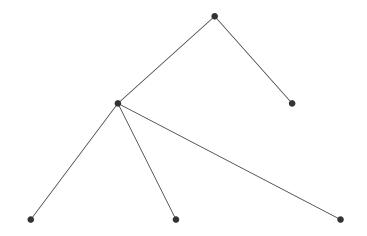
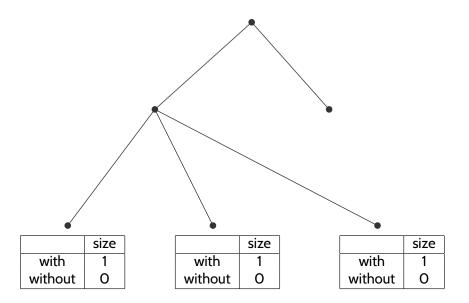
Algorithmic Meta-Theorems

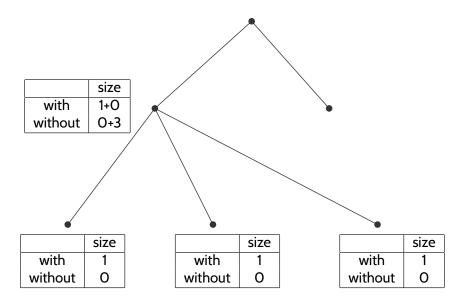
192.122 WS21/22 Jan Dreier dreier@ac.tuwien.ac.at

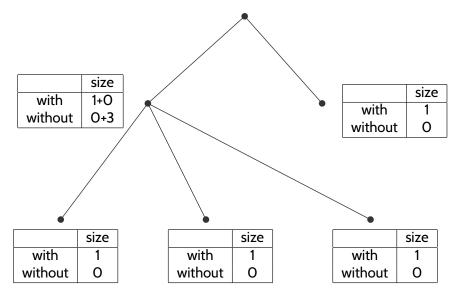
- Next week on 26.10. no lecture (national holiday)
- There will be two exercise sessions
 - every other Friday, 9:15 online,
 - every other Friday, 11:00 in peson.

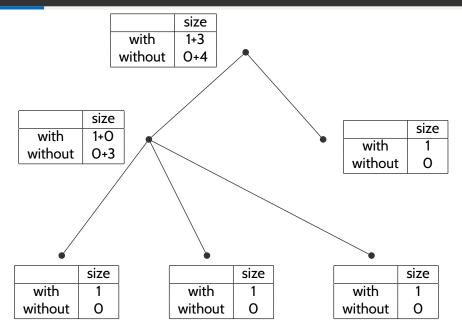
Choose yourself which one to attend. First session will be on 29.10. Last lecture, we solved problems on trees. Today, we introduce treewidth and learn how to solve problems on graphs with small treewidth.

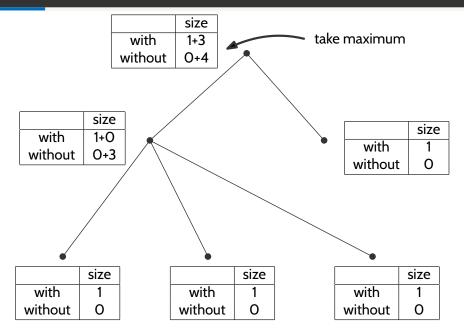












 \bigcirc T_u : subtree at vertex u

- $\bigcirc M_u(1)$: size of maximal IS in T_u that includes u
- $\bigcirc M_u(0)$: size of maximal IS in T_u that excludes u

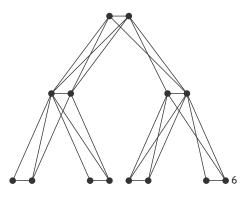
Recursively compute for a vertex u with children v_1, \ldots, v_k

$$M_{u}(1) = 1 + \sum_{i} M_{v_{i}}(0)$$

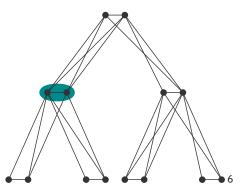
$$M_{u}(0) = \sum_{i} \max(M_{v_{i}}(0), M_{v_{i}}(1))$$

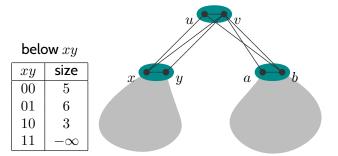
$$T_{u}$$

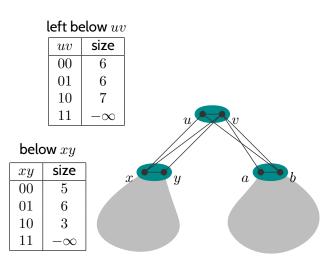
- The algorithm works because every vertex is a separator.
- Can we generalize this idea to tree-like graphs?

