
Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

1

Algorithmic Meta-Theorems

192.122
WS21/22
Jan Dreier

dreier@ac.tuwien.ac.at

AC-TU-INF-vert

AC-TU-INF-horiz

AC-TU

AC-TU-no-text

2

Content

Algorithmic Meta-Theorems lie at intersection of

Algorithms,
Graphs,
Logic.

“[Algorithmic Meta-Theorems] are results of the form: every
computational problem that can be formalised in a given logic L can be
solved efficiently on every class C of structures satisfying certain
conditions.”

Stefan Kreuzer

3

Content

Algorithmic Meta-Theorems lie at intersection of

Algorithms,
Graphs,
Logic.

“[Algorithmic Meta-Theorems] are results of the form: every
computational problem that can be formalised in a given logic L can be
solved efficiently on every class C of structures satisfying certain
conditions.”

Stefan Kreuzer

3

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),

evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,

evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,

(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth

discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,

work through central proofs (from a high level perspective).

4

Content

We learn how to

express graph problems as logical formulas (MSO, FO),
evaluate MSO formulas on tree-like graphs,
evaluate FO formulas on sparse graphs,
(transfer these results to dense graphs).

To do so, we

use tools from logic (Gaifman, Feferman–Vaught,
Ehrenfeucht-Fraïssé, . . .),

learn to work with treewidth
discover the right notion of “sparse graphs”,
work through central proofs (from a high level perspective).

4

Pros and Cons

Should You use algorithmic meta-theorems?

Pros:

Quick and easy way to check if something is tractable in
principle.

Powerful algorithms to use as a subroutine in other problems.

Cons:

For specific problems much slower than “handcrafted”
algorithms.

5

Pros and Cons

Should You use algorithmic meta-theorems?

Pros:

Quick and easy way to check if something is tractable in
principle.

Powerful algorithms to use as a subroutine in other problems.

Cons:

For specific problems much slower than “handcrafted”
algorithms.

5

Pros and Cons

Should You use algorithmic meta-theorems?

Pros:

Quick and easy way to check if something is tractable in
principle.

Powerful algorithms to use as a subroutine in other problems.

Cons:

For specific problems much slower than “handcrafted”
algorithms.

5

Pros and Cons

Should You use algorithmic meta-theorems?

Pros:

Quick and easy way to check if something is tractable in
principle.

Powerful algorithms to use as a subroutine in other problems.

Cons:

For specific problems much slower than “handcrafted”
algorithms.

5

Why do I care about them?

Central piece in the quest for a general theory of
tractable graph classes.

6

Why do I care about them?

Central piece in the quest for a general theory of
tractable graph classes.

6

Structure and Dates

Semester hours: 2.0
Credits: 3.0

Weekly Lectures: Tuesdays, 11:00 – 12:30
◦ Seminarraum FAV 01 B (Seminarraum 187/2)
◦ also online (link in Tuwel)
◦ The slides will be available on Tuwel.

Bi-Weekly Exercises: Fridays, 11:00 – 12:30
◦ Seminarraum FAV 01 B (Seminarraum 187/2)
◦ also online (link in Tuwel)
◦ You get problems related to lecture and solve them together.
◦ Separate session at 09:15 for online participants?

No mandatory homework exercises. 7

Grading

You get a passing grade “befriedigend” if you actively
participate in four all bi-weekly exercise sessions.

Active partiticipation means
◦ being present (either online or in person),
◦ being familiar with relevant lecture-material,
◦ trying to make meaningful contributions.

Cannot actively participate in some session? Reach out as
soon as possible!

If you got a passing grade "befriedigend" you may take an
optional oral exam at the end of the lecture period. The grade
attained for the oral exam then replaces the previous grade.

8

Me

Jan Dreier (just call me Jan)

studied CS and did my PhD at RWTH Aachen University

joined TU Wien as PostDoc beginning of the year.

I like working on algorithmic meta-theorems, parameterized
algorithms, structural graph theory, randomness, . . .

This is the first time this lecture is held and my first lecture in
general. Things may not always go smooth.

9

You

What’s your background?

What are you interested in?

What do you expect?

10

Next Dates

19.10. Lecture
26.10. Lecture (National Holiday)
29.10. Exercise
. . .

11

Crash Course

We start with some simple examples that illustrate a bit of the
“philosophy” behind algorithmic meta-theorems.

12

Graphs and Structure

This lecture only deals only with graph problems.
◦ Many problems can be described using graphs (use edges to

describe conflicts, friendships, dependencies, . . .).
◦ Many ways to restrict their structure (trees, planarity, bounded

degree, . . .).

