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Abstract: The aim of this work is to schedule the charging of electric vehicles (EVs) at a1

single charging station such that the temporal availability of each EV as well as the maximum2

available power at the station are considered. The total costs for charging the vehicles should3

be minimized w.r.t. time-dependent electricity costs. A particular challenge investigated in4

this work is that the maximum power at which a vehicle can be charged is dependent on the5

current state of charge (SOC) of the vehicle. Such a consideration is particularly relevant in6

the case of fast charging. Considering this aspect for a discretized time horizon is not trivial as7

the maximum charging power of an EV may also change in between time steps. To deal with8

this issue, we instead consider the energy by which an EV can be charged within a time step.9

For this purpose, we show how to derive the maximum charging energy in an exact as well as10

an approximate way. Moreover, we propose two methods for solving the scheduling problem.11

The first one is a cutting plane method utilizing a convex hull of the in general nonconcave12

SOC-power curves. The second method is based on a piecewise linearization of the SOC-energy13

curve and is effectively solved by branch-and-cut. The proposed approaches are evaluated on14

benchmark instances, which are partly based on real-world data. To deal with EVs arriving at15

different times as well as charging costs changing over time, a model based predictive control16

strategy is usually applied in such cases. Hence, we also experimentally evaluate the performance17

of our approaches for such a strategy. The results show that optimally solving problems with18

general piecewise linear maximum power functions requires high computation times. However,19

problems with concave, piecewise linear maximum charging power functions can efficiently be20

dealt with by means of linear programming. Approximating an EV’s maximum charging power21

with a concave function may result in practically infeasible solutions, due to vehicles potentially22

not reaching their specified target SOC. However, our results show that this error is negligible23

in practice.24

Keywords: Electric vehicles; charging scheduling; state-of-charge dependent maximum charging25

power; mixed integer linear programming.26

1. Introduction27

The number of electric vehicles (EVs) is rapidly increasing. At the end of 2020, there28

were around 10 million EVs on the world’s roads and the number of EV registrations29

increased by 41% in 2020 [1]. The uncontrolled charging of this rising number of EVs,30

together with an increasing share of renewable energy, imposes significant challenges31

for the stable operation of the power grid in terms of power quality, voltage stability,32

peak demand, and reliability [2]. Besides further measures, like time-of-use prices [3]33

or dynamic pricing schemes [4], smart charging [5,6] is considered a promising strategy34

to mitigate these issues. Smart charging refers to the coordination of the charging35

of a number of EVs in an intelligent way. Numerous approaches for smart charging,36
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Figure 1. Maximum charging power of a Hyundai Kona Elektro in dependence of the EV’s
SOC; data obtained from Fastned [15].

considering different objectives and different constraints, are proposed in the literature37

[7–14].38

These approaches typically assume that the maximum charging power of an EV39

remains constant over the planning horizon. However, in practice the maximum charging40

power depends on the state of charge (SOC) of the EV’s battery. Typically, with an41

increasing SOC, the maximum charging power is regulated down by the battery controller.42

For slow AC charging, the decrease of the maximum power is usually only marginal and43

can be neglected for most applications. For modern fast DC charging, however, the effect44

of the decreasing maximum power can be substantial as can be seen from the exemplary45

SOC-power curve shown in Figure 1. The exact form of the curve does not only depend on46

the type of battery and its charging controller but also on other factors like the ambient47

temperature or the state of health of the battery [16]. In most cases the curve is highly48

nonlinear, making it difficult to consider it in mixed integer linear programming (MILP)49

approaches, which are frequently used for charging planning. However, not considering50

the SOC-dependent maximum charging power in the charging planning is likely to result51

in suboptimal or even infeasible charging schedules, especially in the case of fast charging.52

For example, Frendo et al. [17] conclude from numerical experiments that under the53

constraint of a limited total charging power, up to 21% more energy can be charged if54

the SOC-dependent maximum charging power is considered in the planning, compared to55

not considering it. Frendo et al. also point out that in the literature on smart charging,56

the integration of nonlinear SOC-power curves is frequently mentioned as future work.57

However, to date the number of works, which actually address this issue, is still strongly58

limited.59

In the present paper, we assume a basic use case of smart charging with the objective60

of minimizing the energy cost under time-varying electricity prices and with the constraint61

of a limited total charging power per time step. In order to allow a better integration of62

nonlinear SOC-power curves, we formulate the scheduling problem in terms of planning63

the charging energy instead of the charging power. Therefore, we consider two approaches64

for converting the SOC-power curves to SOC-energy curves. The first approach is an65

exact approach, but it can only guarantee that the average total charging power does not66

exceed the limit in a time step. The second approach is an approximate approach, which67

guarantees that the total charging power never exceeds the limit, but it might lead to68

suboptimal costs.69

We propose two methods for solving the resulting problems. The first one is an70

extension of a cutting plane method proposed by Korolko and Sahinoglu [18] and utilizes71

a convex hull of the in general nonconcave SOC-power curves. The second method makes72

use of a piecewise linearization of the SOC-energy curve and is accelerated by branch-73
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and-cut. In extensive numerical experiments, we evaluate and compare the proposed74

approaches. The key contributions of the present paper are75

• a reformulation of the scheduling problem in terms of the control of charging energy,76

which facilitates the integration of SOC-dependent maximum charging power,77

• a proposal of two transformations of SOC-power curves into SOC-energy curves,78