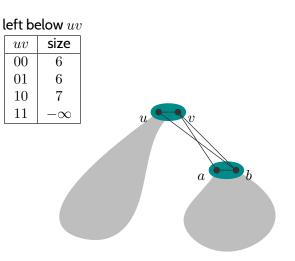


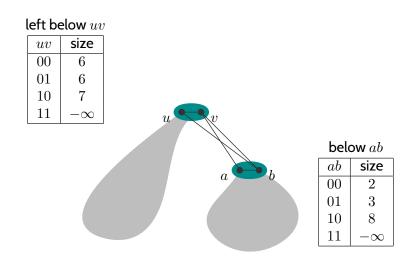
- The algorithm works because every vertex is a separator.
- Can we generalize this idea to tree-like graphs?
- Idea: Group vertices into separator-bags

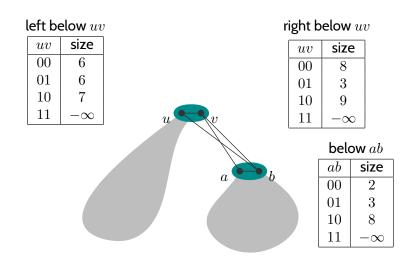


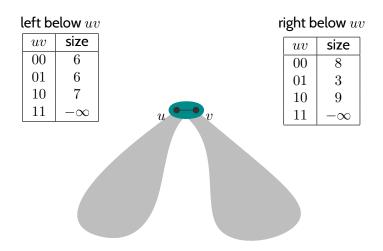


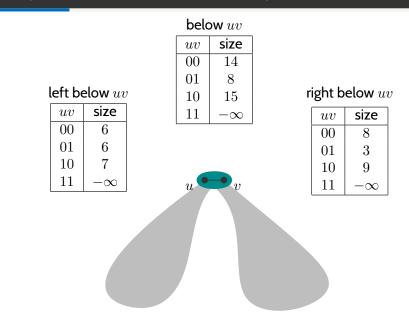




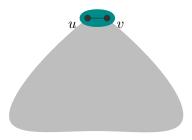








delow uv	
uv	size
00	14
01	8
10	15
11	$-\infty$

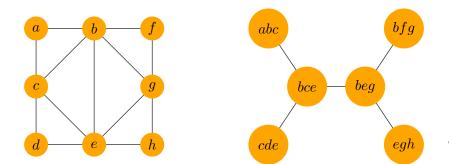


Why does this approach work? Because we have a "tree of small separators" that we can traverse upwards.

The notion of *treewidth* formalizes this.

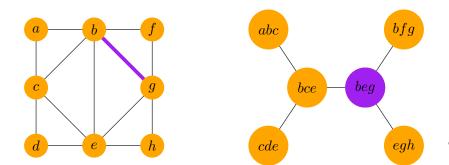
A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree



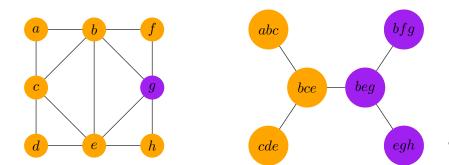
A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree



A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree

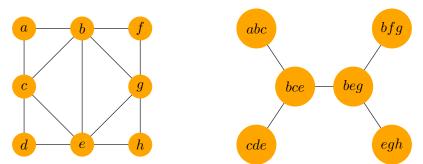


A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree

Width of decomposition: maximum bag size -1

Treewidth of G (tw(G)): minimum width of a decomposition of G

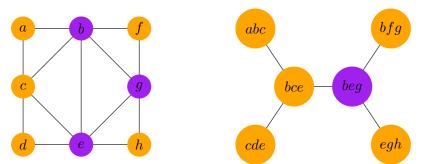


A *tree decomposition* of a graph G = (V, E) is a tree whose vertices are *bags* (subsets of V) and

- \bigcirc every vertex $v \in V$ is contained in some bag,
- \bigcirc every edge $uv \in V$ is contained in some bag,
- \bigcirc for every $v \in V$, the bags containing v are a connected subtree

Width of decomposition: maximum bag size -1

Treewidth of G (tw(G)): minimum width of a decomposition of G



Trees and Treewidth

Trees have treewidth 1.

