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Improved Circuit Minimization with Exact Synthesis

Abstract—Exact synthesis aims to find a smallest circuit match-
ing a given specification. While SAT-based exact synthesis is
currently limited to very small circuits, it can help minimize larger
circuits by optimally resynthesizing subcircuits. The function
implemented by a subcircuit can often be modified without
affecting the function computed by the overall circuit. Fully
capturing and exploiting such flexibilities, called “don’t cares”,
is computationally expensive, but can be beneficial in high-effort
optimization methods.

A recently proposed approach uses Quantified Boolean For-
mulas (QBF) to succinctly encode resynthesis of multi-output
subcircuits subject to don’t cares. This paper describes two
improvements of this approach. First, it presents a purely propo-
sitional encoding based on a Boolean relation characterizing the
input-output behavior of the subcircuit under don’t cares. This
allows the use of a SAT solver for resynthesis, substantially
reducing running times when applied to functions from the
recent IWLS competition. Second, it proposes circuit partitioning
techniques in which don’t cares for a subcircuit are captured
only with respect to an enclosing window, rather than the entire
circuit. Circuit partitioning trades completeness for efficiency, and
successfully enables the application of exact synthesis to some of
the largest circuits in the EPFL suite, leading to improvements
over the current best implementation for several instances.

I. INTRODUCTION

Modern integrated circuits have grown increasingly large and
complex, making their design and optimization a significant
challenge. Automation has become indispensable for the pro-
cess of circuit design, including logic optimization and logic
synthesis, which collectively lead to substantial reductions in
the number of gates and circuit depth [1], [2].

However, finding a small circuit that implements a given
Boolean function is challenging, and exact synthesis, which
yields provably optimal results, does not currently scale beyond
circuits of about 10 gates [3], [4]. To deal with larger circuits,
one can first partition them into smaller subcircuits, and then
minimize these using exact techniques [5].

In practice, this approach is typically restricted to single-
output subcircuits [6], [7]. Although efficient, this does not
fully exploit the implementation flexibility of multi-output
subcircuits. Recently, a high-effort method for resynthesizing
multi-output subcircuits based on Quantified Boolean Formulas
(QBF) has been proposed [8], which has shown success in min-
imizing circuits from the IWLS’22 competition and the EPFL
combinational benchmark suite. Specifically due to increasing
prices of silicon wafers in recent years [9] such high-effort
methods are gaining importance.

In this paper, we describe two improvements of this ap-
proach. First, we present a workflow purely based on SAT
instead of QBF. Generating a SAT encoding requires computing
the input-output relation on the care set (the complement of
don’t cares) for each subcircuit, whereas the QBF encoding

captures don’t cares implicitly. Our rationale is that the ability
to use a SAT solver instead of a QBF solver will more than
make up for this extra step when the relation is reasonably
small. Second, we incorporate windowing to handle very large
circuits. For such circuits, the QBFs encoding the existence of
replacements for subcircuits become too hard for QBF solvers,
and computing the input-output relation needed for the new
SAT encoding takes too much time. To address this, we adapt
a strategy from prior work on computing don’t cares of single-
output subcircuits [6]. Instead of ensuring that a resynthesized
subcircuit preserves the Boolean function computed by the full
circuit, we only require that it preserves the function computed
by a “window” containing the subcircuit to be replaced. In
theory, this means don’t cares of a subcircuit are no longer
fully captured. In practice, with windows containing hundreds
of gates, we expect don’t cares to be virtually identical.

As in the case of resynthesis of multi-output subcircuits,
rewriting multi-output windows is non-trivial since acyclicity
of the circuit obtained from replacing the window has to be
ensured. We describe an algorithm that partitions the circuit
into layers and generates windows that can be optimized
independently and in parallel while ensuring acyclicity.

We performed an experimental evaluation of these improve-
ments. The SAT-based workflow proved to be substantially
faster for small circuits, showing a significant performance
increase for instances in the IWLS’23 competition. For circuits
from the EPFL combinational benchmark suite, the SAT and the
QBF-based approach showed comparable performance. Using
windowing, we were able to scale both approaches to the largest
circuits in this set, which had previously been unmanageable.

