MSO1 can be solved in
time g(tw(G))n for some function f .

Proof: complicated, later on

6

Courcelle’s Theorem

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Assume a problem is expressible by a sentence of length k. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem (alternative)

Every graph problem expressible in MSO1 can be solved in
time g(tw(G))n for some function f .

Proof: complicated, later on

6

Courcelle’s Theorem

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Assume a problem is expressible by a sentence of length k. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem (alternative)

Every graph problem expressible in MSO1 can be solved in
time g(tw(G))n for some function f .

Proof: complicated, later on

6

Courcelle’s Theorem

Courcelle’s Theorem

For a MSO1 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Assume a problem is expressible by a sentence of length k. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’s Theorem (alternative)

Every graph problem expressible in MSO1 can be solved in
time g(tw(G))n for some function f .

Proof: complicated, later on 6

3-Coloring

3-COLORING can be solved in time g(tw(G))n.

How do we prove this?

We write down a MSO1 sentence ϕ such
that for every graph G holds G |= ϕ iff G is 3-colorable.

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)
Courcelle: This formula can be evaluated in time f(tw(G), 100)n.

7

3-Coloring

3-COLORING can be solved in time g(tw(G))n.

How do we prove this? We write down a MSO1 sentence ϕ such
that for every graph G holds G |= ϕ iff G is 3-colorable.

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)
Courcelle: This formula can be evaluated in time f(tw(G), 100)n.

7

3-Coloring

3-COLORING can be solved in time g(tw(G))n.

How do we prove this? We write down a MSO1 sentence ϕ such
that for every graph G holds G |= ϕ iff G is 3-colorable.

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)
Courcelle: This formula can be evaluated in time f(tw(G), 100)n. 7

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some
function f .

Problem?
Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO1.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).

8

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some
function f .

Problem?
Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO1.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).

8

Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some
function f .

Problem?
Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO1.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).

8

Allowing Edge Quantification

We consider the more powerful logic MSO2.

We allow quantification over edges, vertices, sets of edges or
sets of vertices.

To be more readable, we use the letters
◦ e, f, . . . for edges,
◦ u, v, . . . for vertices,
◦ E,F, . . . or sets of edges,
◦ U, V, . . . for sets of vertices.

A relation u∼v if two vertices are connected.
A relation inc(u, e) if a vertex u is incident with an edge e.

9

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Expressing Hamilton Cycle

ϕHamilton = ∃E ϕcycle cover(E) ∧ ϕconnected(E)

ϕcycle cover(E) =

∀v ∃e1 ∃e2 e1 6= e2 ∧ inc(e1, v) ∧ inc(e2, v)
∧¬∃e3 e3 6= e1 ∧ e3 6= e2 ∧ inc(e3, v)

ϕconnected(E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”

10

Courcelle’s Theorem

Courcelle’s Theorem (Edge Set Quantification)

For a MSO2 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

For an MSO2 sentence ϕ and a graph G, we construct an MSO1

sentence ϕ′ and a graph G′ such that

G |= ϕ ⇐⇒ G′ |= ϕ′.

What else do we want/need?

tw(G′) = tw(G)

n′ = O(tw(G)n)

|ϕ′| = g(|ϕ|)

11

Courcelle’s Theorem

Courcelle’s Theorem (Edge Set Quantification)

For a MSO2 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

For an MSO2 sentence ϕ and a graph G, we construct an MSO1

sentence ϕ′ and a graph G′ such that

G |= ϕ ⇐⇒ G′ |= ϕ′.

What else do we want/need?

tw(G′) = tw(G)

n′ = O(tw(G)n)

|ϕ′| = g(|ϕ|)

11

Courcelle’s Theorem

Courcelle’s Theorem (Edge Set Quantification)

For a MSO2 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

For an MSO2 sentence ϕ and a graph G, we construct an MSO1

sentence ϕ′ and a graph G′ such that

G |= ϕ ⇐⇒ G′ |= ϕ′.

What else do we want/need?

tw(G′) = tw(G)

n′ = O(tw(G)n)

|ϕ′| = g(|ϕ|)

11

Courcelle’s Theorem

Courcelle’s Theorem (Edge Set Quantification)

For a MSO2 sentenceϕ and graphG one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

For an MSO2 sentence ϕ and a graph G, we construct an MSO1

sentence ϕ′ and a graph G′ such that

G |= ϕ ⇐⇒ G′ |= ϕ′.

What else do we want/need?

tw(G′) = tw(G)

n′ = O(tw(G)n)

|ϕ′| = g(|ϕ|) 11

Proof

⇓
G with treewidth w

G′ with treewidth w

G′: Color vertices violet and subdivide edges
using yellow vertices.

◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

ϕ′: Relativize quantifiers
◦ ∃v ψ ∃v violet(v) ∧ ψ,
◦ ∃eψ ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e.

12

Proof

⇓
G with treewidth w

G′ with treewidth w

G′: Color vertices violet and subdivide edges
using yellow vertices.
◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

ϕ′: Relativize quantifiers
◦ ∃v ψ ∃v violet(v) ∧ ψ,
◦ ∃eψ ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e.

12

Proof

⇓
G with treewidth w

G′ with treewidth w

G′: Color vertices violet and subdivide edges
using yellow vertices.
◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

ϕ′: Relativize quantifiers
◦ ∃v ψ ∃v violet(v) ∧ ψ,
◦ ∃eψ ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e.

12

Proof

⇓
G with treewidth w

G′ with treewidth w

G′: Color vertices violet and subdivide edges
using yellow vertices.
◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

ϕ′: Relativize quantifiers
◦ ∃v ψ ∃v violet(v) ∧ ψ,
◦ ∃eψ ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e.

12

Proof

⇓
G with treewidth w

G′ with treewidth w

G′: Color vertices violet and subdivide edges
using yellow vertices.
◦ Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.

◦ Size n′ stays bounded: Every graph with
treewidth w has O(wn) edges.

ϕ′: Relativize quantifiers
◦ ∃v ψ ∃v violet(v) ∧ ψ,
◦ ∃eψ ∃v yellow(e) ∧ ψ,
◦ . . .

and replace relations
◦ u∼v ∃e u∼e ∧ e∼v,
◦ inc(u, e) u∼e. 12

Why MSO1?

If we can also do model-checking for MSO2, why do we care about
MSO1?

MSO2 model-checking is a simple corollary.
MSO2 is hard on dense graphs, while MSO1 is not.

13

Optimization

So far, we know how to deal with yes/no-problems such as

Is there a 3-coloring?
Is there a Hamilton cycle?

How do we deal with optimization problems such as

is there an independent set of size at least k?
is there a dominating set of size at most k?
is there a vertex cover of size at most k?

14

Optimization

So far, we know how to deal with yes/no-problems such as

Is there a 3-coloring?
Is there a Hamilton cycle?

How do we deal with optimization problems such as

is there an independent set of size at least k?
is there a dominating set of size at most k?
is there a vertex cover of size at most k?

14

Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?
Formula very long, since k can be as large as n.

15

Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?
Formula very long, since k can be as large as n.

15

Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?
Formula very long, since k can be as large as n.

15

Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?

Formula very long, since k can be as large as n.

15

Independent Set

X is independent set in G iff G |= ϕ(X) with

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
.

Independent set of size at least k expressed by

∃Xϕ(X) ∧ ∃x1 . . . ∃xk
(∧

i

xi ∈ X ∧
∧
i 6=j

xi 6= xj
)
.

What is the problem?
Formula very long, since k can be as large as n.

15

Optimization Theorem

Optimization Theorem (Courcelle, Makowsky, Rotics 2000)

For a MSO1 formula ϕ(X) and graph G one can compute in
time f(tw(G), |ϕ|)n a set S∗ ⊆ V (G) such that G |= ϕ(S∗)

and
|S∗| = max{|S| : G |= ϕ(S), S ⊆ V (G)}

or
|S∗| = min{|S| : G |= ϕ(S), S ⊆ V (G)}

(or get the answer that no such S∗ exists).

16

Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

By finding a set S∗ that maximizes

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
,

and then checking if |S|∗ ≥ k.

17

Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

By finding a set S∗ that maximizes

ϕ(X) ≡ ¬∃x∃y
(
x ∈ X ∧ y ∈ X ∧ x∼y

)
,

and then checking if |S|∗ ≥ k.

17

Parity

Can we express this property in MSO1 (or MSO2)?

“G has an even number of green vertices”

No, but we can express it in CMSO1:

Allow quantifiers #k,mxϕ

“There are, modulo m, exactly k elements x satisfying ϕ”
Property expressed by formula #0,2x green(x).
Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18

Parity

Can we express this property in MSO1 (or MSO2)?

“G has an even number of green vertices”

No, but we can express it in CMSO1:

Allow quantifiers #k,mxϕ

“There are, modulo m, exactly k elements x satisfying ϕ”

Property expressed by formula #0,2x green(x).
Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18

Parity

Can we express this property in MSO1 (or MSO2)?