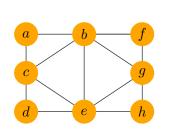
Theorem (Independent Set on Treewidth)

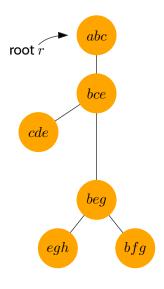
Given a graph G and a tree decomposition of G of width w, one can compute the size of a maximum independent set in time $2^w w^{O(1)} n$.

This generalizes the previous result (trees have treewidth 1).

Rooting the Decomposition

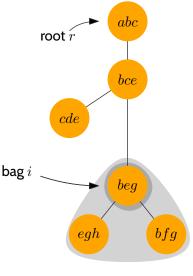
 Choose an arbitrary bag r as root and orient the tree accordingly.

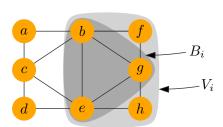




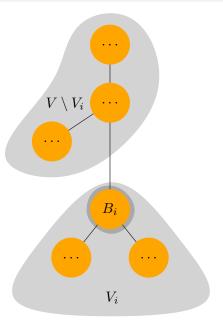
Rooting the Decomposition

- Choose an arbitrary bag r as root and orient the tree accordingly.
- For bag *i* let B_i be the vertices of G contained in *i* and V_i be the vertices contained in *i* or a successor of *i*.





We will compute solutions in V_i w.r.t "boundary" B_i .

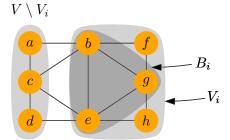


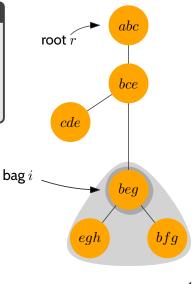
Separators

Theorem

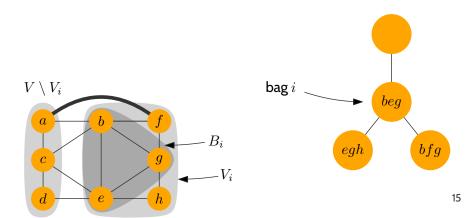
For every bag i, B_i is a separator between V_i and $V \setminus V_i$.

(i.e., every path between V_i and $V \setminus V_i$ goes through B_i).

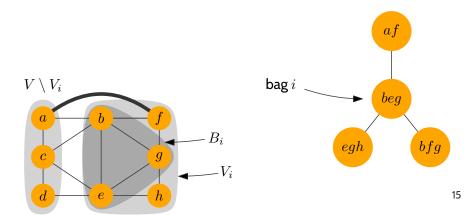




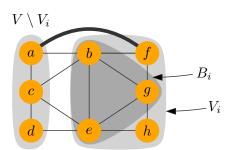
 Assume for contradition the statement is false and there is an edge such as drawn below

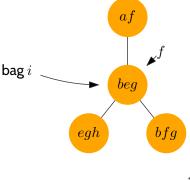


- Assume for contradition the statement is false and there is an edge such as drawn below
- \bigcirc Then *a* and *f* occur together in some bag (maybe above *i*).

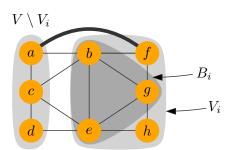


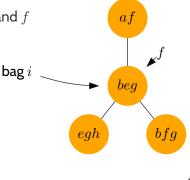
- Assume for contradition the statement is false and there is an edge such as drawn below
- \bigcirc Then *a* and *f* occur together in some bag (maybe above *i*).
- The bags containing f induce a subtree, thus bag i also contains f. A contradiction.





- Assume for contradition the statement is false and there is an edge such as drawn below
- \bigcirc Then *a* and *f* occur together in some bag (maybe above *i*).
- The bags containing f induce a subtree, thus bag i also contains f. A contradiction.
- We get a similar contradiction if *a* and *f* occur together somewhere else.



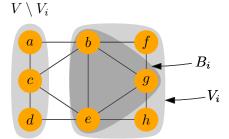


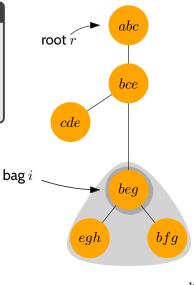
Separators

Theorem

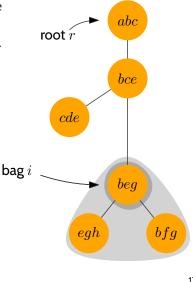
For every bag i, B_i is a separator between V_i and $V \setminus V_i$.

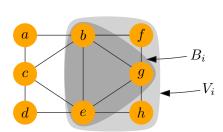
(i.e., every path between V_i and $V \setminus V_i$ goes through B_i).



