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Announcements

# Next week on 26.10. no lecture (national holiday)

# There will be two exercise sessions
◦ every other Friday, 9:15 online,
◦ every other Friday, 11:00 in peson.

Choose yourself which one to attend.
First session will be on 29.10.
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Outline

Last lecture, we solved problems on trees. Today, we introduce
treewidth and learn how to solve problems on graphs with small
treewidth.
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Independent Set on Trees
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Independent Set on Trees

# Tu: subtree at vertex u
# Mu(1): size of maximal IS in Tu that includes u
# Mu(0): size of maximal IS in Tu that excludes u

Recursively compute for a vertex u with children v1, . . . , vk

# Mu(1) = 1 +
∑

iMvi(0)

# Mu(0) =
∑

imax(Mvi(0),Mvi(1))

u

Tu

v1 v2 v3 v4

TuTuTu
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Tree-Like Graphs

# The algorithm works because every vertex is a separator.
# Can we generalize this idea to tree-like graphs?

# Idea: Group vertices into separator-bags
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Independent Set on Tree-Like Graphs
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Contemplation

Why does this approach work? Because we have a “tree of small
separators” that we can traverse upwards.

The notion of treewidth formalizes this.
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Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V ) and

# every vertex v ∈ V is contained in some bag,
# every edge uv ∈ V is contained in some bag,
# for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G
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Trees and Treewidth

Trees have treewidth 1.
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Theorem

Theorem (Independent Set on Treewidth)

Given a graph G and a tree decomposition of G of width w,
one can compute the size of a maximum independent set in
time 2wwO(1)n.

This generalizes the previous result (trees have treewidth 1).
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Rooting the Decomposition

# Choose an arbitrary bag r as root and
orient the tree accordingly.

# For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

root r

b f

g

he 12



Rooting the Decomposition

# Choose an arbitrary bag r as root and
orient the tree accordingly.

# For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

12



Separators

We will compute solutions
in Vi w.r.t “boundary” Bi.

. . .

. . .

Bi

. . .

. . . . . .

Vi

V \ Vi
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Separators

Theorem

For every bag i, Bi is a separator be-
tween Vi and V \ Vi.

(i.e., every path betweenVi andV \Vi
goes through Bi).
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Separators / Proof

# Assume for contradition the statement is false and there is an
edge such as drawn below

# Then a and f occur together in some bag (maybe above i).
# The bags containing f induce a subtree, thus bag i also

contains f . A contradiction.
# We get a similar contradiction if a and f

occur together somewhere else.

V \ Vi
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Separators
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Dynamic Programming

# For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

# The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

# We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

17



Dynamic Programming

# For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

# The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

# We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b}) = ?

b f

g

he

Bi

17



Dynamic Programming

# For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

# The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

# We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17



Dynamic Programming

# For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

# The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

# We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17



Dynamic Programming

# For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

# The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

# We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17



Which One is Nicer?
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Nice Tree Decompositions

Nice tree decompositions consist of

# Leaf nodes: have no children and are empty
# Introduce nodes: have one child and contain exactly one vertex

more than it
# Forget nodes: have one child and contain exactly one vertex

less than it
# Join nodes: have exactly two identical children

There is an algorithm that will convert a tree decomposition
of width w in time O(nw2) into a nice tree decomposition of
width w with O(nw) bags.
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Computing Independent Set

# Mi(S) is the maximum size of an independent set in G[Vi]
that intersects the bag vertices Bi exactly in S.

# The table entries of a bag i are the values Mi(S) for all S ⊆ Bi.
For every bag, there are 2|Bi| ≤ 2w entries.

# We express the table entries of a bag in terms of the entries of
its children.
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Recurrence Relation

Let i be a leaf bag in the tree decomposition.
Then Bi = Vi = ∅. This means Mi(∅) = 0.
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Recurrence Relation
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Assume i is a join node with children j and k.