“G has an even number of green vertices”

No, but we can express it in CMSO1:

Allow quantifiers #k,mxϕ

“There are, modulo m, exactly k elements x satisfying ϕ”
Property expressed by formula #0,2x green(x).

Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18

Parity

Can we express this property in MSO1 (or MSO2)?

“G has an even number of green vertices”

No, but we can express it in CMSO1:

Allow quantifiers #k,mxϕ

“There are, modulo m, exactly k elements x satisfying ϕ”
Property expressed by formula #0,2x green(x).
Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18

Parity

Can we express this property in MSO1 (or MSO2)?

“G has an even number of green vertices”

No, but we can express it in CMSO1:

Allow quantifiers #k,mxϕ

“There are, modulo m, exactly k elements x satisfying ϕ”
Property expressed by formula #0,2x green(x).
Can we express that a graph has a Euler cycle?

Courcelle’s Theorem (Modulo Extension)

For a CMSO1 sentence ϕ and graph G one can decide
whether G |= ϕ in time f(tw(G), |ϕ|,m)n for some func-
tion f , where m is the largest modulo-base in ϕ.

18

Summary

Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

MSO1: base variant,
MSO2: edge quantifiers,
CMSO: parity/modulo counting,
LinEMSOL: optimization,
and any combination thereof.

19

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

20

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

20

Proving Courcelle’s Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO1 formula ϕ and graph G one can decide whether
G |= ϕ in time f(tw(G), |ϕ|)n for some function f .

Historically proven by converting MSO1-formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

We prove it using a powerful logic-theorem by Fefermann and
Vaught as a blackbox.

20

Join Nodes

v1, . . . , vk

v1, . . . , vk v1, . . . , vk

F H

We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.

21

Idea

F H
v1

vk

v2

boundary

22

Idea

F H

Information of F + boundary Information ofH + boundary

Information of F ∪H + boundary

v1

vk

v2

boundary

22

Idea

F H
v1

vk

v2

F : 7 hidden+ 5 boundary H : 9 hidden+ 5 boundary

F ∪H : 16 hidden+ 5 boundary

Independent set: store how independent sets intersect the boundary

boundary

22

Idea

F H
v1

vk

v2

boundary

Subgraphs: store how subgraphs≤ q intersect the boundary

v1
v2

v1
v2

v1

v2
22

Idea

F H
v1

vk

v2

boundary

Subgraphs: store how subgraphs≤ q intersect the boundary

v1
v2

v1
v2

v1

v2

Observation

If we know
in F how subgraphs of size≤ q intersect the boundary
in H how subgraphs of size≤ q intersect the boundary

then we can compute in F ∪ H how subgraphs of size ≤ q

intersect the boundary. 22

Idea

F H
v1

vk

v2

boundary

Subgraphs: store how subgraphs≤ q intersect the boundary

v1
v2

v1
v2

v1

v2
22

Idea

F H
v1

vk

v2

boundary

Subgraphs: store how subgraphs≤ q intersect the boundary

v1
v2

v1
v2

v1

v2

∃a a∼v1 ∧ a∼v2
∃b∃c v1∼b
∧v2∼c ∧ b∼c

Existential FO: store how formulas≤ q intersect the boundary

∃a∃b∃c v1∼b ∧ v2∼c ∧
b∼c ∧ a∼v1 ∧ a∼v2

∃a a∼v1 ∧ a∼v2

22

Idea

F H
v1

vk

v2

boundary

Subgraphs: store how subgraphs≤ q intersect the boundary

v1
v2

v1
v2

v1

v2

∃a a∼v1 ∧ a∼v2
∃b∃c v1∼b
∧v2∼c ∧ b∼c

Existential FO: store how formulas≤ q intersect the boundary

∃a∃b∃c v1∼b ∧ v2∼c ∧
b∼c ∧ a∼v1 ∧ a∼v2

∃a a∼v1 ∧ a∼v2

Observation

If we know
in F how formulas of length≤ q intersect the boundary
inH how formulas of length≤ q intersect the boundary

then we can compute in F ∪H how formulas of length ≤ q

intersect the boundary. 22

Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = {v1, . . . , vk}.
If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk).

23

Fefermann–Vaught

F H
v1

vk

v2

boundary

Let H be a graph with boundary v1, . . . , vk . We define
q-type(H; v1, . . . , vk) to be the set of all MSO1-formulas
ξ(x1, . . . , xk) of quantifier-rank≤ q with H |= ξ(v1, . . . , vk).

Theorem (Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = {v1, . . . , vk}.
If we know
q-type(F ; v1, . . . , vk)
q-type(H; v1, . . . , vk)

then we can compute q-type(F ∪H; v1, . . . , vk). 23

Fefermann–Vaught (Classical)

The “boundaried version” of Fefermann–Vaught is a direct
consequence of the “classical version”.