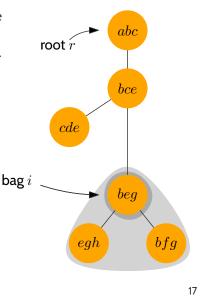


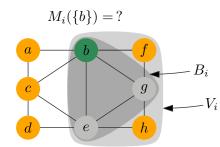
○ For every set $S \subseteq B_i$, let $M_i(S)$ be the maximum size of an independent set in $G[V_i]$ that intersects B_i exactly in S.



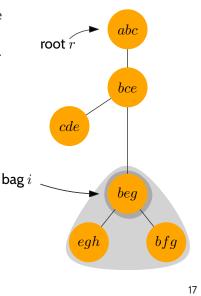


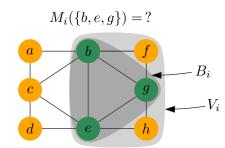
○ For every set $S \subseteq B_i$, let $M_i(S)$ be the maximum size of an independent set in $G[V_i]$ that intersects B_i exactly in S.



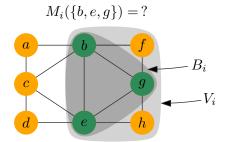


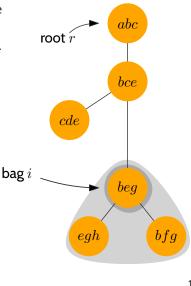
• For every set $S \subseteq B_i$, let $M_i(S)$ be the maximum size of an independent set in $G[V_i]$ that intersects B_i exactly in S.





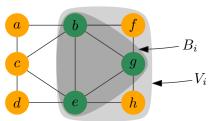
- For every set $S \subseteq B_i$, let $M_i(S)$ be the maximum size of an independent set in $G[V_i]$ that intersects B_i exactly in S.
- The *table entries* of a bag *i* are the values $M_i(S)$ for all $S \subseteq B_i$.

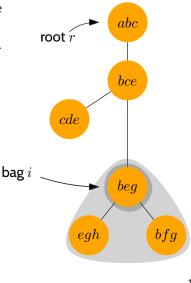


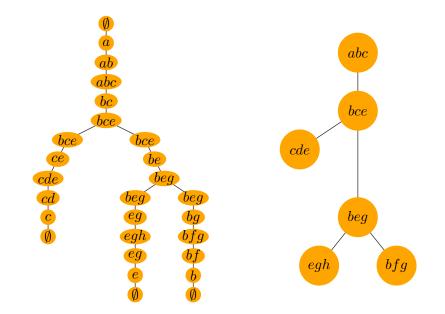


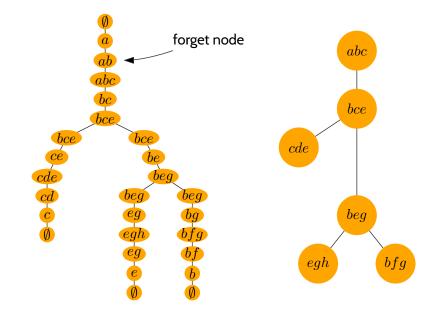
- For every set $S \subseteq B_i$, let $M_i(S)$ be the maximum size of an independent set in $G[V_i]$ that intersects B_i exactly in S.
- The *table entries* of a bag *i* are the values $M_i(S)$ for all $S \subseteq B_i$.
- We will compute all table entries inductively, starting at the leafs.