A. Related Work

Methods that fully capture the properties of Boolean func-
tions implemented by circuits (rather than considering them
as polynomials, for instance) are deemed the most effective
in logic synthesis [5]. However, these methods are also the
most computationally expensive, and their application to large
circuits is limited to resynthesizing small subcircuits. SAT-
based exact synthesis [3], [4] and SAT-based resubstitution [10],
[11], which aims to represent the function implemented by
a specific gate as a function of a few existing gates in the
circuit, are examples of this approach. Many of these methods
are implemented in the industrial-strength tool ABC [12].

A SAT-based method for capturing don’t cares close to ours
has been previously considered for single-output subcircuits,
including the use of windowing to improve scalability [6].
Boolean relations have been proposed as a means of rep-
resenting don’t cares of multi-output subcircuits [13]. The
corresponding optimization workflow relies on a simulation-
based under-approximation of don’t cares in combination with
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a divide-and-conquer algorithm for resynthesis, whereas we use
a SAT solver for both don’t care computation and resynthesis.

Exact resynthesis of subcircuits has also been explored for
finding optimal circuits for symmetric functions in circuit
complexity research, but without incorporating don’t cares [14].
This is an instance of the SAT-based Local Improvement Method
(SLIM), a general optimization framework that has been applied
to various AI problems (see, for instance, [15]).

In the realm of logic synthesis, QBFs have been employed
for bi-decomposition [16], reversible quantum circuit synthe-
sis [17], and lookup table (LUT) synthesis [18]–[20]. The latter
two problems impose more constraints than the setting consid-
ered in this work, as they maintain a fixed circuit topology. In
contrast, our synthesis tasks also involve determining a suitable
topology.

II. PRELIMINARIES

A Boolean circuit is a directed acyclic graph. We denote the
source nodes of a circuit C as the primary inputs in(C) and the
non-source nodes as gates. The primary outputs out(C) are a
subset of the nodes in C. If there is an edge from node n to
node m then n is an input of m. Each gate corresponds to a
Boolean function on its inputs. Let n be a node in C then the
transitive fanin cone of n TFI (n) is the set of all nodes in C
from which n is reachable. Similarly, the transitive fanout cone
of n TFO(n) is the set of all nodes in C which can be reached
from n. A node n depends on a node m if m ∈ TFI (n).
Moreover, for a node n we define its level lv(n) as 0 if n is a
primary input and else as 1 + max({lv(x) | x ∈ inputs(n)}).

A Quantified Boolean formula (QBF) is of the form
∀X1∃X2 . . . ∀Xk−1∃Xk.φ, where the Xi are pairwise disjoint
sequences of variables, and φ is a propositional formula called
the matrix. The quantifiers range over the Boolean domain
{0, 1}, so that existential (∃) quantifiers can be understood as
abbreviating a disjunction ∃x.φ ≡ φ[x ← 0] ∨ φ[x ← 1], and
universal (∀) quantifiers as encoding a conjunction ∀x.φ ≡
φ[x← 0]∧φ[x← 1]. Evaluating QBFs is a PSPACE-complete
task, and QBFs can succinctly encode problems arising in
many areas [21]. For an overview of QBF, including solving
techniques and proof complexity, see [22].

III. EXACT SYNTHESIS OF SUBCIRCUITS

Our approach involves replacing a subcircuit with a smaller
one, ensuring that the function computed by the encompassing
circuit remains unchanged. For a fixed value ℓ, we use a logic
solver (SAT or QBF) to determine whether there is replacement
circuit of size ℓ. To find a smallest possible circuit, the value
ℓ is decremented until the encoding becomes unsatisfiable.

Throughout this section, let C denote the encompassing
circuit, S one of its subcircuits, and T the replacement circuit.
Further, n is the number of inputs of the subcircuit S and m the
number of outputs. Moreover, we assume that C is k-regular,
i.e., each gate in C has k inputs. Let C[S ← T ] denote the result
of substituting the circuit T for the subcircuit S in C. Our goal
is to find a circuit T of size ℓ with n inputs and m outputs
such that C and C[S ← T ] are logically equivalent, formally
C ≡ C[S ← T ]. We initially set ℓ = |S| and then decrement ℓ

until the logic solver determines that no such circuit T exists,
at which point we can conclude that the circuit T must have at
least ℓ+1 gates. A circuit T of this size can be constructed from
a model of the last satisfiable encoding, and used to replace S.

