
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Announcements

Next week on 26.10. no lecture (national holiday)

There will be two exercise sessions
◦ every other Friday, 9:15 online,
◦ every other Friday, 11:00 in peson.

Choose yourself which one to attend.
First session will be on 29.10.

2

Outline

Last lecture, we solved problems on trees. Today, we introduce
treewidth and learn how to solve problems on graphs with small
treewidth.

3

Independent Set on Trees

4

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0 4

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

4

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

4

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

size
with 1+3

without 0+4

4

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

size
with 1+3

without 0+4
take maximum

4

Independent Set on Trees

Tu: subtree at vertex u
Mu(1): size of maximal IS in Tu that includes u
Mu(0): size of maximal IS in Tu that excludes u

Recursively compute for a vertex u with children v1, . . . , vk

Mu(1) = 1 +
∑

iMvi(0)

Mu(0) =
∑

imax(Mvi(0),Mvi(1))

u

Tu

v1 v2 v3 v4

TuTuTu

5

Tree-Like Graphs

The algorithm works because every vertex is a separator.
Can we generalize this idea to tree-like graphs?

Idea: Group vertices into separator-bags

6

Tree-Like Graphs

The algorithm works because every vertex is a separator.
Can we generalize this idea to tree-like graphs?
Idea: Group vertices into separator-bags

6

Independent Set on Tree-Like Graphs

x y

vu

below xy

xy size
00 5
01 6
10 3
11 −∞

ba

7

Independent Set on Tree-Like Graphs

x y

vu

below xy

xy size
00 5
01 6
10 3
11 −∞

left below uv

uv size
00 6
01 6
10 7
11 −∞

ba

7

Independent Set on Tree-Like Graphs

vu

left below uv

uv size
00 6
01 6
10 7
11 −∞

ba

7

Independent Set on Tree-Like Graphs

vu

left below uv

uv size
00 6
01 6
10 7
11 −∞

ba

below ab

ab size
00 2
01 3
10 8
11 −∞

7

Independent Set on Tree-Like Graphs

vu

left below uv

uv size
00 6
01 6
10 7
11 −∞

ba

below ab

ab size
00 2
01 3
10 8
11 −∞

right below uv

uv size
00 8
01 3
10 9
11 −∞

7

Independent Set on Tree-Like Graphs

vu

left below uv

uv size
00 6
01 6
10 7
11 −∞

right below uv

uv size
00 8
01 3
10 9
11 −∞

7

Independent Set on Tree-Like Graphs

vu

left below uv

uv size
00 6
01 6
10 7
11 −∞

right below uv

uv size
00 8
01 3
10 9
11 −∞

below uv

uv size
00 14
01 8
10 15
11 −∞

7

Independent Set on Tree-Like Graphs

vu

below uv

uv size
00 14
01 8
10 15
11 −∞

7

Contemplation

Why does this approach work? Because we have a “tree of small
separators” that we can traverse upwards.

The notion of treewidth formalizes this.

8

Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

9

Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

9

Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

9

Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

9

Treewidth
A tree decomposition of a graph G = (V,E) is a tree whose vertices
are bags (subsets of V) and

every vertex v ∈ V is contained in some bag,
every edge uv ∈ V is contained in some bag,
for every v ∈ V, the bags containing v are a connected subtree

Width of decomposition: maximum bag size−1
Treewidth ofG (tw(G)): minimum width of a decomposition of G

a f

c

d h

abc

bce

cde

bfg

egh

b

g

e

beg

9

Trees and Treewidth

Trees have treewidth 1.

10

Theorem

Theorem (Independent Set on Treewidth)

Given a graph G and a tree decomposition of G of width w,
one can compute the size of a maximum independent set in
time 2wwO(1)n.

This generalizes the previous result (trees have treewidth 1).

11

Rooting the Decomposition

Choose an arbitrary bag r as root and
orient the tree accordingly.

For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

root r

b f

g

he 12

Rooting the Decomposition

Choose an arbitrary bag r as root and
orient the tree accordingly.

For bag i let Bi be the vertices of G
contained in i and Vi be the vertices
contained in i or a successor of i.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

12

Separators

We will compute solutions
in Vi w.r.t “boundary” Bi.

. . .

. . .

Bi

. . .

.

Vi

V \ Vi

13

Separators

Theorem

For every bag i, Bi is a separator be-
tween Vi and V \ Vi.

(i.e., every path betweenVi andV \Vi
goes through Bi).

