Algorithmic Meta-Theorems

192122
WS21/22
Jan Dreier
dreier@ac.tuwien.ac.at

ac I I I [ ALGORITHMS AND

COMPLEXITY GROUP

B Informatics



Reminder: Treewidth

A tree decomposition of a graph G = (V, E)) is a tree whose vertices
are bags (subsets of V) and

O every vertex v € V is contained in some bag,
O every edge uv € V is contained in some bag,
O forevery v € V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size —1
Treewidth of G (tw(G)): minimum width of a decomposition of G
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Reminder: Treewidth

O Choose an arbitrary bag r as root and

orient the tree accordingly. > | abe
root r
O For bag i let B; be the vertices of G |
contained in ¢ and V; be the vertices b
. . ce
contained in ¢ or a successor of i. /
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Reminder: Logic

For a given signature 7, monadic second-order logic has ...

O element-variables (x, v, z, .. .) and set-variables (X, Y, Z,...)

O relations = (equality) and z € X (membership), as well as the
relations from 7.

O quantifiers 3 and V, as well as operators A, V and =

We mostly work on colored undirected graphs with
T ={~,c1,ca,...}. Here, we call the logic MSO;.

If ¢ is a sentence (a formula without free variables), we write
G = ¢ toindicate that ¢ holds on G (i.e., G is a model of ).
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MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?
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Model-Checking

MSO; Model-Checking Problem

Input: Graph G and MSO; -sentence ¢
Question: G |= ¢?

What is the complexity of the problem?
Theorem (Vardi 1982)

MSO; Model-Checking is PSPACE-complete.

What is the parameterized complexity if we parameterize by |¢|?

‘ Parameterized MSO; Model-Checking is paraNP-complete. \
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Courcelle’s Theorem

Courcelle’s Theorem

Fora MSO; sentence ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

Assume a problem is expressible by a sentence of length &. Then
we can decide the problem in time f(tw(G), k)n = g(tw(G))n.

Courcelle’'s Theorem (alternative)

Every graph problem expressible in MSO; can be solved in
time ¢g(tw(G))n for some function f.

Proof: complicated, later on
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3-Coloring

3-COLORING can be solved in time ¢g(tw(G))n.

How do we prove this? We write down a MSO; sentence ¢ such
that for every graph G holds G = ¢ iff G is 3-colorable.

¢ =3JRIG3B

(VmweR\/xeG\/xeB)
/\(Vaﬁ(azeR/\xeG)/\ﬂ(xEG/\xEB)/\ﬂ(J:ER/\xEB))
A (VaVy((x€e RAye R)V (z € GAyeG)V(z € BAy € B))

Courcelle: This formula can be evaluated in time f(tw(G), 100)n.
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Hamilton Cycle

HAMILTONCYCLE can be solved in time f(tw(G))n for some

function f.

Problem?

Courcelle, Engelfriet 2012

HAMILTONCYCLE is not expressible in MSO;.

Solution: We extend the logic (and use the fact that subdividing
edges of a graph does not increase the treewidth).



Allowing Edge Quantification

We consider the more powerful logic MSOs.

O We allow quantification over edges, vertices, sets of edges or
sets of vertices.
O To be more readable, we use the letters

o e, f,... foredges,

o u,uv,... forvertices,

o E,F,... orsets of edges,

o U,V,... for sets of vertices.

O Arelation u~w if two vertices are connected.

O Arelation inc(u, e) if a vertex u is incident with an edge e.



Expressing Hamilton Cycle



Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)



Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

¥Pcycle cover (B) =



Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)



Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)
Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)

Pconnected (E) =



Expressing Hamilton Cycle

PHamilton = 3F Peycle cover(E) A $connected (£)

Peycle cover(E) =
Vv Jey Jeg e1 # ez Ainc(er, v) Ainc(ez, v)

A—Jeses # e1 A eg # ea Ainc(es, v)

Pconnected (E) =

“For every partition of G[E] in two halfs,
there is an edge between these halfs”
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Courcelle’s Theorem

Courcelle's Theorem (Edge Set Quantification)

Fora MSO; sentence ¢ and graph G one can decide whether
G = gintime f(tw(G), |¢|)n for some function f.