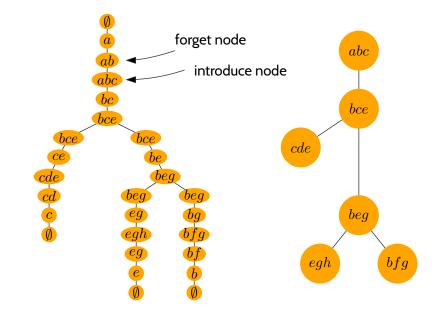
 $M_i(\{b, e, g\}) = ?$

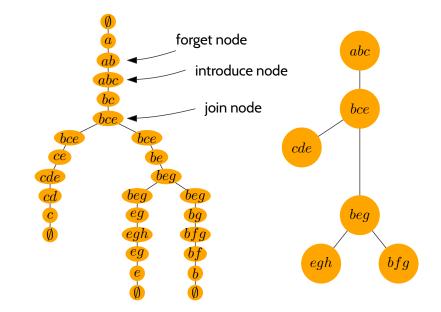


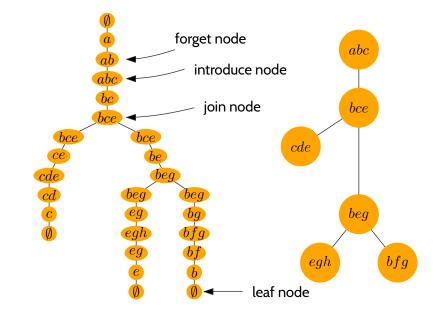


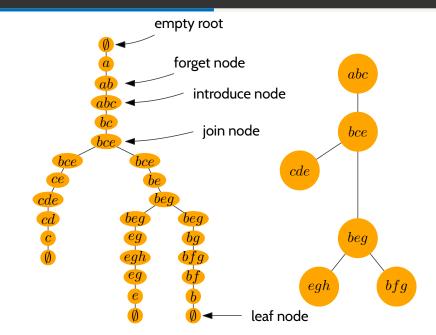










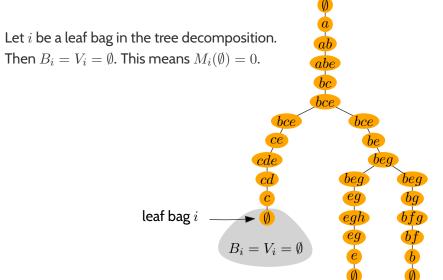


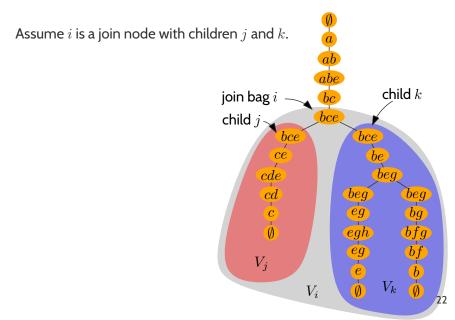
Nice tree decompositions consist of

- Leaf nodes: have no children and are empty
- Introduce nodes: have one child and contain exactly one vertex more than it
- Forget nodes: have one child and contain exactly one vertex less than it
- Join nodes: have exactly two identical children

There is an algorithm that will convert a tree decomposition of width w in time $O(nw^2)$ into a nice tree decomposition of width w with O(nw) bags.

- \bigcirc $M_i(S)$ is the maximum size of an independent set in $G[V_i]$ that intersects the bag vertices B_i exactly in S.
- The *table entries* of a bag *i* are the values $M_i(S)$ for all $S \subseteq B_i$. For every bag, there are $2^{|B_i|} \leq 2^w$ entries.
- We express the table entries of a bag in terms of the entries of its children.

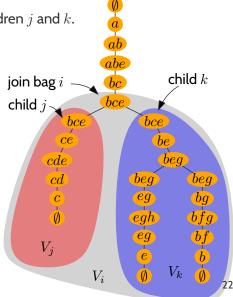




Assume i is a join node with children j and k.

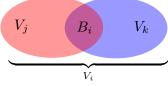
 \bigcirc Since the decomposition

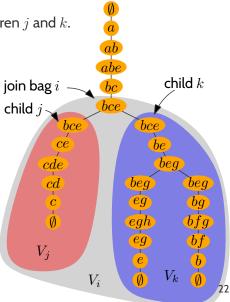
is nice, $B_i = B_j = B_k$



Assume i is a join node with children j and k.

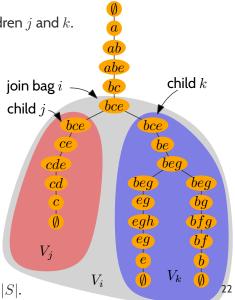
○ Since the decomposition is nice, B_i = B_j = B_k
○ Thus, V_i = V_j ∪ V_k
○ Also V_j ∩ V_k = B_i separates V_j and V_k



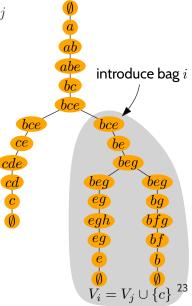


Assume i is a join node with children j and k.

Since the decomposition is nice, $B_i = B_i = B_k$ Thus, $V_i = V_i \cup V_k$ Also $V_i \cap V_k = B_i$ separates V_i and V_k V_i B_i V_k V_i Therefore $M_i(S) = M_i(S) + M_k(S) - |S|.$

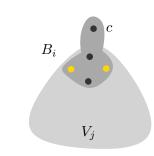


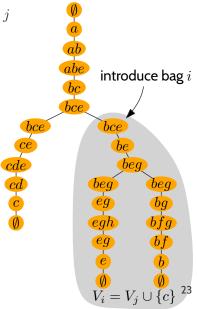
Assume *i* is an introduce node with child *j* and $B_i = B_j \cup \{c\}$.