• and a proposal and evaluation of two mixed integer linear programming based79

solution methods that consider SOC-dependent maximum charging powers.80

Note that the current work is based on parts of Schaden’s master thesis [19], where more81

details and further results can be found. The rest of the paper is organized as follows.82

The next section discusses related work. In Section 3 our EV charging scheduling problem83

is formalized. Additionally, it is shown how to derive the exact as well as an approximate84

maximum charging energy function from the maximum charging power function. Next,85

Section 4 presents the different problem solving approaches. Section 5 explains how we86

generated problem instances for the empirical evaluation, and respective experimental87

results are presented in Section 6. Finally, Section 7 concludes this work and outlines88

promising future research directions.89

2. Related Work90

Some works consider a SOC-dependent maximum charging power by integrating91

nonlinear physical battery models in the charging schedule optimization. Sundström92

and Binding [20] compare the use of a linear and a quadratic approximation of such a93

model in the optimization of EV schedules with the goal of minimizing charging costs.94

They conclude that although the linear approximation results in small violations in95

SOCs requested by the EV drivers, the benefit of the quadratic approximation does not96

justify the increase in computation time. Morstyn et al. [21] propose a nonlinear battery97

circuit model and integrate it in an optimization model in form of a second-order cone98

program. They consider the maximization of charged energy taking into account network99

constraints and the constraints of a limited total charging power. It is shown that problem100

instances with up to 500 vehicles can be solved within less than 100 seconds. In practice,101

the behavior of the battery (controller) can significantly differ from an idealized battery102

model. Thus, other works – including the present work – abstract from a specific battery103

model.104

Different battery model-free heuristic approaches for smart charging with SOC-105

dependent maximum power can be found in the literature. Cao et al. [22] propose a106

rule-based approach for EV charging control with the objectives of energy cost reduction107

and load flattening, respecting the SOC-dependent maximum charging powers of EVs.108

Frendo et al. [17] describe the use of a data-driven approach for the prediction of power109

curves of EVs. The authors propose a rule-based control, which schedules the charging110

of the EVs with the objective of a fair distribution of the available energy taking into111

account the predicted power curves.112

El-Bayeh et al. [23] propose a model-free exact approach. They approximate a113

nonlinear power curve with a piecewise linear function. Subsequently, they draw a114

comparison between the charging costs resulting from charging with a constant maximum115

charging power and the charging costs resulting from charging with a vehicle specific116

SOC-dependent piecewise linear function. For solving the optimization problem, they117

use mixed integer nonlinear programming, which distinguishes their approach from our118

problem solving techniques. Han, Park, and Lee [24] consider a problem setting similar to119

that considered in the present paper. The authors assume that the charging station has120

limited grid capacity, which may be exceeded at the price of paying penalty costs. They121

present a MILP formulation of the problem, which integrates nonlinear power curves122

with help of a discretization of SOC levels. In contrast to the present work, it is assumed123

that EVs can only charge with maximum or zero power, which is quite restrictive and124

hardly the case in practice. Two network flow approaches in Schaden’s Master thesis [19]125

extend the MILP formulation from [24] with the possibility to charge with power levels126
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from a discrete set of values. However, we refrain from considering these approaches here127

as they have been found to be uncompetitive, primarily due to the much larger memory128

requirements even when the number of EVs is low.129

A further model-free exact approach is proposed by Korolko and Sahinoglu [18].130

They assume a problem setting similar to that considered in [24] but with continuous131

charging power values. A nonlinear problem formulation is presented and is solved as132

a series of linear problems with the help of a cutting plane approach. The described133

approach, however, requires the power curve to be concave. Our approaches partly build134

upon this work.135

The approaches proposed in the present paper, are model-free linear exact approaches136

for a continuous power modulation, which are applicable to concave and nonconcave137

power curves. None of the previous works considers the issue that the variable maximum138

charging power varies within a time step of the planning horizon. To the best of our139

knowledge, we are the first considering this aspect in more detail.140

3. Problem Description141

The EV charging scheduling problem with SOC-dependent maximum charging power142

(EVS-SOC) we consider formalizes the task of scheduling the charging of a number of EVs143

such that the total charging costs are minimized. The charging schedule is preemptive,144

which means that the charging process of an EV may be interrupted an arbitrary number145

of times. It is assumed that electricity costs change over time and that they are known in146

advance. Discrete finite time steps T = {0, . . . , tmax} are used to model the considered147

time horizon. Each of these represents a time interval of constant duration ∆t.148

The charging is controlled by a single central entity, the so-called aggregator. The149

total power that can be used from the grid at any time is limited by P gridmax > 0.150

Electricity costs per unit of consumed energy are given by ct individually for each time151

step t ∈ T . Note that these costs may also be negative in practice.152

The set of EVs to be considered is V = {1, . . . ,n}, and they are all assumed to153

be currently connected to the charging station, i.e., immediately available for charging.154

Each vehicle is associated with an initial state of charge sv,0 ∈ [0, 1], i.e., the SOC155

at the beginning of time step zero, and a minimum required state sdep
v ∈ [sv,0, 1] that156

must be reached at the vehicle’s known departure time tdep
v ∈ T . Additionally, for each157

vehicle v ∈ V the energy capacity Cv > 0 of its battery is known as well as a function158