For an MSO;, sentence ¢ and a graph G, we construct an MSO;
sentence ¢’ and a graph G’ such that

GEe < G E/.
What else do we want/need?
O tw(G) = tw(G)
O n' = O0(tw(G)n)
O ¢l = g(|el) 1



Proof
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using yellow vertices.
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Proof

O G": Color vertices violet and subdivide edges
using yellow vertices.
o Does not increase treewidth: When subdividing
uv with vertex e, add bag uve below bag
containing uv.
o Size n’ stays bounded: Every graph with
treewidth w has O(wn) edges. G with treewidth w

O ¢': Relativize quantifiers /
o Fvp ~ Jvviolet(v) A 1, / /
o Jep ~ Fvyellow(e) A1, |\ -/ AN
o ... N
and replace relations | \

o u~v ~ deur~e N e~v, ;o .
. G’ with treewidth w
o inc(u,e) ~ ure. 12



Why MSO;?

If we can also do model-checking for MSO, why do we care about
MS0;?

O MSO; model-checking is a simple corollary.

O MSO;, is hard on dense graphs, while MSO; is not.

13
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Optimization

So far, we know how to deal with yes/no-problems such as

O s there a 3-coloring?

O s there a Hamilton cycle?

How do we deal with optimization problems such as

O is there an independent set of size at least £?
O is there a dominating set of size at most k?

O is there a vertex cover of size at most k?



Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).
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Independent Set

X isindependent set in G iff G |= p(X) with

o(X) = —E|.”L‘E|y(l’ e XAye€ X/\a:wy).

Independent set of size at least i expressed by

IXQ(X) Adwy . Foe(\wi € XA N\ i # 25).
i i

What is the problem?
Formula very long, since & can be as large as n.

15



Optimization Theorem

Optimization Theorem (Courcelle, Makowsky, Rotics 2000)

For a MSO; formula ¢(X) and graph G one can compute in
time f(tw(G), |p|)n aset S* C V(G) such that G = ¢(S*)
and

57| = max{[S]: G = ¢(5),5 S V(G)}

or
57| = min{|S]: G = ¢(5),5 € V(G)}

(or get the answer that no such S* exists).




Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?




Independent Set

How can we use this theorem to solve independent set?
INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

By finding a set S* that maximizes
o(X)=-Jzdy(z € X ANy € X Nar~y),

and then checking if |S|* > k.
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Can we express this property in MSO; (or MSO,)?

O “G has an even number of green vertices”

No, but we can express it in CMSO;:

O Allow quantifiers #j, ,,,x ¢

O “There are, modulo m, exactly &k elements x satisfying ¢”
O Property expressed by formula # 2x green(x).

O Can we express that a graph has a Euler cycle?

Courcelle’'s Theorem (Modulo Extension)

For a CMSO; sentence ¢ and graph G one can decide
whether G = ¢ in time f(tw(G), |¢|, m)n for some func-
tion f, where m is the largest modulo-base in .




Courcelle’s theorem is a very powerful tool to solve problems on
bounded treewidth. It comes in various flavours.

O MSO;: base variant,

O MSO,: edge quantifiers,

O CMSO: parity/modulo counting,
O LinEMSOL: optimization,

O and any combination thereof.



Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.
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Proving Courcelle's Theorem

We now want to prove the following.

Courcelle’s Theorem

For a MSO; formula ¢ and graph G one can decide whether
G = pintime f(tw(G), |¢|)n for some function f.

O Historically proven by converting MSO; -formulas into
tree-automata. Use this automaton to traverse the
tree-decomposition.

O We prove it using a powerful logic-theorem by Fefermann and

Vaught as a blackbox.
20



We can assume we are given a nice tree decomposition. If we
manage the join operation, introduce and forget are easy.
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Independent set: store how independent sets intersect the boundary

F': 7 hidden + 5boundary  H: 9 hidden + 5 boundary

\ Y

F U H: 16 hidden + 5 boundary 22
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Subgraphs: store how subgraphs < ¢ intersect the boundary

Observation

If we know
O in F how subgraphs of size < ¢ intersect the boundary
O in H how subgraphs of size < ¢ intersect the boundary

then we can compute in F' U H how subgraphs of size < ¢
intersect the boundary. 2
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Subgraphs: store how subgraphs < ¢ intersect the boundary