Many problems are are tractable if you assume some extra
structure.
◦ independent set on trees
◦ coloring on interval graphs
◦ . . .

13

Graphs and Structure

This lecture only deals only with graph problems.
◦ Many problems can be described using graphs (use edges to

describe conflicts, friendships, dependencies, . . .).
◦ Many ways to restrict their structure (trees, planarity, bounded

degree, . . .).

Many problems are are tractable if you assume some extra
structure.
◦ independent set on trees
◦ coloring on interval graphs
◦ . . .

13

Using Graph Structure to Solve Independent Set

How does graph structure help us solve problems? We will explore
this using the independent problem as an example.

An independent set in a graph G is a vertex set S ⊆ V (G) such that
no vertices in S are adjacent.

INDEPENDENTSET

Input: Graph G and integer k
Question: Does G have an independent set of size k?

INDEPENDENTSET is NP-complete. This means every problem in
NP can be reduced to this problem. Unless P=NP,
INDEPENDENTSET cannot be solved in polynomial time. 14

Independent Set on Trees

INDEPENDENTSET can be solved in linear time on trees.

Idea: Root the tree and do dynamic programming. Starting at the
leafs, compute for each subtree the maximum size of a solution
with and without its root.

15

Independent Set on Trees

16

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0 16

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

16

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

16

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

size
with 1+3

without 0+4

16

Independent Set on Trees

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1

without 0

size
with 1+0

without 0+3

size
with 1+3

without 0+4
take maximum

16

Generalization

This approach can be extended to tree-like graphs (bounded
treewidth).

First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

17

Generalization

This approach can be extended to tree-like graphs (bounded
treewidth).

First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

17

Generalization

This approach can be extended to tree-like graphs (bounded
treewidth).

First main result of the lecture (Courcelle’s theorem): Every
problem definable in monadic second-order logic can be
solved in linear time on graphs of bounded treewidth.

This includes
◦ coloring
◦ independent set
◦ clique
◦ dominating set
◦ feedback vertex set
◦ hamilton path
◦ . . .

17

Second-Order Logic

Second-order logic on graphs has . . .

variables for vertices (x, y, z) and sets of vertices (X,Y, Z)
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬
relations =, x ∼ y (adjacency) and x ∈ X (membership)

A problem is expressible if we can write down a sentence that is true
if and only if the instance is a yes-instance.

Instead of finding an algorithm, we only have to find a formula that
expresses the problem!

18

Second-Order Logic

Second-order logic on graphs has . . .

variables for vertices (x, y, z) and sets of vertices (X,Y, Z)
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬
relations =, x ∼ y (adjacency) and x ∈ X (membership)

A problem is expressible if we can write down a sentence that is true
if and only if the instance is a yes-instance.

Instead of finding an algorithm, we only have to find a formula that
expresses the problem!

18

Second-Order Logic

Second-order logic on graphs has . . .

variables for vertices (x, y, z) and sets of vertices (X,Y, Z)
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬
relations =, x ∼ y (adjacency) and x ∈ X (membership)

A problem is expressible if we can write down a sentence that is true
if and only if the instance is a yes-instance.

Instead of finding an algorithm, we only have to find a formula that
expresses the problem!

18

Expressiveness

What does this formula express?

∃x∃y∃z(x ∼ y ∧ x ∼ z ∧ y ∼ z)

Or this one?
∃x∀y(x = y ∨ x ∼ y)

Or this?
ϕ(X) = ¬∃x∃y(x ∈ X ∧ y ∈ X ∧ x ∼ y)

Later on, we will prove Courcelle’s theorem and identify which
problems can be expressed in monadic second-order logic.

19

Expressiveness

What does this formula express?

∃x∃y∃z(x ∼ y ∧ x ∼ z ∧ y ∼ z)

Or this one?
∃x∀y(x = y ∨ x ∼ y)

Or this?
ϕ(X) = ¬∃x∃y(x ∈ X ∧ y ∈ X ∧ x ∼ y)

Later on, we will prove Courcelle’s theorem and identify which
problems can be expressed in monadic second-order logic.

19

Expressiveness

What does this formula express?

∃x∃y∃z(x ∼ y ∧ x ∼ z ∧ y ∼ z)

Or this one?
∃x∀y(x = y ∨ x ∼ y)

Or this?
ϕ(X) = ¬∃x∃y(x ∈ X ∧ y ∈ X ∧ x ∼ y)

Later on, we will prove Courcelle’s theorem and identify which
problems can be expressed in monadic second-order logic.