Pmax
v : [0, 1] 7→ R+ for the battery’s maximum charging power given its SOC. Note159

that Pmax
v must be strictly positive for any SOC less than one and is zero for SOC one.160

Otherwise we do not restrict this function in any way, in particular it does not necessarily161

have to be concave or continuous. Note that we neglect the effect of minor further factors162

like the battery temperature and its state of health on the maximum charging power.163

Furthermore, we assume a charging efficiency of 100%.164

We remark that in practice, the domain of Pmax
v is often not defined on the entire165

SOC interval [0, 1] but just for some restricted [smin
v , smax

v ], 0 ≤ smin
v < smax

v ≤ 1. In the166

following, we will regard this issue as an implementation detail and assume the domain167

of Pmax
v to be [0, 1].168

The goal of EVS-SOC is to find a feasible charging schedule that minimizes the total169

charging costs while charging each vehicle v from SOC sv,0 to (at least) SOC sdep
v by170

time step tdep
v such that the total power used from the grid at any time does not exceed171

P gridmax > 0.172

Since the maximum charging power function Pmax
v depends on the SOC, it is in173

general not constant within a single time step of duration ∆t. This may lead to the174

problem that a charging power value set for a time step is not allowed throughout the175

whole charging interval. The vehicle’s charging controller will then dynamically adjust176

(reduce) the actually used power to never exceed the SOC-dependent maximum power.177

One may argue that the resulting error may be reduced by increasing the resolution of the178

time discretization until it becomes negligible. A larger number of time steps, however,179
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directly affects the problem size and practical solvability. Therefore, we refrain here from180

increasing tmax only because of this reason.181

Instead, we turn from considering the charging power to considering the energy by182

which an EV may actually be charged in a time step, taking care of the above aspects. We183

propose alternative approaches for deducing an (approximate) maximum energy function184

Emax
v (s) : [0, 1] 7→ R+ from Pmax

v that states the maximum energy by which EV v with185

SOC s can be charged within duration ∆t.186

In Section 3.1 we give an exact way for deducing Emax
v , referred to as Emax-ex

v .187

However, using Emax-ex
v , we are in general only able to express that the maximum grid188

power is not exceeded on average within a time step, since we consider the time horizon189

in a discretized fashion. While this might be sufficient for some applications, like limiting190

peak load charges, it may be a too weak condition for other applications, like limiting191

transformer loads. Therefore, in Section 3.2 we also show how to deduce a lower bound192

Emax-lb
v to Emax

v that never overestimates the real maximum energy at which charging193

can take place.194

3.1. Exact Maximum Energy195

We determine the maximum charging energy Emax-ex
v that is achieved when applying

the dynamic charging power Pmax
v throughout a whole time step. Considering an EV

v ∈ V with initial SOC sv,t ∈ [0, 1] at some time step t ∈ {0, . . . , tdep
v − 1}, the time

needed to charge the EV to some SOC s′ ∈ [sv,t, 1] using the dynamic maximum charging
power is

Tmin-ex
v (sv,t, s′) = Cv ·

∫ s′

sv,t

1
Pmax

v (s)
ds. (1)

The maximum energy by which the EV can be charged during a time step of duration ∆t
is then

Emax-ex
v (sv,t) = Cv · (s′ − sv,t) s.t.

{
Tmin-ex

v (sv,t, s′) = ∆t for Tmin-ex
v (sv,t, 1) > ∆t

s′ = 1 else.
(2)

Hereby we consider in the else case that charging always stops when SOC value one is196

reached. While calculating the integral for 1
P max

v (s)
might be nontrivial from a theoretical197

point-of-view for some power functions, it is in practice not difficult to efficiently determine198

approximate values for Emax-ex
v (sv,t) computationally by conventional numerical integra-199

tion methods. As previously mentioned, the problem with the usage of Emax-ex
v (sv,t) is200

primarily that it is hard to express the maximum grid power constraint since within a201

time step the actually used power may vary for each EV substantially, i.e., we will only202

be able to express that the maximum grid power is not exceeded on average within a203

time step.204

3.2. Lower Bound for Maximum Energy205

To address the aforementioned problem, we consider the largest power that can be
constantly applied throughout a whole time step of duration ∆t without requiring the
charging controller to reduce the power. The time needed to charge the EV to some SOC
s′ ∈ [sv,t, 1] using the maximum power that can be constantly applied is

Tmin-lb
v (sv,t, s′) =

Cv · (s′ − sv,t)

mins∈[sv,t,s′] P
max
v (s)

. (3)

The maximum energy by which the EV can be charged during a time step of duration ∆t206

is then again obtained by Eq. (2) but in conjunction with the above Tmin-lb
v (3) instead207

of Tmin-ex
v (1). We refer to this variant by Emax-lb

v .208

By avoiding to set for a time step a power that will have to be reduced by the209

charging controller at some point of time, the maximum energy Emax-lb
v is a lower bound210
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for the actually obtainable energy Emax-ex
v . Using Emax-lb

v in our whole problem setting211

means that an obtained solution will guarantee that indeed all EVs are charged to the212

desired departure SOCs. As we may occasionally use a more restricted charging power213

than could actually be applied, the schedule might not be optimal in the original sense,214

and a solution’s objective value will be an upper bound for the real optimum.215

We want to point out the following relationships between Pmax
v and its corresponding216

maximum energy functions.217

• If Pmax
v is a piecewise linear function, then Emax-lb

v is piecewise linear as well. On the218

contrary, Emax-ex
v might not be a piecewise linear function, even if Pmax

v is piecewise219

linear.220

• If Pmax
v is a concave function, so are Emax-lb

v and Emax-ex
v .221

To give the reader an impression how Emax-lb
v and Emax-ex

v relate to each other,222

Figure 2 shows these functions for different ∆t values for a Hyundai Kona Elektro. Note223

that the area between Emax-lb
v and Emax-ex

v decreases with smaller ∆t values. Hence, as224

we will also see in Section 6, the smaller ∆t is chosen, the smaller will be the size of the225

error introduced by Emax-lb
v in general.
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Figure 2. Emax
v functions for a Hyundai Kona Elektro for ∆t ∈ {5, 10} minutes.