Existential FO: store how formulas < ¢ intersect the boundary

Jb3c v1~b
Ja a~v1 N\ a~vy <: (%1 U1 o 1/\ )
\ U1 /

<::| Ja3b3c vi~b A va~c A
22

Uy b~c A a~v1 A a~vg



Subgraphs: store how subgraphs < ¢ intersect the boundary

Existential FO: store how formulas < ¢ intersect the boundary

Observation

If we know
O in F how formulas of length < ¢ intersect the boundary
O in H how formulas of length < ¢ intersect the boundary

then we can compute in F' U H how formulas of length < ¢
intersect the boundary. 2




Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

n
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Fefermann—Vaught

Let H be a graph with boundary vy, . .., v;. We define
g-type(H;vy, ..., vi) to be the set of all MSO; -formulas
&(x1, ..., xz) of quantifier-rank < g with H |= £(vy, ..., vg).

Theorem (Fefermann—Vaught)

Let F'and H be graphs with V(F) NV (H) = {v1,..., v}
If we know

O q_type(F7 U1, .- ,’Uk;)
@) q-type(H; Pigooo ,”Uk)
then we can compute g-type(F' U H; vy, ..., vg).

23




Fefermann—Vaught (Classical)

The “boundaried version” of Fefermann—Vaught is a direct
consequence of the “classical version”.

24



Fefermann—Vaught (Classical)

g-type(H ) is the set of all MSO, -sentences ¢ of quantifier-rank
< qwith H = ¢.
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Fefermann—Vaught (Classical)

g-type(H ) is the set of all MSO, -sentences ¢ of quantifier-rank
< qwith H = ¢.

Theorem (Classical Fefermann—Vaught)

Let F and H be graphs with V(F) NV (H) = 0.
Then g-type(F U H) is complexity determined by (and can
be computed from)

O gq-type(F),
O q-type(H).

25




O Proof that classical
version implies boundaried
version.

26



Reduction

- F. R - N ...
O Proof that classical g-type(£ vy, - .., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.
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- F. R - N ...
O Proof that classical g-type(£i vy, ..., vk) q-type(H;vy, ..., vg)

version implies boundaried
version.

O g-type(F;v1,...,vg)
implies g-type(F”):
replace s;(z) with

q-type(F") q-type(H’)

Tr = Vj.

O g-type(F’" U H') implies
g-type(F U H;vy,. .., vg):
replace x = y withz =y
VA, si(x) Asi(y), ...

classical FV gives us ¢-type(F’' U H')

q_type(F U H;Ul, e 7Uk)



Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.
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Dynamic Programming

We have a nice tree decomposition of a graph G and want to know
whether G |= ¢ for a formula with quantifier-rank q.

We have the Fefermann—Vaught theorem that tells us how to
aggregate g-types when joining two subgraphs.

For bag i (with boundary vy, . . ., v;) we store for each formula
&(xq,. .., xx) with quantifier-rank < ¢ a table entry

M;(€) = {1 O )

0 otherwise.

Let  be the root-node. Then G = ¢ iff G|V, | = ¢ iff M, (¢) = 1. .



Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.
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programming is only fast if the tables are small.
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f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:
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Show the claim by induction.
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Size of ¢-types

We want to decide whether G |= ¢ in time f(tw(G), ¢)n. Dynamic
programming is only fast if the tables are small.

We have to show that the number of formulas ¢ of quantifier-rank
< g with < tw(G) + 1 free variables is bounded by some function
f(tw(G), |¢|). This bounds the number table entries £ in M;(&).

O Remove all colors except for the < |¢| many that occur in .
O “Normalize” all formulas:

drx=ux

Show the claim by induction. Base case ¢ = 0: There are only
227D many quantifier-free formulas with < & variables.
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Size of ¢-types

Show the claim by induction. Base case ¢ = 0: There are only
227D many quantifier-free formulas with < & variables.
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Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.
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Size of ¢-types

Assume we have formulas &1, . . ., & with of quantifier-rank < ¢ — 1
and < k + 1 free variables.

Formulas with of quantifier-rank < ¢ and < & free variables are of
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This bound cannot be improved much. 3