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Bi

V \ Vi

d

c

a

Vi

b f

g

he

Bi

14

Separators / Proof

Assume for contradition the statement is false and there is an
edge such as drawn below

Then a and f occur together in some bag (maybe above i).
The bags containing f induce a subtree, thus bag i also

contains f . A contradiction.
We get a similar contradiction if a and f

occur together somewhere else.

V \ Vi
beg

egh bfg

d

c

a

Vi

b f

g

he

Bi

bag i

15

Separators / Proof

Assume for contradition the statement is false and there is an
edge such as drawn below

Then a and f occur together in some bag (maybe above i).

The bags containing f induce a subtree, thus bag i also
contains f . A contradiction.

We get a similar contradiction if a and f
occur together somewhere else.

V \ Vi
beg

egh bfg

af

d

c

a

Vi

b f

g

he

Bi

bag i

15

Separators / Proof

Assume for contradition the statement is false and there is an
edge such as drawn below

Then a and f occur together in some bag (maybe above i).
The bags containing f induce a subtree, thus bag i also

contains f . A contradiction.

We get a similar contradiction if a and f
occur together somewhere else.

V \ Vi
beg

egh bfg

af

f

d

c

a

Vi

b f

g

he

Bi

bag i

15

Separators / Proof

Assume for contradition the statement is false and there is an
edge such as drawn below

Then a and f occur together in some bag (maybe above i).
The bags containing f induce a subtree, thus bag i also

contains f . A contradiction.
We get a similar contradiction if a and f

occur together somewhere else.

V \ Vi
beg

egh bfg

af

f

d

c

a

Vi

b f

g

he

Bi

bag i

15

Separators

Theorem

For every bag i, Bi is a separator be-
tween Vi and V \ Vi.

(i.e., every path betweenVi andV \Vi
goes through Bi).

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Bi

V \ Vi

d

c

a

Vi

b f

g

he

Bi

16

Dynamic Programming

For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

b f

g

he

Bi

17

Dynamic Programming

For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b}) = ?

b f

g

he

Bi

17

Dynamic Programming

For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17

Dynamic Programming

For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17

Dynamic Programming

For every set S ⊆ Bi, let Mi(S) be the
maximum size of an independent set
in G[Vi] that intersects Bi exactly in S.

The table entries of a bag i are the
values Mi(S) for all S ⊆ Bi.

We will compute all table entries
inductively, starting at the leafs.

abc

bce

beg

bfgegh

cde

d

c

a

bag i

Vi

root r

Mi({b, e, g}) = ?

b f

g

he

Bi

17

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

18

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

forget node

18

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

forget node

introduce node

18

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

forget node

introduce node

join node

18

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

forget node

introduce node

join node

leaf node 18

Which One is Nicer?

bce

beg

bfgegh

cde

∅
a

ab

abc

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

abc

egh

forget node

introduce node

join node

leaf node

join node

empty root

18

Nice Tree Decompositions

Nice tree decompositions consist of

Leaf nodes: have no children and are empty
Introduce nodes: have one child and contain exactly one vertex

more than it
Forget nodes: have one child and contain exactly one vertex

less than it
Join nodes: have exactly two identical children

There is an algorithm that will convert a tree decomposition
of width w in time O(nw2) into a nice tree decomposition of
width w with O(nw) bags.

19

Computing Independent Set

Mi(S) is the maximum size of an independent set in G[Vi]
that intersects the bag vertices Bi exactly in S.

The table entries of a bag i are the values Mi(S) for all S ⊆ Bi.
For every bag, there are 2|Bi| ≤ 2w entries.

We express the table entries of a bag in terms of the entries of
its children.

20

Recurrence Relation

Let i be a leaf bag in the tree decomposition.
Then Bi = Vi = ∅. This means Mi(∅) = 0.

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

eghleaf bag i

Bi = Vi = ∅

21

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

join bag i

Vj

VkVi

child j

child k

Assume i is a join node with children j and k.

Since the decomposition
is nice, Bi = Bj = Bk

Thus, Vi = Vj ∪ Vk
Also Vj ∩ Vk = Bi

separates Vj and Vk

Therefore
Mi(S) =Mj(S) +Mk(S)− |S|.

22

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

join bag i

Vj

VkVi

child j

child k

Assume i is a join node with children j and k.

Since the decomposition
is nice, Bi = Bj = Bk

Thus, Vi = Vj ∪ Vk
Also Vj ∩ Vk = Bi

separates Vj and Vk

Therefore
Mi(S) =Mj(S) +Mk(S)− |S|.