226

In the following sections we will pursue Emax-ex
v and Emax-lb

v and investigate the227

pros and cons of each in comparison. We will use the notation Emax
v as a placeholder for228

any specific energy function from {Emax-ex
v ,Emax-lb

v }.229

3.3. Converting Energy Back to Power230

In practice, the charging aggregator usually regulates the maximum charging power231

instead of the maximum charging energy. Consequently, when scheduling with energy232

values we have to convert back energy values to power values. For schedules created with233

Emax-lb
v , the computed energy values of a schedule can be simply divided by ∆t to obtain234

charging power values that can be constantly applied throughout a single time step.235

For schedules created with the exact Emax-ex
v , due to the possible interference of

the EV’s charging controller it is in general not obvious which power value Pv,t should
be provided to the charging aggregator in order to actually charge a certain amount of
energy xv,t in a next time step t. Considering Pmax

v (s), this value Pv,t can be determined
computationally by numerically solving the equation

Cv ·
∫ sv,t+xv,t/Cv

sv,t

1
min(Pmax

v (s),Pv,t)
ds = ∆t, (4)

where the left side corresponds to the time needed for charging xv,t when applying as236

power always the minimum of Pmax
v (s) and Pv,t. Still there remains the issue that in237

a solution to our scheduling problem
∑

v∈V Pv,t ≤ P gridmax is not guaranteed anymore238

and either P gridmax may be exceeded or some Pv,t needs to be reduced to avoid this239

problem. Note that Equation (4) is well defined for all xv,t ∈ [0,Cv(s′ − sv,t)] where s′ is240

determined according to Equation (2).241
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Therefore, schedules created with Emax-ex
v mainly serve here as comparison for242

schedules created with Emax-lb
v to give an idea about the size of the error introduced by243

time discretization.244

3.4. Nonlinear Model245

We now formally define EVS-SOC by the following nonlinear program, where
variables xv,t represent the energy by which EV v ∈ V is charged in time step t =

0, . . . , tdep
v − 1. Variables sv,t indicate the SOC of each EV v ∈ V at the beginning of

each time step t = 0, . . . , tdep
v .

min
∑

v∈V

tdep
v −1∑

t=0
ct · xv,t (5)

xv,t ≤ Emax
v (sv,t) v ∈ V , t = 0, . . . , tdep

v − 1 (6)
∑

v∈V |0≤t<tdep
v

xv,t ≤ ∆t · P gridmax t ∈ T (7)

sdep
v ≤ s

v,tdep
v

v ∈ V (8)

sv,t = sv,t−1 + xv,t−1/Cv v ∈ V , t = 1, . . . , tdep
v (9)

xv,t ≥ 0 v ∈ V , t = 0, . . . , tdep
v − 1 (10)

0 ≤ sv,t ≤ 1 v ∈ V , t = 0, . . . , tdep
v (11)

The objective function (5) minimizes the sum of the costs for the total consumed246

energy over all time steps. Inequalities (6) ensure that the energy by which each EV is247

charged during each time step does not exceed the SOC-dependent maximum energy.248

Note that this inequality is in general nonlinear. Constraints (7) limit the total energy249

consumed from the grid during each time step to ∆t · P gridmax. The departure SOCs are250

enforced by Inequalities (8). Equalities (9) determine the SOC at the beginning of each251

time step t = 1, . . . , tdep
v for each EV v. Thereunto the previous state of charge sv,t−1 is252

considered together with the charging rate of the previous time slot xv,t−1 and the total253

battery capacity Cv. Variable domains are defined in (10) and (11). Due to the domain254

of variable xv,t, an EV may not discharge.255

4. Problem Solving Approaches256

In the following we study different ways to deal with the nonlinear maximum257

charging energy constraints (6). We first consider the simpler case that the maximum258

power function is concave, where we essentially can solve the problem with a linear259

programming (LP) formulation or a cutting plane approach. Afterwards, we consider260

a more general approach that does not make any assumptions on the concavity of the261

maximum power function. The approach is based on a piecewise linearization of the262

SOC-energy curve and is accelerated by branch-and-cut.263

4.1. Concave Maximum Energy Functions264

As already mentioned before, if Pmax
v is concave, it follows that also Emax

v ∈265

{Emax-ex
v ,Emax-lb

v } is concave as well. For nonconcave Pmax
v , we now determine the266

convex hull to obtain a concave approximation of the original Pmax
v for deriving the267

respective maximum energy function.268

In the following, we will further assume that Emax
v is differentiable. We are aware269

that, depending on Pmax
v , this assumption might not be completely valid in practice.270