24

Fefermann–Vaught (Classical)

F H

q-type(H) is the set of all MSO1-sentences ξ of quantifier-rank
≤ q with H |= ξ.

Theorem (Classical Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = ∅.
Then q-type(F ∪ H) is complexity determined by (and can
be computed from)
q-type(F),
q-type(H).

25

Fefermann–Vaught (Classical)

F H

q-type(H) is the set of all MSO1-sentences ξ of quantifier-rank
≤ q with H |= ξ.

Theorem (Classical Fefermann–Vaught)

Let F and H be graphs with V (F) ∩ V (H) = ∅.
Then q-type(F ∪ H) is complexity determined by (and can
be computed from)
q-type(F),
q-type(H).

25

Reduction

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)# Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

F ′ v1

vk

v2 H ′v1

vk

v2
k unique
special
colors si

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)

q-type(F ′) q-type(H ′)

k unique
special
colors si

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

F ′ v1

vk

v2 H ′v1

vk

v2
k unique
special
colors si

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)

q-type(F ′) q-type(H ′)

k unique
special
colors si

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

F ′ v1

vk

v2 H ′v1

vk

v2
k unique
special
colors si

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)

q-type(F ′) q-type(H ′)

classical FV gives us q-type(F ′ ∪H ′)

k unique
special
colors si

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

F ′ v1

vk

v2 H ′v1

vk

v2
k unique
special
colors si

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)

q-type(F ′) q-type(H ′)

classical FV gives us q-type(F ′ ∪H ′)

F H
v1

vk

v2

q-type(F ∪H; v1, . . . , vk)

k unique
special
colors si

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Reduction

F H
v1

vk

v2

F ′ v1

vk

v2 H ′v1

vk

v2
k unique
special
colors si

q-type(F ; v1, . . . , vk) q-type(H; v1, . . . , vk)

q-type(F ′) q-type(H ′)

classical FV gives us q-type(F ′ ∪H ′)

F H
v1

vk

v2

q-type(F ∪H; v1, . . . , vk)

k unique
special
colors si

Proof that classical
version implies boundaried
version.

q-type(F ; v1, . . . , vk)
implies q-type(F ′):
replace si(x) with
x = vi.

q-type(F ′ ∪H ′) implies
q-type(F ∪H; v1, . . . , vk):
replace x = y with x = y

∨
∧

i si(x) ∧ si(y), . . .

26

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.

27

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.

27

Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ϕ for a formula with quantifier-rank q.

We have the Fefermann–Vaught theorem that tells us how to
aggregate q-types when joining two subgraphs.

For bag i (with boundary v1, . . . , vk) we store for each formula
ξ(x1, . . . , xk) with quantifier-rank≤ q a table entry

Mi(ξ) =

1 G[Vi] |= ξ(v1, . . . , vk)

0 otherwise.

Let r be the root-node. Then G |= ϕ iff G[Vr] |= ϕ iff Mr(ϕ) = 1.
27

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.

“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction.

Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

28

Size of q-types

We want to decide whether G |= ϕ in time f(tw(G), q)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ξ of quantifier-rank
≤ q with≤ tw(G) + 1 free variables is bounded by some function
f(tw(G), |ϕ|). This bounds the number table entries ξ in Mi(ξ).

Remove all colors except for the≤ |ϕ|many that occur in ϕ.
“Normalize” all formulas:

∃x x = x

∧x = x∧x = x∧x = x∧x = x∧x = x∧x = x∧ . . .

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.
28

Size of q-types

Show the claim by induction. Base case q = 0: There are only
22

O(k·|ϕ|) many quantifier-free formulas with≤ k variables.

29

Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

30

Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

30

Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them.

In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

30

Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much.

30

Size of q-types
Assume we have formulas ξ1, . . . , ξl with of quantifier-rank≤ q − 1

and≤ k + 1 free variables.

Formulas with of quantifier-rank≤ q and≤ k free variables are of
the form (

∀xξ1 ∧ ∃xξ4 ∧ ∃xξ8 ∧ . . .
)
∨(

∃xξ3 ∧ ∀xξ2 ∧ ∃xξ9 ∧ ∀xξ1 ∧ . . .
)
∨(

∃xξ5 ∧ ∀xξ8 ∧ . . .
)
∨ . . .

There are at most 222l of them. In total, the number of formulas is
roughly

2·
··
2O(tw(G)·|ϕ|)︸ ︷︷ ︸

2q

.

This bound cannot be improved much. 30