22

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

join bag i

join node

Vj

VkVi

child j

child k

Vj VkBi

︸ ︷︷ ︸
Vi

Assume i is a join node with children j and k.

Since the decomposition
is nice, Bi = Bj = Bk

Thus, Vi = Vj ∪ Vk
Also Vj ∩ Vk = Bi

separates Vj and Vk

Therefore
Mi(S) =Mj(S) +Mk(S)− |S|.

22

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

join bag i

join node

Vj

VkVi

child j

child k

Vj VkBi

︸ ︷︷ ︸
Vi

Assume i is a join node with children j and k.

Since the decomposition
is nice, Bi = Bj = Bk

Thus, Vi = Vj ∪ Vk
Also Vj ∩ Vk = Bi

separates Vj and Vk

Therefore
Mi(S) =Mj(S) +Mk(S)− |S|. 22

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj ∪ {c}

introduce bag i

Assume i is an introduce node with child j
and Bi = Bj ∪ {c}.

Mi(S) =

Mj(S) if c 6∈ S,
Mj(S \ {c}) + 1 if c ∈ S and S is IS,
0 otherwise.

23

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj ∪ {c}

introduce bag i

c

Bi

Vj

Assume i is an introduce node with child j
and Bi = Bj ∪ {c}.

Mi(S) =

Mj(S) if c 6∈ S,
Mj(S \ {c}) + 1 if c ∈ S and S is IS,
0 otherwise.

23

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj ∪ {c}

introduce bag i

c

Vj

Bj

Assume i is an introduce node with child j
and Bi = Bj ∪ {c}.

Mi(S) =
Mj(S) if c 6∈ S,

Mj(S \ {c}) + 1 if c ∈ S and S is IS,
0 otherwise.

23

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj ∪ {c}

introduce bag i

c

Bi

Vj

Assume i is an introduce node with child j
and Bi = Bj ∪ {c}.

Mi(S) =
Mj(S) if c 6∈ S,

Mj(S \ {c}) + 1 if c ∈ S and S is IS,
0 otherwise.

23

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj ∪ {c}

introduce bag i

c

Vj

Bj

Assume i is an introduce node with child j
and Bi = Bj ∪ {c}.

Mi(S) =
Mj(S) if c 6∈ S,
Mj(S \ {c}) + 1 if c ∈ S and S is IS,
0 otherwise.

23

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj

forget bag i

Assume i is a forget node with child j
and Bi = Bj \ {g}.

Then Mi(S) = max(Mj(S),Mj(S ∪ {g})).

24

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj

forget bag i

g

Bi

Vi = Vj

Assume i is a forget node with child j
and Bi = Bj \ {g}.

Then Mi(S) = max(Mj(S),Mj(S ∪ {g})).

24

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj

forget bag i

g

Bj

Vi = Vj

Assume i is a forget node with child j
and Bi = Bj \ {g}.

Then Mi(S) = max(Mj(S),Mj(S ∪ {g})).

24

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj

forget bag i

g

Bj

Vi = Vj

Assume i is a forget node with child j
and Bi = Bj \ {g}.

Then Mi(S) = max(Mj(S),Mj(S ∪ {g})).

24

Recurrence Relation

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

Vi = Vj

forget bag i

g

Bj

Vi = Vj

Assume i is a forget node with child j
and Bi = Bj \ {g}.

Then Mi(S) = max(Mj(S),Mj(S ∪ {g})).

24

Obtaining the Answer

The answer is in the root bag r.
Mr(∅) equals the size of a maximum
independent set in G[Vr] = G.

∅
a

ab

abe

bc

bce

bce
ce

cde

cd
c

∅

bce

be
beg

beg

bg

bfg

bf

b

∅∅
e

eg

eg
beg

egh

root bag r

Vr = V

25

Theorem

Theorem (Independent Set on Treewidth)

Given a graph G and a tree decomposition of G of width w,
one can compute (the size of) a maximum independent set
in time 2wwO(1)n.

26

Computing Tree Decompositions

Theorem (Korhonen 2021)

There is an algorithm that, given an n-vertex graph G and an
integer w, runs in time 2O(w)n and computes a tree decom-
position of G of width at most 2w + 1 or concludes that the
treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing
values of w. This yields:

Theorem

One can compute (the size of) a maximum independent set
in time 2O(tw(G))n.