It may seem unnecessary to initially ask the logic solver
to come up with a circuit of size ℓ = |S|, since we already
know such a circuit exists. However, the new circuit is typically
not equivalent to S , and replacing S by T is often beneficial
in the overall minimization process even though it does not
immediately decrease size [8].

In the next two subsections, we will provide details on the
QBF and SAT encodings we use. Both are closely related to
and inspired by the multi selection variable SAT encoding for
exact synthesis [4].

A. The QBF Encoding
The main advantage of a QBF encoding is that one can

universally quantify over assignments of primary inputs and
encode the value computed by each gate using a single variable,
rather than introducing a variable for each line in the truth table
representation of C. In addition to these gate variables and
primary inputs, the encoding contains the following groups of
existentially quantified variables that determine the structure of
the circuit:
Selection variables Si = {sit | 1 ≤ t < i+n}. These variables
determine the inputs of the ith gate. If sit is true then node t
is an input of gate i.
Function variables Fi = {f ia1...ak

| ∧k
l=1 0 ≤ al ≤ 1}. These

variables describe the Boolean function at gate i. If f ia1,...,ak

is true then the function yields true for the inputs a1, . . . , ak,
and false otherwise.
Output variables Oj = {otj | 0 ≤ t ≤ n + ℓ}. These
variables fix the output gates of the circuit. If otj is true then
the jth output is given by the constant value false if t = 0 and
otherwise by the tth node.

The matrix of the QBF encodes the following constraints:
• Each gate must have exactly k inputs, i.e., at each gate
i exactly k selection variables must be true. This can be
enforced by using a sequential counter [23]. We denote
this constraint by Count(Si, k).

• Each output must correspond to a single gate, i.e., for each
output j exactly one output variable is true. We denote this
constraint by Count(Oj , 1).

• For each gate i the assignment of the gate variable
must be consistent with the function determined by the
function variables. Assume that the assignment for the
function variables describes the function F and that the
values of the inputs of i are given by i1, . . . , ik. This
constraint ensures that the gate variable for i is assigned
to F (i1, . . . , ik). We denote this constraint by Compi.

• Replacing S by T must preserve the function computed
by C. To express this, one can use Tseitin transformation
and two sets of gate variables to encode both the specifica-
tion C and the circuit C′ = C[S ← T ]. For an output gate o,
let vo and v′o denote the gate variable in the encoding of
C and C′, respectively. We add a constraint vo ⇔ v′o and
denote their conjunction over all outputs by Corr .
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Let S =
⋃

1≤i≤k Si denote the selection variables, F
the gate definition variables, O the output variables, I the
input variables, and G,G′ the two sets of gate variables. The
complete QBF encoding has the following form:

∃S, F,O ∀I ∃G,G′.Corr∧∧

1≤j≤m

Count(Oj , 1) ∧
∧

1≤i≤k

(Count(Si, k) ∧ Compi).

B. The SAT Encoding

While the QBF encoding handles don’t cares implicitly, the
SAT-based approach outlined in this subsection separates the
tasks of computing don’t cares and synthesizing a subcircuit.
More specifically, it first computes a Boolean relation [2], [24]
representing the input-output behavior of the subcircuit S on
the care set (the complement of don’t cares), and then uses the
multi selection variable SAT-encoding [4] to obtain a circuit.

A Boolean relation R for S maps each input assignment
to a set of permissible output assignments, formally R :
{0, 1}in(S) → (P({0, 1}out(S))\∅). A circuit C implements the
relation R if C(σ) ∈ R(σ) for each σ ∈ {0, 1}in(C). A Boolean
relation R can be represented by a set of clauses ψ, containing
for each σ ∈ {0, 1}in(C) and each ρ ∈ {0, 1}out(C) \R(σ) the
clause ¬σ ∨ ¬ρ. This means that for each σ ∈ {0, 1}in(C) and
ρ ∈ {0, 1}out(C) the assignment σ∪ ρ satisfies ψ iff ρ ∈ R(σ).

