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Content

Algorithmic Meta-Theorems lie at intersection of

# Algorithms,
# Graphs,
# Logic.

“[Algorithmic Meta-Theorems] are results of the form: every
computational problem that can be formalised in a given logic L can be
solved efficiently on every class C of structures satisfying certain
conditions.”

Stefan Kreuzer
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Content

We learn how to

# express graph problems as logical formulas (MSO, FO),
# evaluate MSO formulas on tree-like graphs,
# evaluate FO formulas on sparse graphs,
# (transfer these results to dense graphs).

To do so, we

# use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . . ),

# learn to work with treewidth
# discover the right notion of “sparse graphs”,
# work through central proofs (from a high level perspective).
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Pros and Cons

Should You use algorithmic meta-theorems?

Pros:

# Quick and easy way to check if something is tractable in
principle.

# Powerful algorithms to use as a subroutine in other problems.

Cons:

# For specific problems much slower than “handcrafted”
algorithms.
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Why do I care about them?

Central piece in the quest for a general theory of
tractable graph classes.
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Structure and Dates

# Semester hours: 2.0
# Credits: 3.0

# Weekly Lectures: Tuesdays, 11:00 – 12:30
◦ Seminarraum FAV 01 B (Seminarraum 187/2)
◦ also online (link in Tuwel)
◦ The slides will be available on Tuwel.

# Bi-Weekly Exercises: Fridays, 11:00 – 12:30
◦ Seminarraum FAV 01 B (Seminarraum 187/2)
◦ also online (link in Tuwel)
◦ You get problems related to lecture and solve them together.
◦ Separate session at 09:15 for online participants?

# No mandatory homework exercises. 7



Grading

# You get a passing grade “befriedigend” if you actively
participate in four all bi-weekly exercise sessions.

# Active partiticipation means
◦ being present (either online or in person),
◦ being familiar with relevant lecture-material,
◦ trying to make meaningful contributions.

# Cannot actively participate in some session? Reach out as
soon as possible!

# If you got a passing grade "befriedigend" you may take an
optional oral exam at the end of the lecture period. The grade
attained for the oral exam then replaces the previous grade.

8



Me

# Jan Dreier (just call me Jan)

# studied CS and did my PhD at RWTH Aachen University

# joined TU Wien as PostDoc beginning of the year.

# I like working on algorithmic meta-theorems, parameterized
algorithms, structural graph theory, randomness, . . .

# This is the first time this lecture is held and my first lecture in
general. Things may not always go smooth.

9



You

# What’s your background?

# What are you interested in?

# What do you expect?

10



Next Dates

# 19.10. Lecture
# 26.10. Lecture (National Holiday)
# 29.10. Exercise
# . . .

11



Crash Course

We start with some simple examples that illustrate a bit of the
“philosophy” behind algorithmic meta-theorems.

12



Graphs and Structure

# This lecture only deals only with graph problems.
◦ Many problems can be described using graphs (use edges to

describe conflicts, friendships, dependencies, . . . ).
◦ Many ways to restrict their structure (trees, planarity, bounded

degree, . . . ).

# Many problems are are tractable if you assume some extra
structure.
◦ independent set on trees
◦ coloring on interval graphs
◦ . . .
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Using Graph Structure to Solve Independent Set

How does graph structure help us solve problems? We will explore
this using the independent problem as an example.

An independent set in a graph G is a vertex set S ⊆ V (G) such that
no vertices in S are adjacent.

INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

INDEPENDENTSET is NP-complete. This means every problem in
NP can be reduced to this problem. Unless P=NP,
INDEPENDENTSET cannot be solved in polynomial time. 14



Independent Set on Trees

INDEPENDENTSET can be solved in linear time on trees.

Idea: Root the tree and do dynamic programming. Starting at the
leafs, compute for each subtree the maximum size of a solution
with and without its root.

15



Independent Set on Trees
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Generalization

# This approach can be extended to tree-like graphs (bounded
treewidth).

# First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

# This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .
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Second-Order Logic

Second-order logic on graphs has . . .

# variables for vertices (x, y, z) and sets of vertices (X,Y, Z)
# quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬
# relations =, x ∼ y (adjacency) and x ∈ X (membership)

A problem is expressible if we can write down a sentence that is true
if and only if the instance is a yes-instance.

Instead of finding an algorithm, we only have to find a formula that
expresses the problem!
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Expressiveness

What does this formula express?

∃x∃y∃z(x ∼ y ∧ x ∼ z ∧ y ∼ z)

Or this one?
∃x∀y(x = y ∨ x ∼ y)

Or this?
ϕ(X) = ¬∃x∃y(x ∈ X ∧ y ∈ X ∧ x ∼ y)

Later on, we will prove Courcelle’s theorem and identify which
problems can be expressed in monadic second-order logic.
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Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.
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Easy and Hard Instances

# The distinction between P and NP may be too coarse.
# Even though a problem is NP-complete, certain instances may

be tractable.
# How can we describe these instances?

21



Parameterized Complexity

Assign each instance a number, called the parameter. We hope that

# we can solve the instance if the parameter is small,
# interesting instances have a small parameter.

NP-hard problems may still be tractable for small parameter
values!

22



Parameterized Independent Set

PARAMETERIZED INDEPENDENTSET

Input: Graph G and integer k
Parameter: k

Question: Does G have an independent set of size k?

A parameterized problem is fixed parameter tractable (fpt) if
instances with parameter k and size n can be solved in time f(k)nc

(for some function f and constant c).

Is PARAMETERIZED INDEPENDENTSET fixed parameter tractable?

23



Parameterized Hardness

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).
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Independent Set on Planar Graphs

How about parameterized independent set on planar graphs?

PARAMETERIZED INDEPENDENTSET is fixed parameter
tractable on planar graphs.
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Independent Set on Planar Graphs

# We want to find an independent set of size k.

# In planar graphs there is always a vertex v with degree≤ 5.
# At least one vertex w from N(v) is in a maximal independent

set.
# We guess w, place w in solution and remove N(w).
# Then find a solution of size k − 1 in remaining graph.
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Algorithm

IS(G, k):
if G is empty return k == 0

find vertex v with degree≤ 5 in G

for all w ∈ N(v):
if IS(G \N(w), k − 1) return True

return False

This solves PARAMETERIZED INDEPENDENTSET on planar graphs in
time O(6kn).

27



Sparse Graphs

# Trees have at most (n− 1) edges and planar graphs at most
3n edges.

# Do problems generally become simpler if there are few edges
in the graph?

# Yes and no.
# We discuss Sparsity theory which gives a rigorous answer to

this question.
# Nowhere dense graph classes are the top of the sparsity

hierarchy.
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Generalization

# Second main result of the lecture: Every problem definable in
first-order logic can be solved in fpt time on nowhere dense
graphs.

# This includes
◦ param. independent set
◦ param. clique
◦ param. dominating set
◦ param. scattered set
◦ . . .

29



Summary

INDEPENDENTSET is hard on general graphs. However,

# on trees, we can solve it in linear time
# on planar graphs, it is still fixed parameter tractable.

trees

planar graphs
general graphs

We will observe a similar behaviour for many other problems!
30



Summary

INDEPENDENTSET is hard on general graphs. However,

# on bounded treewidth, we can solve it in linear time
# on nowhere dense graphs, it is still fixed parameter tractable.

bounded treewidth

nowhere dense
general graphs

We will observe a similar behaviour for many other problems!
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