27

Computing Tree Decompositions

Theorem (Korhonen 2021)

There is an algorithm that, given an n-vertex graph G and an
integer w, runs in time 2O(w)n and computes a tree decom-
position of G of width at most 2w + 1 or concludes that the
treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing
values of w. This yields:

Theorem

One can compute (the size of) a maximum independent set
in time 2O(tw(G))n.

27

Computing Tree Decompositions

Theorem (Korhonen 2021)

There is an algorithm that, given an n-vertex graph G and an
integer w, runs in time 2O(w)n and computes a tree decom-
position of G of width at most 2w + 1 or concludes that the
treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing
values of w. This yields:

Theorem

One can compute (the size of) a maximum independent set
in time 2O(tw(G))n.

27

Summary

Treewidth is a powerful width parameter that describes
tree-like graphs.

Independent Set can be solved in time f(w)n on graphs with
treewidth w.

The same dynamic programming technique leads to
algorithms for many other problems.

⇒ Graphs with small treewidth are “algorithmically tractable”.

28

Summary

Treewidth is a powerful width parameter that describes
tree-like graphs.

Independent Set can be solved in time f(w)n on graphs with
treewidth w.

The same dynamic programming technique leads to
algorithms for many other problems.

⇒ Graphs with small treewidth are “algorithmically tractable”.

28

Summary

Treewidth is a powerful width parameter that describes
tree-like graphs.

Independent Set can be solved in time f(w)n on graphs with
treewidth w.

The same dynamic programming technique leads to
algorithms for many other problems.

⇒ Graphs with small treewidth are “algorithmically tractable”.

28

Summary

Treewidth is a powerful width parameter that describes
tree-like graphs.

Independent Set can be solved in time f(w)n on graphs with
treewidth w.

The same dynamic programming technique leads to
algorithms for many other problems.

⇒ Graphs with small treewidth are “algorithmically tractable”.

28

Not Everything is Easy on Bounded Treewidth

Nishizeki, Vygen, Zhou 2001

Finding edge-disjoint paths between source-sink pairs is hard
on graphs with treewidth two.

29

Outline

There are many more problems one can solve on graphs with
small treewidth.
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

We don’t want to write down a separate dynamic
programming algorithm for each of them. Instead, we present
a meta-algorithm that solves all of them.

To do so, we first need some background in logic.

30

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure

induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure

subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure

all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure

vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element

adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation

colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation

. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph↔ structure
induced subgraph↔ substructure
subgraph↔ weak substructure
all vertices (or edges) of a graph↔ universe of the structure
vertex (or edge)↔ element
adjacency↔ binary relation
colors↔ unary relation
. . .

If we want to use tools from logic (and don’t want to embarras us in
front of logicans) we will have to learn some of their language and
formalism.

31

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where

◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices

◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices

◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {∼, c1, c2, . . . } where
◦ the universe are the vertices
◦ ∼ denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

It is sometimes convenient to use other signatures
◦ τ = {;} for directed graphs
◦ τ = {∼, U, V } for directed bipartite graphs
◦ . . .

32

Example

This graph is a structure G with

universe V = {a, b, c}
symmetrical binary relation
∼ := {(a, b), (b, a), (b, c), (c, b)(a, c), (c, a)}

unary relations c1 := {a}, c2 := {c}

a

cb 33

Monadic Second-Order Logic (Syntax)

For a given signature τ , monadic second-order logic has . . .

element-variables (x, y, z, . . .) and set-variables (X,Y, Z, . . .)
relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

Instead of prefix notation (∼(x, y)) we use infix notation (x∼y)
when convenient and add parentheses when it avoids confusion.

34

Monadic Second-Order Logic (Syntax)

For a given signature τ , monadic second-order logic has . . .

element-variables (x, y, z, . . .) and set-variables (X,Y, Z, . . .)
relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

Instead of prefix notation (∼(x, y)) we use infix notation (x∼y)
when convenient and add parentheses when it avoids confusion.

34

Monadic Second-Order Logic (Syntax)

For a given signature τ , monadic second-order logic has . . .

element-variables (x, y, z, . . .) and set-variables (X,Y, Z, . . .)
relations = (equality) and x ∈ X (membership), as well as the

relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {∼, c1, c2, . . . }. Here, we call the logic MSO1.

Instead of prefix notation (∼(x, y)) we use infix notation (x∼y)
when convenient and add parentheses when it avoids confusion.