The core idea for computing the relation is to first obtain a
copy C′ of C by removing all gates from S1. Due to the removal
of gates C′ contains an additional primary input for each output
of S. We denote these new inputs by I. Next we compute
every assignment σ1 for in(S) and σ2 for I such that C and C′
differ in at least one common primary output. This means that
replacing S by a circuit that yields σ2 for σ1 changes the entire
Boolean function. Thus, (σ1, σ2) must not be contained in the
relation. Replacing S by any circuit implementing the resulting
relation does not change the computed Boolean function.

To realize this idea we first compute clausal encodings φ1

for C and φ2 for C′ by Tseitin transformation, introducing a
propositional variable for each node. For each node x in C we
denote the corresponding variable by v(x) and for each node x
in C′ by v′(x). Similarly, we define v / v′ for sets of nodes. Next
we introduce for each common primary output o the constraint
v(o) ⇔ v′(o), denoting the set consisting of all these clauses
by equiv .

This encoding can now be used to compute the relation with
incremental SAT solving. The algorithm maintains a set of
blocking clauses B, which is empty initially. We now ask the
SAT solver for an assignment σ that satisfies φ1 ∧φ2 ∧B and
falsifies equiv . Based on the above considerations we could
directly add ¬σ|v(in(S))∨¬σ|v′(I) to the clausal representation
of the relation. To obtain a more compact encoding of the
relation, we can try to reduce σ|v′(I) as follows. The formula
φ1∧φ2∧equiv is unsatisfiable under the assumption σ|v(in(C))∧
σ|v′(I). Using the SAT solver, we can compute a subset σ̂ of
failed assumptions. As σ̂ suffices to make φ1 ∧ φ2 ∧ equiv

1Actually, it suffices to consider TFO(S) instead of a copy of the entire
circuit

unsatisfiable it is rather easy to conclude that for each assign-
ment µ with σ̂|v′(I) ⊆ µ, the pair (σ|v(in(S)), µ) must not be
contained in the relation. Thus, we can add ¬σ|v(in(S)) ∨ ¬µ
to the clausal representation of the relation. Moreover, to avoid
the same inconsistency in subsequent iterations, we add the
blocking clause ¬σ|v(in(S)) ∨ ¬µ to B.

As mentioned above, a circuit implementing the relation
R can be synthesized using a slight adaptation of the SAT
encoding for exact synthesis by Haaswijk et al. [4].

IV. MINIMIZATION BY SUBCIRCUIT RESYNTHESIS

We use exact synthesis of subcircuits as a subroutine in a cir-
cuit minimization algorithm that repeatedly selects subcircuits
for resynthesis. To obtain a subcircuit for resynthesis, we start
from a root gate, and then expand by incorporating successors
of previously chosen gates until reaching a predetermined size.
Root gates are chosen randomly from the circuit. To expand the
root gate we visit gates which use previously selected gates as
inputs in a breadth-first search like manner. We then randomly
decide whether to include this gate in the subcircuit. Unlike
to previous work [8] we use a fixed bound for the size of
subcircuits. This bound is decreased in case individual checks
timeout.

V. WINDOW SELECTION

Both the SAT and the QBF-based rewriting approach do
not only depend on the selected subcircuits but also on the
entire circuit. This is necessary in order to make use of don’t
cares. But this also means that in general rewriting subcircuits
gets harder for larger circuits. In order to overcome this issue,
we only consider don’t cares with respect to a window (a
subcircuit) [6]. The window is chosen such that the size is still
manageable for our QBF/SAT-based approach. In this manner,
we can minimize windows, and since the functions computed
by windows are preserved, the optimized implementation can
be used to replace the original window.

Additionally, using windows allows us to rewrite subcircuits
simultaneously. For this purpose, we compute pairwise disjoint
windows and rewrite them separately. In the end we then
combine the optimized new implementations for the windows
to obtain a new implementation for the original circuit.

A major challenge is that in the recombination step, cyclic
dependencies can be introduced into the circuit. This is possible
because rewriting a window can add additional inputs of the
window to the TFI of one of its outputs. To be more precise,
since multi-output subcircuits are used, inputs in the TFI of
one output may be added to the TFI of another output. These
additional inputs can then close a cycle, as illustrated in Fig. 1.