# Since the decomposition
is nice, Bi = Bj = Bk

# Thus, Vi = Vj ∪ Vk
# Also Vj ∩ Vk = Bi

separates Vj and Vk

# Therefore
Mi(S) =Mj(S) +Mk(S)− |S|.
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Obtaining the Answer

The answer is in the root bag r.
Mr(∅) equals the size of a maximum
independent set in G[Vr] = G.
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Theorem

Theorem (Independent Set on Treewidth)

Given a graph G and a tree decomposition of G of width w,
one can compute (the size of) a maximum independent set
in time 2wwO(1)n.
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Computing Tree Decompositions

Theorem (Korhonen 2021)

There is an algorithm that, given an n-vertex graph G and an
integer w, runs in time 2O(w)n and computes a tree decom-
position of G of width at most 2w + 1 or concludes that the
treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing
values of w. This yields:

Theorem

One can compute (the size of) a maximum independent set
in time 2O(tw(G))n.
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Summary

# Treewidth is a powerful width parameter that describes
tree-like graphs.

# Independent Set can be solved in time f(w)n on graphs with
treewidth w.

# The same dynamic programming technique leads to
algorithms for many other problems.

# ⇒ Graphs with small treewidth are “algorithmically tractable”.
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Not Everything is Easy on Bounded Treewidth

Nishizeki, Vygen, Zhou 2001

Finding edge-disjoint paths between source-sink pairs is hard
on graphs with treewidth two.

29



Outline

# There are many more problems one can solve on graphs with
small treewidth.
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

# We don’t want to write down a separate dynamic
programming algorithm for each of them. Instead, we present
a meta-algorithm that solves all of them.

# To do so, we first need some background in logic.
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Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

# graph↔ structure

# induced subgraph↔ substructure
# subgraph↔ weak substructure
# all vertices (or edges) of a graph↔ universe of the structure
# vertex (or edge)↔ element
# adjacency↔ binary relation
# colors↔ unary relation
# . . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.
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Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

# Each structure has a signature τ : a set of relational symbols
with given arities.

# We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

# It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .
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Example

This graph is a structure G with

# universe V = {a, b, c}
# symmetrical binary relation
∼ := {(a, b), (b, a), (b, c), (c, b)(a, c), (c, a)}

# unary relations c1 := {a}, c2 := {c}

a

cb 33



Monadic Second-Order Logic (Syntax)

For a given signature τ , monadic second-order logic has . . .

# element-variables (x, y, z, . . . ) and set-variables (X,Y, Z, . . . )
# relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
# quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

Instead of prefix notation (∼(x, y)) we use infix notation (x∼y)
when convenient and add parentheses when it avoids confusion.
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Monadic Second-Order Logic (Semantics)

What do these formulas mean?

¬∃r ∃x ∃g
(

red(r) ∧ green(g) ∧ r∼x ∧ x∼g
)

ϕ(X) ≡ ∀x
(
x ∈ X ∨ ∃y y ∈ X ∧ x∼y

)
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Some Observations

You do not need disjunctions (∨).

ϕ ∨ ψ ≡ ¬(¬ψ ∧ ¬ϕ)

You do not need universal quantifiers.

∀xϕ ≡ ¬∃x¬ϕ

You can assume that all quantifier are in the beginning (Prenex
normal form).

ϕ ∧ ∃xψ ≡ ∃xϕ ∧ ψ
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Models

# If ϕ is a sentence (a formula without free variables), we write
G |= ϕ to indicate that ϕ holds on G (i.e., G is a model of ϕ).

# We say a graph property/problem is expressible in a logic if
there exists a sentence ϕ such that for every graph G holds
G |= ϕ iff G is a yes-instance.
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Examples

Can we express these properties in MSO1?

# “G has at least 2 vertices”

∃x∃yx 6= y

# “G is connected”

∀X∀Y
(
(∀zz ∈ X∨z ∈ Y )→

(
∃x∃y(x ∈ X∧y ∈ Y ∧x∼y)

))
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Examples

Can we express these properties in MSO1?

# “G has a proper 3 coloring”

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)
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