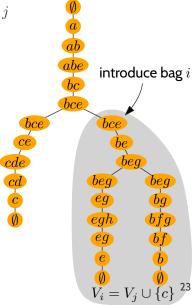
Assume *i* is an introduce node with child *j* and $B_i = B_j \cup \{c\}$.

 $M_i(S) =$

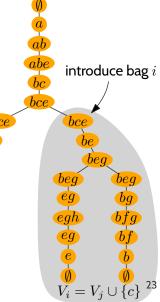




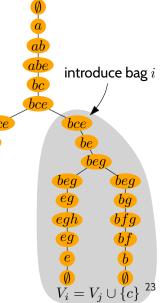
Assume i is an introduce node with child jand $B_i = B_j \cup \{c\}$. $M_i(S) =$ $M_j(S)$ if $c \notin S$, c B_i V_i

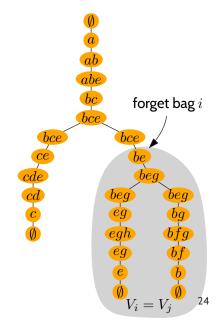


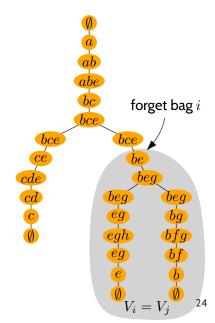
Assume i is an introduce node with child jand $B_i = B_j \cup \{c\}$. $M_i(S) =$ $M_j(S)$ if $c \notin S$, bce ce cde ccd B_i V_i

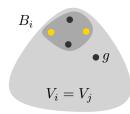


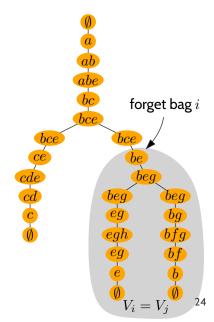
Assume i is an introduce node with child jand $B_i = B_i \cup \{c\}$. $M_i(S) =$ $\begin{cases} M_j(S) & \text{if } c \notin S, \\ M_j(S \setminus \{c\}) + 1 & \text{if } c \in S \text{ and } S \text{ is } \mathsf{IS}, \end{cases}$ bce otherwise. ce cdeccd B_i V_i

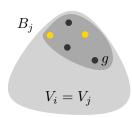


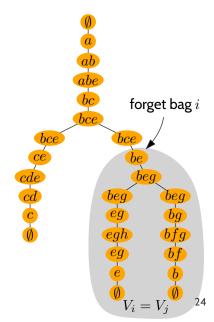


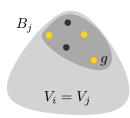




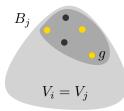


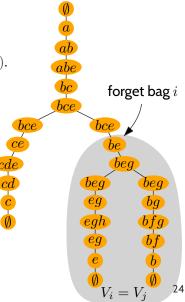




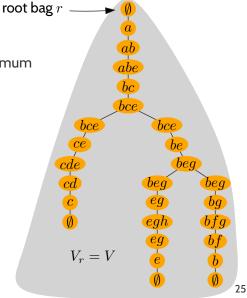


Assume *i* is a forget node with child *j* and $B_i = B_j \setminus \{g\}$. Then $M_i(S) = \max(M_j(S), M_j(S \cup \{g\}))$.





The answer is in the root bag r. $M_r(\emptyset)$ equals the size of a maximum independent set in $G[V_r] = G$.



Theorem (Independent Set on Treewidth)

Given a graph G and a tree decomposition of G of width w, one can compute (the size of) a maximum independent set in time $2^w w^{O(1)} n$.

Theorem (Korhonen 2021)

There is an algorithm that, given an *n*-vertex graph G and an integer w, runs in time $2^{O(w)}n$ and computes a tree decomposition of G of width at most 2w + 1 or concludes that the treewidth of G exceeds w.

Theorem (Korhonen 2021)

There is an algorithm that, given an *n*-vertex graph G and an integer w, runs in time $2^{O(w)}n$ and computes a tree decomposition of G of width at most 2w + 1 or concludes that the treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing values of w. This yields:

Theorem (Korhonen 2021)

There is an algorithm that, given an *n*-vertex graph G and an integer w, runs in time $2^{O(w)}n$ and computes a tree decomposition of G of width at most 2w + 1 or concludes that the treewidth of G exceeds w.