19

Expressiveness

What does this formula express?

∃x∃y∃z(x ∼ y ∧ x ∼ z ∧ y ∼ z)

Or this one?
∃x∀y(x = y ∨ x ∼ y)

Or this?
ϕ(X) = ¬∃x∃y(x ∈ X ∧ y ∈ X ∧ x ∼ y)

Later on, we will prove Courcelle’s theorem and identify which
problems can be expressed in monadic second-order logic.

19

Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

20

Independent Set on Planar Graphs

How about planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

20

Easy and Hard Instances

The distinction between P and NP may be too coarse.
Even though a problem is NP-complete, certain instances may

be tractable.
How can we describe these instances?

21

Parameterized Complexity

Assign each instance a number, called the parameter. We hope that

we can solve the instance if the parameter is small,
interesting instances have a small parameter.

NP-hard problems may still be tractable for small parameter
values!

22

Parameterized Independent Set

PARAMETERIZED INDEPENDENTSET

Input: Graph G and integer k
Parameter: k

Question: Does G have an independent set of size k?

A parameterized problem is fixed parameter tractable (fpt) if
instances with parameter k and size n can be solved in time f(k)nc

(for some function f and constant c).

Is PARAMETERIZED INDEPENDENTSET fixed parameter tractable?

23

Parameterized Hardness

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).

24

Parameterized Hardness

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).

24

Parameterized Hardness

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions). 24

Independent Set on Planar Graphs

How about parameterized independent set on planar graphs?

PARAMETERIZED INDEPENDENTSET is fixed parameter
tractable on planar graphs.

25

Independent Set on Planar Graphs

How about parameterized independent set on planar graphs?

PARAMETERIZED INDEPENDENTSET is fixed parameter
tractable on planar graphs.

25

Independent Set on Planar Graphs

We want to find an independent set of size k.

In planar graphs there is always a vertex v with degree≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

26

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree≤ 5.

At least one vertex w from N(v) is in a maximal independent
set.

We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

v

26

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.

We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

one of them
w

v

26

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).

Then find a solution of size k − 1 in remaining graph.

w

26

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

w

26

Algorithm

IS(G, k):
if G is empty return k == 0

find vertex v with degree≤ 5 in G

for all w ∈ N(v):
if IS(G \N(w), k − 1) return True

return False

This solves PARAMETERIZED INDEPENDENTSET on planar graphs in
time O(6kn).

27

Sparse Graphs

Trees have at most (n− 1) edges and planar graphs at most
3n edges.

Do problems generally become simpler if there are few edges
in the graph?

Yes and no.
We discuss Sparsity theory which gives a rigorous answer to

this question.
Nowhere dense graph classes are the top of the sparsity

hierarchy.

28

Sparse Graphs

Trees have at most (n− 1) edges and planar graphs at most
3n edges.

Do problems generally become simpler if there are few edges
in the graph?

Yes and no.
We discuss Sparsity theory which gives a rigorous answer to

this question.
Nowhere dense graph classes are the top of the sparsity

hierarchy.

28

Sparse Graphs

Trees have at most (n− 1) edges and planar graphs at most
3n edges.

Do problems generally become simpler if there are few edges
in the graph?

Yes and no.
We discuss Sparsity theory which gives a rigorous answer to

this question.

Nowhere dense graph classes are the top of the sparsity
hierarchy.

28

Sparse Graphs

Trees have at most (n− 1) edges and planar graphs at most
3n edges.

Do problems generally become simpler if there are few edges
in the graph?

Yes and no.
We discuss Sparsity theory which gives a rigorous answer to

this question.
Nowhere dense graph classes are the top of the sparsity

hierarchy.

28

Generalization

Second main result of the lecture: Every problem definable in
first-order logic can be solved in fpt time on nowhere dense
graphs.

This includes
◦ param. independent set
◦ param. clique
◦ param. dominating set
◦ param. scattered set
◦ . . .

29

Summary

INDEPENDENTSET is hard on general graphs. However,

on trees, we can solve it in linear time
on planar graphs, it is still fixed parameter tractable.

trees

planar graphs
general graphs

We will observe a similar behaviour for many other problems!
30

Summary

INDEPENDENTSET is hard on general graphs. However,

on bounded treewidth, we can solve it in linear time
on nowhere dense graphs, it is still fixed parameter tractable.

bounded treewidth

nowhere dense
general graphs

We will observe a similar behaviour for many other problems!
30

