A Tool for Pixelated Graph Representations

Thomas Bläsius · Fabian Klute · Benjamin Niedermann · Martin Nöllenburg
Karlsruhe Institute of Technology (KIT)

Pixelated Graph Representations

At GD 2013 in Bordeaux

Visibility Representation (VR)

- a planar graph
- its visibility representation

We can model many other problems in this way.

- 1-Dimensional:
 - pathwidth
 - bondwidth
 - s^2-smartfences
- 2-Dimensional:
 - bar k-VR
 - beauty

We can model many other problems in this way.

We want to minimize the height of a visibility representation.

Back in Karlsruhe

Can you write a program that lets the user load a graph, runs the ILP and displays the resulting drawing?

The user must be able to select constraints out of a predefined list.

It should be easy for the user to specify custom constraints.

The “Pixelated Graphs” Tool **PIGRA**

You can now select a subset of predefined constraints.

You can add your own constraints.

We can formulate ILP constraints that force the pixels to form a VR.

Restrict the height of the VR to restricting the grid-height.

The resulting drawing

You can select the constraints required for a visibility representation.

You can easily change the constant k in the GUI.

The resulting drawing is the set of pixels where every edge may overlap its endpoints.

Back in Karlsruhe

Can you write a program that lets the user load a graph, runs the ILP and displays the resulting drawing?

The user must be able to select constraints out of a predefined list.

It should be easy for the user to specify custom constraints.

The “Pixelated Graphs” Tool **PIGRA**

You can now select a subset of predefined constraints.

You can add your own constraints.

We can formulate ILP constraints that force the pixels to form a VR.

Restrict the height of the VR to restricting the grid-height.

The resulting drawing

You can select the constraints required for a visibility representation.

You can easily change the constant k in the GUI.

The resulting drawing is the set of pixels where every edge may overlap its endpoints.

Based on: Using ILP/SAT to Determine Pathwidth, Visibility Representations, and other Grid-Based Graph Drawings

Therese C. Biedl · Thomas Bläsius · Benjamin Niedermann · Martin Nöllenburg · Roman Prutkin · Ignaz Rutter
Graph Drawing 2013, Pages 460–471, LNCS 8242, Springer International Publishing