We can find a good enough decomposition by trying increasing values of w. This yields:

Theorem

One can compute (the size of) a maximum independent set in time $2^{O(\mathsf{tw}(G))}n$.

 Treewidth is a powerful width parameter that describes tree-like graphs.

- Treewidth is a powerful width parameter that describes tree-like graphs.
- \bigcirc Independent Set can be solved in time f(w)n on graphs with treewidth w.

- Treewidth is a powerful width parameter that describes tree-like graphs.
- \bigcirc Independent Set can be solved in time f(w)n on graphs with treewidth w.
- The same dynamic programming technique leads to algorithms for many other problems.

- Treewidth is a powerful width parameter that describes tree-like graphs.
- \bigcirc Independent Set can be solved in time f(w)n on graphs with treewidth w.
- The same dynamic programming technique leads to algorithms for many other problems.
- \bigcirc \Rightarrow Graphs with small treewidth are "algorithmically tractable".

Nishizeki, Vygen, Zhou 2001

Finding edge-disjoint paths between source-sink pairs is hard on graphs with treewidth two.

Outline

- There are many more problems one can solve on graphs with small treewidth.
 - coloring
 - independent set
 - o clique
 - dominating set
 - feedback vertex set
 - hamilton path
 - o ...
- We don't want to write down a separate dynamic programming algorithm for each of them. Instead, we present a meta-algorithm that solves all of them.
- To do so, we first need some background in logic.

 $\bigcirc \ graph \leftrightarrow structure$

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure
- \bigcirc all vertices (or edges) of a graph \leftrightarrow universe of the structure

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure
- \bigcirc all vertices (or edges) of a graph \leftrightarrow universe of the structure
- \bigcirc vertex (or edge) \leftrightarrow element

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure
- \bigcirc all vertices (or edges) of a graph \leftrightarrow universe of the structure
- \bigcirc vertex (or edge) \leftrightarrow element
- \bigcirc adjacency \leftrightarrow binary relation

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure
- \bigcirc all vertices (or edges) of a graph \leftrightarrow universe of the structure
- \bigcirc vertex (or edge) \leftrightarrow element
- \bigcirc adjacency \leftrightarrow binary relation
- \bigcirc colors \leftrightarrow unary relation

- \bigcirc graph \leftrightarrow structure
- \bigcirc induced subgraph \leftrightarrow substructure
- \bigcirc subgraph \leftrightarrow weak substructure
- \bigcirc all vertices (or edges) of a graph \leftrightarrow universe of the structure
- \bigcirc vertex (or edge) \leftrightarrow element
- \bigcirc adjacency \leftrightarrow binary relation
- \bigcirc colors \leftrightarrow unary relation

0 ...

If we want to use tools from logic (and don't want to embarras us in front of logicans) we will have to learn some of their language and formalism.

 Each structure has a signature τ: a set of relational symbols with given arities.

- Each structure has a signature τ: a set of relational symbols with given arities.
- \bigcirc We interpret *colored undirected graphs* as τ -structures with $\tau = \{\sim, c_1, c_2, \dots\}$ where

- Each structure has a signature τ: a set of relational symbols with given arities.
- We interpret *colored undirected graphs* as τ -structures with $\tau = \{\sim, c_1, c_2, \dots\}$ where
 - the universe are the vertices

- Each structure has a signature τ: a set of relational symbols with given arities.
- We interpret *colored undirected graphs* as τ -structures with $\tau = \{\sim, c_1, c_2, \dots\}$ where
 - the universe are the vertices
 - $\circ~\sim$ denotes the binary adjacency relation between vertices

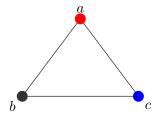
- Each structure has a signature τ: a set of relational symbols with given arities.
- \bigcirc We interpret colored undirected graphs as $\tau\text{-structures}$ with
 - $au = \{\sim, c_1, c_2, \dots\}$ where
 - the universe are the vertices
 - $\circ~\sim$ denotes the binary adjacency relation between vertices
 - $\circ c_i$ denotes the unary relation "the vertex is colored with color i"

- Each structure has a signature τ: a set of relational symbols with given arities.
- We interpret *colored undirected graphs* as τ -structures with
 - $au = \{\sim, c_1, c_2, \dots\}$ where
 - the universe are the vertices
 - $\circ\ \sim$ denotes the binary adjacency relation between vertices
 - $\circ c_i$ denotes the unary relation "the vertex is colored with color i"
- \bigcirc It is sometimes convenient to use other signatures
 - $\circ \ \ \tau = \{ \leadsto \} \text{ for directed graphs}$
 - $\circ \ \ au = \{\sim, U, V\}$ for directed bipartite graphs
 - o ...