In order to ensure acyclicity, we introduce what we call the
level constraint for a window W . The level constraint asserts
that inputs of W have smaller levels than any output, formally:

max({lv(x) | x ∈ in(W )}) ≤ min({lv(x) | x ∈ out(W )}).

By ensuring that for each window the level constraint holds we
can show that rewriting windows does not introduce cycles.
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W2W1

C

i1 i2

o1 o2

Fig. 1: We consider two windows W1 and W2 in the circuit C.
Initially, o1(o2) does not depend on i1(i2). Minimizing the
windows changes the TFIs of o1 and o2. The changed cones
are indicated by the dashed lines. The changed cones cause a
cycle as i1 is reachable from itself via o1, i2 and o2.

Proposition 1. Let C be a circuit and W1, . . . ,Ww be pairwise
disjoint subcircuits of C, where w ∈ N. If each window satisfies
the level constraint then replacing the windows by equivalent
implementations in C does not introduce cycles.

Similarly as for the computation of subcircuits the compu-
tation of windows satisfying the level constraints involves the
computation of a root gate and the expansion of the root. To
compute the root we randomly select either a primary input or
an output of a previously computed window. For expanding the
root we apply Algorithm 1. The core idea of this algorithm is to
add successors of previously added gates to the window until a
sufficiently large window is obtained. Since we require pairwise
disjoint windows the algorithm takes the set of already used
gates as an argument (taboo). Gates in taboo are not allowed
to be added to the window. Adding a gate g to the window
can violate the level constraint because the level of one of
its inputs may be greater than the current minimal level of an
output (level ). In order to repair such a violation, the algorithm
computes the set of all gates in TFI (g) whose level is greater
than level (repair ). By adding repair to the window the level
constraint can be maintained. If repair contains an element of
taboo we cannot add repair to win . This means that the level
constraint cannot be reestablished and so g is discarded. Finally,
all new successors of the window which are not contained in
taboo are added to the set of potential new gates.

VI. EXPERIMENTS

We implemented the presented techniques mainly in Python
and some parts in C++.2 As backend solvers we used
QFUN [25] for QBF and CADICAL [26] for SAT. We evalu-
ated our tool on the instances from the IWLS’233 programming
contest and the instances from the EPFL benchmark suite [27].
All experiments were conducted on a cluster with AMD EPYC
7402 processors at 2.8 GHz running 64-bit Linux. We used a
memory limit of 4 GB. For the parallelized minimization we
used a memory limit of 4 GB per thread.

2https://github.com/Anonymous-753/DATE24-138
3https://github.com/alanminko/iwls2023-ls-contest

Algorithm 1 Computing Disjoint Windows

1: procedure EXPAND(root , taboo, size)
2: toConsider ← GETSUCCESSORS(root) \ taboo
3: win ← ∅, level ←∞
4: while toConsider ̸= ∅ ∧ |win| < size do
5: g ← pop g from toConsider with minimum level
6: repair ← {x ∈ TFI (g) | lv(x) > level}
7: if taboo ∩ repair ̸= ∅ then
8: continue
9: win ← win ∪ repair ∪ {g}

10: level ← min({lv(x) | x ∈ out(win)})
11: UPDATE(toConsider , taboo, repair ∪ {g})
12: return win

A. IWLS Instances

The IWLS’23 instances consist of 100 instances, given
as truth tables. The goal is to compute an And-Inverter
Graph (AIG) with as few gates as possible. In order to compute
AIGs the encodings needed to be slightly updated, such that
only valid AIG gates are synthesized. This was realized by
adding additional constraints for the function variables, which
rule out XOR-gates.

Since the instances are given as truth tables, and our tool
requires that specifications are given as circuits, we had to
preprocess the instances using ABC [12]. Because a naive
transformation of truth tables to circuits by using ABC in
general results in relatively large circuits, we used ABC to
reduce the size of the initial circuit. For this purpose, we
determined by hand several sequences of ABC commands to
compute a circuit from a truth table. We then applied each
sequence of commands to each instance and selected the circuit
with the fewest gates.