34

Monadic Second-Order Logic (Semantics)

What do these formulas mean?

¬∃r ∃x ∃g
(

red(r) ∧ green(g) ∧ r∼x ∧ x∼g
)

ϕ(X) ≡ ∀x
(
x ∈ X ∨ ∃y y ∈ X ∧ x∼y

)

35

Monadic Second-Order Logic (Semantics)

What do these formulas mean?

¬∃r ∃x ∃g
(

red(r) ∧ green(g) ∧ r∼x ∧ x∼g
)

ϕ(X) ≡ ∀x
(
x ∈ X ∨ ∃y y ∈ X ∧ x∼y

)

35

Some Observations

You do not need disjunctions (∨).

ϕ ∨ ψ ≡ ¬(¬ψ ∧ ¬ϕ)

You do not need universal quantifiers.

∀xϕ ≡ ¬∃x¬ϕ

You can assume that all quantifier are in the beginning (Prenex
normal form).

ϕ ∧ ∃xψ ≡ ∃xϕ ∧ ψ

36

Some Observations

You do not need disjunctions (∨).

ϕ ∨ ψ ≡ ¬(¬ψ ∧ ¬ϕ)

You do not need universal quantifiers.

∀xϕ ≡ ¬∃x¬ϕ

You can assume that all quantifier are in the beginning (Prenex
normal form).

ϕ ∧ ∃xψ ≡ ∃xϕ ∧ ψ

36

Some Observations

You do not need disjunctions (∨).

ϕ ∨ ψ ≡ ¬(¬ψ ∧ ¬ϕ)

You do not need universal quantifiers.

∀xϕ ≡ ¬∃x¬ϕ

You can assume that all quantifier are in the beginning (Prenex
normal form).

ϕ ∧ ∃xψ ≡ ∃xϕ ∧ ψ

36

Models

If ϕ is a sentence (a formula without free variables), we write
G |= ϕ to indicate that ϕ holds on G (i.e., G is a model of ϕ).

We say a graph property/problem is expressible in a logic if
there exists a sentence ϕ such that for every graph G holds
G |= ϕ iff G is a yes-instance.

37

Models

If ϕ is a sentence (a formula without free variables), we write
G |= ϕ to indicate that ϕ holds on G (i.e., G is a model of ϕ).

We say a graph property/problem is expressible in a logic if
there exists a sentence ϕ such that for every graph G holds
G |= ϕ iff G is a yes-instance.

37

Examples

Can we express these properties in MSO1?

“G has at least 2 vertices”

∃x∃yx 6= y

“G is connected”

∀X∀Y
(
(∀zz ∈ X∨z ∈ Y)→

(
∃x∃y(x ∈ X∧y ∈ Y ∧x∼y)

))

38

Examples

Can we express these properties in MSO1?

“G has at least 2 vertices”

∃x∃yx 6= y

“G is connected”

∀X∀Y
(
(∀zz ∈ X∨z ∈ Y)→

(
∃x∃y(x ∈ X∧y ∈ Y ∧x∼y)

))

38

Examples

Can we express these properties in MSO1?

“G has at least 2 vertices”

∃x∃yx 6= y

“G is connected”

∀X∀Y
(
(∀zz ∈ X∨z ∈ Y)→

(
∃x∃y(x ∈ X∧y ∈ Y ∧x∼y)

))

38

Examples

Can we express these properties in MSO1?

“G has at least 2 vertices”

∃x∃yx 6= y

“G is connected”

∀X∀Y
(
(∀zz ∈ X∨z ∈ Y)→

(
∃x∃y(x ∈ X∧y ∈ Y ∧x∼y)

))

38

Examples

Can we express these properties in MSO1?

“G has a proper 3 coloring”

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)

39

Examples

Can we express these properties in MSO1?

“G has a proper 3 coloring”

ϕ ≡ ∃R∃G∃B(
∀xx ∈ R ∨ x ∈ G ∨ x ∈ B

)
∧
(
∀x¬(x ∈ R ∧ x ∈ G) ∧ ¬(x ∈ G ∧ x ∈ B) ∧ ¬(x ∈ R ∧ x ∈ B)

)
∧
(
∀x∀y

(
(x ∈ R ∧ y ∈ R) ∨ (x ∈ G ∧ y ∈ G) ∨ (x ∈ B ∧ y ∈ B)

)
→ ¬x∼y

)

39