Actually, Emax
v might have breakpoints, in which the left-sided and right-sided limits of271

the differential do not coincide. Nevertheless, we will treat Emax
v as if it were differentiable272

at any SOC of its domain, since differing left-sided and right-sided limits will not affect273

the results of the following modeling approach.274
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Due to the assumed properties of Emax
v , we can replace the nonlinear Inequality (6)

from EVS-SOC with the combination of the infinite set of linear inequalities

xv,t ≤ Emax
v

′(ŝ) · (sv,t − ŝ) +Emax
v (ŝ) v ∈ V , t = 0, . . . , tdep

v − 1, ŝ ∈ [sv,0, sdep
v ]
(12)

where Emax
v

′ is the first derivative of Emax
v . We call the resulting linear programming275

model EVS-SOC-LIN.276

Note that if Pmax
v is a piecewise linear function, then so is Emax-lb

v . The set of277

inequalities reduces then to a finite one where we have one inequality corresponding to278

each linear function segment.279

In the spirit of [18], who essentially consider a similar kind of inequalities, we can280

solve EVS-SOC-LIN by a cutting plane approach. Thereby the relaxation of EVS-SOC-281

LIN without Inequalities (12) is first solved. Then, Inequalities (12) that are violated282

by the current LP solution are iteratively determined, added, and the LP problem is283

re-solved. The process is repeated until no more Inequalities (12) are violated.284

The separation of a violated inequality for a current solution (xLP, sLP) to the285

relaxed EVS-SOC-LIN works as follows. For all v ∈ V , t = 0, . . . , tdep
v − 1, we check if286

xLP
v,t > Emax

v (sLP
v,t ). In this case we add the violated Inequality (12) for vehicle v, time287

step t, and ŝ = sLP
v,t . Note that for one vehicle, multiple inequalities for different time288

steps can be added within a single cutting plane iteration. This separation procedure is289

performed for all vehicles v ∈ V and as long as any violated inequalities are found, the290

augmented LP problem is then re-solved.291

An alternative to the above is the following. Whenever xLP
v,t > Emax

v (sLP
v,t ) for some292

EV v and time step t, one can add the violated Inequality (12) not only for time step t293

but for all time steps t′ = 0, . . . , tdep
v − 1. The intention here is to possibly reduce the294

number of needed resolving iterations, but clearly the size of the LP formulation increases295

more quickly. Preliminary experiments indicated that indeed this variant performs better296

in practice in most cases. Therefore, we apply it in all our experiments documented in297

the remainder of this work.298

We also compared this variant with the approach presented in [18], where in one299

iteration cuts are only added for the smallest time steps that violate Inequality (12). We300

found that our variant usually performs slightly better at least in case of our problem301

instances.302

4.2. General Piecewise Linear Maximum Energy Functions303

In the following model, we assume for each EV v ∈ V that the maximum charging304

energy function Emax
v is a piecewise linear function or is approximated by such. In305

contrast to EVS-SOC-LIN, we do not make assumptions on the concavity of Emax
v . We306

assume that we are given a finite set of SOC values {Sv,k | k = 1, . . . , kmax
v } in increasingly307

sorted order, with Sv,1 = 0 and Sv,kmax
v

= 1 and the values in between representing the308

breakpoints of the piecewise linear function. These values are pairwise distinct and can309

be unevenly distributed among the SOC interval [0, 1]. For each Sv,k we know the value310

of the maximum charging energy Emax
v (Sv,k).311

We model the piecewise linear function as suggested in Chapter 10.1 of [25]. There-312

unto, we use continuous variables αv,t,k to express the SOC sv,t as a convex combination313

of Sv,k and αv,t,k. The variables αv,t,k are also used to represent the maximum charging314

energy function as a convex combination of Emax
v (Sv,k) and αv,t,k.315

Furthermore, we introduce additional binary variables βv,t,k, which are used to ensure316

that at most two consecutive αv,t,k and αv,t,k+1 variables are nonzero. By replacing317

Constraints (6) in formulation (5–11) with the following Constraints (13–21), we obtain318

a MILP model, which we refer to as EVS-SOC-GLIN.319
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sv,t =

kmax
v∑

k=1
Sv,k · αv,t,k v ∈ V , t = 0, . . . , tdep

v (13)

xv,t ≤
kmax

v∑

k=1
Emax

v (Sv,k) · αv,t,k v ∈ V , t = 0, . . . , tdep
v − 1 (14)

kmax
v∑

k=1
αv,t,k = 1 v ∈ V , t = 0, . . . , tdep

v (15)

kmax
v −1∑

k=1
βv,t,k = 1 v ∈ V , t = 0, . . . , tdep

v (16)

αv,t,0 ≤ βv,t,0 v ∈ V , t = 0, . . . , tdep
v (17)

αv,t,k ≤ βv,t,k−1 + βv,t,k v ∈ V , t = 0, . . . , tdep
v , k = 2, . . . , kmax

v − 1 (18)
αv,t,kmax

v
≤ βv,t,kmax

v −1 v ∈ V , t = 0, . . . , tdep
v (19)

0 ≤ αv,t,k ≤ 1 v ∈ V , t = 0, . . . , tdep
v , k = 1, . . . , kmax

v (20)
βv,t,k ∈ {0, 1} v ∈ V , t = 0, . . . , tdep

v , k = 1, . . . , kmax
v − 1 (21)

Equations (13) link the SOC values sv,t with the continuous weight variables αv,t,k.320