In our evaluation setup, we considered our tool both in the
QBF-based and the SAT-based configuration. As only very few
of the IWLS instances are sufficiently large for a reasonable
application of windowing we did not evaluate it here. We
compared our tool with the QBF-based minimization tool
CIOPS [8] and the DEEPSYN procedure from the state-of-the-
art synthesis tool ABC [12]. We chose DEEPSYN because it
allows anytime optimization of circuits, like our tool. Thus,
unlike other ABC commands and scripts DEEPSYN is able
to take advantage of the long run times which we used for
our experiments. Preliminary tests showed that for some of
the smallest instances DEEPSYN terminates before the time
budget is exhausted due to an internal limit on the number of
iterations. For a better comparison we slightly modified ABC
by increasing this limit.

In our experiments, we alternated between 30-minute runs of
our reduction tool (respectively CIOPS) and exhaustive heuris-
tic minimization with ABC for inprocessing. The choice of
ABC commands was informed by preliminary testing results.
We repeated this alternating pattern eight times.

Since the time needed for the inprocessing steps varied
depending on the analyzed circuit, the total runtimes of our
tool and CIOPS differ for different inputs. In order to still
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TABLE I: Average reduction (%) of gates compared to the
preprocessed IWLS’23 instances, by configuration and initial
size and standard deviations of the average reductions per
configuration.

#Gates CIOPS DEEPSYN QBF SAT

10-44 6.62 0.2 3.32 0 5.6 0.29 5.65 0.28
45-142 12.99 0.51 6.82 0 18.29 0.49 20.03 0.56
147-499 11.63 0.24 15.85 0.02 21.29 0.85 24.88 0.45
516-7171 6.53 0.15 23.89 0.13 15.75 0.63 22.04 0.45
Overall 9.44 0.16 12.47 0.04 15.23 0.44 18.15 0.31

give a fair comparison with DEEPSYN we computed for each
instance the maximal total runtime among all runs of our tool
and used them as timeouts for DEEPSYN. In general, all tools
benefited from longer runtimes. Nevertheless, we limited the
runs to roughly four hours due to constraints on the available
computational infrastructure. Additionally, we set the initial
bound for the subcircuit size to 6 both for our tool and CIOPS
(cf. Section IV).

Instances were grouped into four subsets of 25 based on the
initial number of gates. For each configuration and instance
group, we determined the average size reduction (in %) for
circuits in that group. We performed 5 independent runs of
each configuration and report averages and standard deviations.
Results are given in Table I.

The experiments show that our tool with the QBF configu-
ration clearly outperformed CIOPS. This was mainly due to
two simple but apparently effective changes. First, our tool
uses fixed bounds for the sizes of selected subcircuits, while
CIOPS tries to increase the initially given bounds as far as
possible. Since larger circuits are usually harder to analyze
this indicates that in general it is advantageous to consider
more but simpler (smaller) circuits. Second, our tool computes
subcircuits by expanding root gates in a randomized breadth-
first-like manner, while CIOPS applies an expansion strategy
that aims at keeping the number of outputs low.

Moreover, the SAT-based strategy outperformed the QBF-
based strategy. This was possible as in general the SAT-based
approach allowed a faster analysis of subcircuits. Thus, more
subcircuits could be analyzed in total. Furthermore, the exper-
iments show that our tool is a viable alternative to DEEPSYN.

Additionally, if we consider the best implementations for
each instance among the 5 SAT runs we can observe an average
reduction of 20.22%. This indicates that it may be advantageous
to consider multiple runs of our approach. As our method
makes use of a randomized subcircuit selection, different runs
result in different sequences of replaced subcircuits. It is not
only possible that in one run subcircuits are selected which are
just easier to reduce. It is also possible that one sequence leads
to some local minimum, which is difficult to escape.

B. EPFL Instances

In order to evaluate our tool for circuits with non-binary
gates, we considered the EPFL Combinational Benchmark

TABLE II: Results for small EPFL LUT-6 instances. The best
results are marked in boldface.