Example

This graph is a structure G with

- \bigcirc universe $V = \{a, b, c\}$
- \bigcirc symmetrical binary relation $\sim := \{(a, b), (b, a), (b, c), (c, b)(a, c), (c, a)\}$
- \bigcirc unary relations $c_1 := \{a\}$, $c_2 := \{c\}$



For a given signature τ , monadic second-order logic has ...

- \bigcirc element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equality) and $x \in X$ (membership), as well as the relations from τ .
- $\, \bigcirc \,$ quantifiers \exists and \forall , as well as operators \wedge, \vee and \neg

For a given signature $\tau,$ monadic second-order logic has \ldots

- \bigcirc element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equality) and $x \in X$ (membership), as well as the relations from τ .
- $\, \bigcirc \,$ quantifiers \exists and \forall , as well as operators \wedge, \vee and \neg

We mostly work on colored undirected graphs with $\tau = \{\sim, c_1, c_2, \dots\}$. Here, we call the logic MSO₁.

For a given signature $\tau,$ monadic second-order logic has \ldots

- \bigcirc element-variables (x, y, z, \dots) and set-variables (X, Y, Z, \dots)
- relations = (equality) and $x \in X$ (membership), as well as the relations from τ .
- $\, \bigcirc \,$ quantifiers \exists and \forall , as well as operators \wedge, \vee and \neg

We mostly work on colored undirected graphs with $\tau = \{\sim, c_1, c_2, \dots\}$. Here, we call the logic MSO₁.

Instead of prefix notation ($\sim(x, y)$) we use infix notation ($x \sim y$) when convenient and add parentheses when it avoids confusion.

What do these formulas mean?

$$\neg \exists r \exists x \exists g (\operatorname{red}(r) \land \operatorname{green}(g) \land r \sim x \land x \sim g)$$

What do these formulas mean?

$$\neg \exists r \, \exists x \, \exists g \, \big(\mathsf{red}(r) \land \mathsf{green}(g) \land r \sim x \land x \sim g \big)$$

$$\varphi(X) \equiv \forall x \big(x \in X \lor \exists y \, y \in X \land x \sim y \big)$$

You do not need disjunctions (\lor).

$$\varphi \lor \psi \equiv \neg (\neg \psi \land \neg \varphi)$$

You do not need disjunctions (\lor).

$$\varphi \lor \psi \equiv \neg (\neg \psi \land \neg \varphi)$$

You do not need universal quantifiers.

$$\forall x \, \varphi \equiv \neg \exists x \, \neg \varphi$$

You do not need disjunctions (\lor).

$$\varphi \lor \psi \equiv \neg (\neg \psi \land \neg \varphi)$$

You do not need universal quantifiers.

$$\forall x \, \varphi \equiv \neg \exists x \, \neg \varphi$$

You can assume that all quantifier are in the beginning (Prenex normal form).

$$\varphi \wedge \exists x \, \psi \equiv \exists x \, \varphi \wedge \psi$$

○ If φ is a sentence (a formula without free variables), we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ).

- If φ is a sentence (a formula without free variables), we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ).
- We say a graph property/problem is *expressible* in a logic if there exists a sentence φ such that for every graph G holds G ⊨ φ iff G is a yes-instance.

 \bigcirc "G has at least 2 vertices"

 \bigcirc "G has at least 2 vertices"

 $\exists x \exists y x \neq y$

 \bigcirc "G has at least 2 vertices"

 $\exists x \exists y x \neq y$

 \bigcirc "G is connected"

 \bigcirc "G has at least 2 vertices"

 $\exists x \exists y x \neq y$

 \bigcirc "G is connected"

 $\forall X \forall Y \Big((\forall zz \in X \lor z \in Y) \to \big(\exists x \exists y (x \in X \land y \in Y \land x \sim y) \big) \Big)$

 \bigcirc "G has a proper 3 coloring"

$$\bigcirc$$
 "G has a proper 3 coloring"

$$\begin{split} \varphi &\equiv \exists R \exists G \exists B \\ \left(\forall xx \in R \lor x \in G \lor x \in B \right) \\ &\wedge \left(\forall x \neg (x \in R \land x \in G) \land \neg (x \in G \land x \in B) \land \neg (x \in R \land x \in B) \right) \\ &\wedge \left(\forall x \forall y \big((x \in R \land y \in R) \lor (x \in G \land y \in G) \lor (x \in B \land y \in B) \big) \\ &\rightarrow \neg x \sim y \Big) \end{split}$$