The charging energy xv,t of EV v at time slot t is limited by Inequalities (14) to the321

maximum charging energy. Constraints (15) set the sum of the continuous weights322

αv,t,k over all discrete SOC levels k = 1, . . . , kmax
v to one. Equations (16) ensure that323

exactly one βv,t,k variable is active for each EV v and time slot t. The αv,t,k variables324

are linked with the βv,t,k variables by Inequalities (17–19). Altogether, (16–19) are the325

so-called adjacency constraints, which ensure that at most two consecutive variables326

αv,t,k and αv,t,k+1 are nonzero. Constraints (20–21) define the domains of αv,t,k and327

βv,t,k, respectively.328

As we will see in Section 6, the previously introduced EVS-SOC-LIN formulation,329

which requires Emax
v to be concave, performs remarkably well. Therefore, we propose330

a branch-and-cut approach for solving EVS-SOC-GLIN, in which we initially work on331

the convex hull of {(Sv,k,Emax
v (Sv,k)) | k = 1, . . . , kmax

v } ∪ {(Sv,1, 0), (Sv,kmax
v

, 0)}. To332

obtain this relaxation, we consider the original EVS-SOC-GLIN formulation with all333

its variables and constraints except the linking constraints (17–19). Then, whenever334

a solution candidate is found, we check for all v ∈ V , t = 0, . . . , tdep
v − 1 whether xv,t335

exceeds the actual Emax
v value at SOC sv,t, i.e., if xv,t > Emax

v (sv,t). If this is the336

case, a cut is added that links all nonzero αv,t,k variables with their respective βv,t,k337

variables, as we did in Constraints 17–19. Such cuts are separated and added until for all338

v ∈ V , t = 0, . . . , tdep
v − 1 it holds that xv,t ≤ Emax

v (sv,t).339

5. Benchmark Instances340

Due to the lack of pure real-world problem instances we randomly generate benchmark341

instances and use real-world data as far as possible. Specifically, battery capacities and342

maximum power functions are adopted from real-world data. We first consider individual343

EVS-SOC instances that represent snapshot scenarios at certain times with a specific344

number of vehicles that are assumed to have arrived at the charging station following a345

homogenous Poisson process. Afterwards, in Section 5.2, we will consider whole model346

based predictive control scenarios with a rolling horizon in which vehicles arrive at347

different times of a day.348

All of the benchmark instances are available at https://www.ac.tuwien.ac.at/research/349

problem-instances/.350
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EV Name Cv (kWh) smin
v smax

v #Pmax
v -lin. pieces

Energica Ego 21.5 1.1 99.9 53
MINI Cooper Electric 32.6 12.1 93.8 34
BMW i3 42.2 15.1 96.0 26
Hyundai Kona Elektro 67.5 10.1 94.9 28
Tesla Model 3 Long Range 82.0 11.1 99.0 35
Mercedes-Benz EQC 85.0 2.1 97.8 24
Jaguar I-Pace 90.0 8.0 100.0 29
Audi e-tron 95.0 3.1 99.8 44

Table 1: Used EV types with battery capacity Cv, Pmax
v domain [smin

v , smax
v ] and the

number of linear pieces of Pmax
v .
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Figure 3. Maximum charging power functions P max
v for all considered vehicle types.

5.1. Individual EVS-SOC Instances351

We distinguish between three types of problem parameters, depending on whether352

the parameter is set by the user, randomly generated, or based on real-world data. To the353

input provided by the user, we count the number n of EVs, the length ∆t of a time step,354

and the grid’s power capacity P gridmax. We generate 30 instances for each combination355

of n ∈ {10, 20, 50, 100}, ∆t ∈ {1, 5, 10} minutes, and P gridmax ∈ {10n, 25n, 40n}.356

We consider eight different types of real EVs shown in Table 1. The EV’s battery357

capacities were taken from the EV Database1. The respective maximum power functions358

Pmax
v were manually extracted from plots found on the website of the Dutch EV charging359

station operator FASTNED2. More specifically, 25 up to 70 points of a plot were manually360

determined in dependence of notable changes of the gradient, and linear interpolation361

was applied in between. All these Pmax
v functions are shown in Figure 3. Observe that362

the maximum power function’s available domain of definition [smin
v , smax

v ] varies among363

the EVs. If a vehicle type supports speed charging, the respective most powerful charging364

curve is used.365

Since the Pmax
v data extracted from the original plots is quite fine-grained, we366

additionally derive simplified piecewise linear approximations with only five and ten367

linear pieces, respectively. For this task, we utilized the Python package pwlf [26] to368

determine approximately optimal breakpoints automatically.369

A comparison between the original Pmax
v and these simpler piecewise approximations370

is shown in Figure 4 exemplarily for the Hyundai Kona Elektro. Observe that the371

1 https://www.ev-database.de
2 https://fastnedcharging.com
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approximation of the original Pmax
v function with 10 segments is already quite good for372

this rather challenging vehicle type. For Pmax
v of the other vehicle types, see Appendix373

A.374
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Figure 4. Exemplary P max
v curve with different number of segments.