Instance Initial CIOPS QBF SAT

Lookahead XY router 19 19 19 19
int to float converter 20 20 18 19
Alu control unit 25 25 25 25
Coding-cavlc 54 52 49 53
Priority encoder 94 94 93 92
Adder 129 129 129 129
I2c controller 182 178 179 177
Decoder 264 264 264 264
Round-robin arbiter 273 273 272 267
Max 511 511 511 511
Barrel shifter 512 512 512 512

Suite [27]. This benchmark set consists of twenty circuits4.
The goal is to find LUT-6 implementations of the specifications
with small size. In addition to a specification given as circuit
with binary gates the benchmark suite also provides the best
known realizations so far. We used the best known realizations
as initial specifications for our tool.5

We ran our reduction tool for 12 hours both with the SAT and
the QBF configuration. After each hour we applied the ABC
command &MFS as an inprocessing step. Additionally, we also
applied our tool with windowing enabled. Here we recombined
the windows for the inprocessing step and computed new
windows afterwards. We compared our tool with CIOPS. We
want to point out that the initial realizations we use have been
highly optimized by different methods. Thus, we think that any
improvement of these circuits can be considered a success.

In addition to a bound for the size for the subcircuits, we also
used a limit of 10 on the number of inputs of the subcircuits
considered for resynthesis. Preliminary tests showed that such
a limit is required to reliably generate the Boolean relation
for the SAT-based approach within time and memory limits.
Additionally, we always set the initial bound for the subcircuit
size to 4. In the experiments with windowing we used two
different window sizes, 500 and 1000. First we minimized
single windows and second up to 8 windows concurrently. We
only applied windowing for instances with at least 1000 gates.

Results for instances with at most 1000 gates are given
in Table II and for instances with more than 1000 gates in
Table III. The used window sizes are given in the column
titles, e.g., QBF500 corresponds to QBF-based minimization
with windows of size 500.

Since the initial circuits are already highly optimized by
state-of-the-art methods, the relative improvements for the
EPFL instances were small compared to the IWLS instances,
and it is difficult to draw any definitive conclusions about the
superiority of any configuration from these results. Neverthe-
less, the results suggest that parallel optimization was able to
beat single-threaded optimization. Similarly, the results indicate
that both configurations of our tool outperformed CIOPS.

4We did not consider the MtM instances as the EPFL repository does not
contain the best implementations for these circuits.

5Note that the best known results are continuously updated. We used the
best known results as of May 22nd, 2023 (commit 42c1f31).
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TABLE III: Results for large EPFL LUT-6 instances. The best results are marked in boldface.

No Windowing Single Window Up to 8 Windows

Instance Initial CIOPS QBF SAT QBF500 QBF1000 SAT500 SAT1000 QBF500 QBF1000 SAT500 SAT1000

Sine 1114 1111 1095 1085 1076 1096 1069 1088 1057 1095 1036 1089
Voter 1217 1217 1217 1179 1184 1215 1180 1166 1177 1210 1172 1174
Memory controller 1735 1731 1722 1727 1731 1731 1730 1730 1726 1724 1734 1731
Square-root 2994 2994 2994 2994 2991 2992 2985 2989 2992 2994 2980 2988
Square 3018 3018 3014 2997 2992 2996 2997 2994 2942 2962 2949 2943
Divisor 3096 3096 3096 3096 3096 3096 3096 3095 3096 3096 3095 3096
Multiplier 4360 4360 4358 4346 4347 4346 4349 4346 4326 4331 4317 4323
Log2 6133 6133 6132 6109 6127 6127 6129 6129 6078 6082 6069 6063
Hypotenuse 39452 39452 39452 39452 39276 39230 39251 39296 38535 38459 38815 38781

Moreover, our tool could improve on the best implementation
for the majority of instances.

VII. CONCLUSION

The experimental analysis shows that the SAT-based ap-
proach outperforms the QBF-based version for instances from
the IWLS’23 programming contest. For circuits from the EPFL
suite, the two variants perform very similarly, with either
approach having a slight edge on some instances. Moreover,
the experiments show that using windowing allows the largest
circuits from the EPFL suite to be further reduced.

The respectable performance of the QBF-based approach on
larger circuits hints at the potential of adopting techniques
from QBF solving, such as counterexample-guided expan-
sion [28]. Computing the entire Boolean relation upfront can be
prohibitive, and generating constraints during the substitution
process could be more efficient. Specifically, constraints could
be added on-the-fly when the substitution of a synthesized
circuit alters the function.

Another promising avenue for future work is the use of SAT
solvers specifically designed for logic synthesis [29].
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