For each EV v ∈ V in a benchmark instance, one of the above EV types is chosen375

uniformly at random. Moreover, we choose an availability duration at the charging376

station davail
v randomly according to a normal distribution with a mean value of six hours377

and a standard deviation of 1.5 hours.378

Next, from the interval (−davail
v /∆t, 0) we select an arrival time tarr

v uniformly at
random and obtain a respective departure time tdep

v = dtarr
v + davail

v /∆te. Considering
the available domains of definition of the maximum power functions, we generally assume
that each vehicle shall be charged from a SOC of 20% at arrival to a SOC of 90% at
departure. In our benchmark instances, we therefore choose the initial SOC proportional
to the already bygone availability time, i.e., for all v ∈ V ,

sv,0 =
−tarr

v

davail
v /∆t

· 0.7 + 0.2. (22)

The departure SOC sdep
v is set to 90% for all EVs.379

The end of the time horizon is obtained from the last EV’s departure time, i.e.,380

tmax = maxv∈V t
dep
v . Electricity costs per unit of consumed energy ct are independently381

chosen for each time step t ∈ T uniformly at random from [1.9, 3.5) cent/kWh.382

5.2. Rolling Horizon Benchmark Scenarios383

In addition to the individual benchmark instances, we consider rolling horizon384

simulations over whole days starting at time 0:00 and ending at 24:00. To deal with such385

a scenario in which vehicles arrive at different times at the charging station, the schedule386

is (re-)optimized at time 0:00 and then every τ = 10 minutes, always considering only387

EVs that are currently available at the charging station. The found charging schedule is388

then assumed to be applied for the next τ minutes until a new schedule is determined.389

The time is again discretized into equally long time steps of ∆t ∈ {5, 10} minutes.390

Electricity costs per unit of consumed energy are chosen as explained in Section 5.1 and it391

is assumed that they are known in advance for the whole charging period. For the number392

of vehicles we use n ∈ {10, 20, 50, 100}. Again, we pick each vehicle type uniformly at393

random from the set of available vehicle types.394

It is assumed that most vehicles arrive around two peak times at 6:00 and 14:00.395

For picking the arrival time tarr
v for a vehicle v ∈ V , we therefore first randomly select396
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with equal probability one of these two peak times and then sample tarr
v from a normal397

distribution with the chosen peak time as mean value and a standard deviation of two398

hours. Times outside of the considered horizon of 24 hours are re-sampled.399

The charging duration davail
v is chosen as described in Section 5.1 and tdep

v is derived400

correspondingly. Also, sdep
v and P gridmax are set as before. At time 0:00 we set sv,0 = 0.2401

and with each rescheduling we determine sv,0 based on the charging schedule of the402

previous iteration.403

Thirty independent whole-day scenarios were constructed and are considered in the404

experimental evaluation.405

5.2.1. Exemplary Solutions.406

Figure 5 exemplarily visualizes optimal solutions for a single individual instance407

with n = 5 EVs and ∆t = 5minutes obtained from EVS-SOC-GLIN with decreasing408

grid power capacity P gridmax ∈ {50, 125, 200} kW. As maximum energy function we chose409

Emax-lb
v based on Pmax

v with five piecewise linear segments. Each sub-figure represents an410

optimal charging schedule of a vehicle fleet. Bars specify the energy a vehicle is charged411

with in each time step. The corresponding scale is located on the left y-axis. The grid’s412

maximum energy supply P gridmax ·∆t is indicated as horizontal line in the plots. Crosses413

reveal the electricity costs for each time step and the corresponding scale is located on414

the right-sided y-axis.415

For P gridmax = 200kW it can be observed in Figure 5a that vehicles are charged416

usually in parallel within a single time step and cheap electricity costs can be exploited417

more effectively. Moreover, at some time steps the charged energy is well below the418

grid’s power capacity. Figure 5b shows how the charging schedule changes when lowering419

P gridmax to 125kW. By reducing the grid’s power capacity, more time steps are required420

for charging the vehicles to their target SOC, resulting in higher total charging costs.421

Though note that in contrast to the solution shown in Figure 5a, the charging costs only422

slightly increase even though the grid’s power capacity has been almost halved. When423

reducing P gridmax even further to 50kW, as shown in Figure 5c, the number of time steps424

required for charging the vehicles drastically increases. Moreover, in contrast to Figure425

5a at most time steps only a single vehicle is charged with usually the maximal possible426

energy. Finally, note that independent of the choice of P gridmax the generated solutions427

always utilize the time steps at which charging is the cheapest. In summary, Figure 5428

shows how the choice of P gridmax affects a respective optimal charging schedule: The429

smaller the power capacity of the grid, the more time steps are required for charging the430

vehicles and therefore the higher are the total resulting charging costs.431

6. Experimental Results432

All solution approaches were implemented in Julia 1.6.03 using the the optimization433

modeling package JuMP v0.21.5 and Gurobi 9.1.04 as LP/MILP solver. Gurobi was434

configured to run in single-threaded mode with a time limit of 30 minutes per instance.435

All remaining Gurobi parameters were kept at their default values. The experiments were436

conducted on an Intel Xeon E5-2640 v4 with 2.40GHz and 16GB memory limit. If not437

stated otherwise we report in the following mean or median results on the 30 problem438

instances per instance parameter combination (n, ∆t,P gridmax,Emax
v ).439

We first show individual results for EVS-SOC-LIN and EVS-SOC-GLIN, respectively.440

Afterwards, solutions generated by both approaches for the same instances w.r.t. the441

same configurations are compared to each other in Section 6.3. Finally, we present results442

for the rolling horizon scenarios.443

3 https://julialang.org
4 https://www.gurobi.com
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(a) P gridmax = 200 kW; total charging costs: 290.42 cent.
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(b) P gridmax = 125 kW; total charging costs: 296.91 cent.
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(c) P gridmax = 50 kW; total charging costs: 330.10 cent.

Figure 5. Optimal solution for an instance with n = 5, ∆t = 5minutes, P gridmax ∈
{50, 125, 200} kW using EVS-SOC-GLIN.

6.1. EVS-SOC-LIN444

We compare two variants of EVS-SOC-LIN. Recall that for piecewise linear Emax
v445

only a finite set of inequalities as described by (12) exists. Hence, next to the variant in446

which these constraints are dynamically separated as cuts via the cutting plane approach447

as described in Section 4.1, we also consider the variant in which all maximum charging448

energy constraints (12) are statically added to the LP upfront.449

The results of this comparison are reported in Table 2. As maximum energy function450

Emax-lb
v as well as Emax-ex

v are considered. The energy functions are derived from the451

convex hull of Pmax
v as described in Section 4.1. Moreover, P gridmax is set to 25n for452

all shown instances. The table lists for each instance group, identified by n and ∆t, the453

average total number of piecewise linear segments nseg of the Emax
v functions over all454

vehicles, a comparison of the runtimes between the cutting plane and the static approach,455
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as well as the average total number of added cuts, denoted by ncuts, for the cutting plane456

approach.457

Table 2: EVS-SOC-LIN runtime comparison for concave maximum power functions and
P gridmax = 25n: solving the static MILP versus the cutting plane method.

n ∆t (min) nseg
Runtime (s) ncuts

Static Cutting Plane Cutting Plane
Mean Median StdDev Median StdDev Mean StdDev

Emax-lb
v

5 1 49 0.07 0.04 1.34 0.26 10423 5209
5 5 46 0.01 0.00 1.04 0.23 574 269
5 10 43 0.01 0.00 1.03 0.24 190 85
10 1 99 0.18 0.15 1.52 0.38 15949 5580
10 5 93 0.02 0.01 1.05 0.28 1243 520
10 10 86 0.01 0.00 1.03 0.26 416 159
20 1 199 0.60 0.30 2.09 0.49 25549 6715
20 5 187 0.05 0.02 1.10 0.25 2593 747
20 10 172 0.02 0.01 1.05 0.25 862 245
50 1 495 2.78 1.02 6.72 2.07 87375 19749
50 5 464 0.16 0.06 1.28 0.31 6499 1167
50 10 427 0.06 0.02 1.10 0.23 2157 335
100 1 994 9.34 2.60 12.84 3.99 193069 27979
100 5 931 0.56 0.22 1.68 0.32 13502 1664
100 10 858 0.13 0.05 1.25 0.27 4367 475

Emax-ex
v

5 1 901 1.19 1.02 1.31 0.38 12800 5986
5 5 901 0.23 0.11 0.90 0.25 1102 542
5 10 901 0.08 0.07 0.97 0.26 322 205
10 1 1802 4.98 3.27 1.65 0.52 25271 9541
10 5 1802 0.59 0.22 1.06 0.24 2341 950
10 10 1802 0.22 0.10 1.01 0.20 757 387
20 1 3605 14.33 8.48 3.29 0.83 60778 18725
20 5 3605 1.21 0.45 1.16 0.27 5117 1547
20 10 3605 0.68 0.20 1.07 0.21 1585 516
50 1 9041 70.69 31.89 9.11 2.66 175979 28195
50 5 9041 4.17 1.58 1.57 0.33 13737 2329
50 10 9041 1.57 0.54 1.15 0.21 3989 858
100 1 18086 280.22 100.87 25.45 9.66 390873 44162
100 5 18086 13.11 4.73 2.11 0.51 27920 3515
100 10 18086 3.80 1.35 1.32 0.34 8126 1419

Note that all reported instances were solved to optimality w.r.t. both maximum458

energy functions. Using Emax-lb
v as maximum energy function, the static approach as well459

as the cutting plane approach were both able to solve all instances within few seconds.460

However, the static approach is significantly faster than the cutting plane method for all461

considered instance groups.462

Using Emax-ex
v as maximum energy function, though, the cutting plane method463

shows its performance advantages with growing n. Due to how Emax-lb
v and Emax-ex

v are464

derived, the number of piecewise linear segments for Emax-ex
v is in general much higher465

than for Emax-lb
v . As the number of segments increases we can observe that the cutting466

plane approach scales significantly better than the static approach. This improvement467

is particularly noticeable if we fix n and consider decreasing ∆t values. Observe that,468

for a fixed ∆t the number of cuts increases with larger n values, whereas for a fixed n469

the number of cuts increases with smaller ∆t values. Therefore, the results indicate that470

the cutting plane technique shows performance benefits when a larger number of cuts471

has to be separated, i.e., the maximum charging power condition was not easily fulfilled.472

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

4



Version December 14, 2021 submitted to Energies 15 of 32

5 10 20 50 100
n

100

101

102

Ru
nt

im
e 

(s
)

t: 1 minutes
EVS-SOC-LIN: Static
EVS-SOC-LIN: Cutting Plane

5 10 20 50 100
n

10 1

100

101

Ru
nt

im
e 

(s
)

t: 5 minutes
EVS-SOC-LIN: Static
EVS-SOC-LIN: Cutting Plane

5 10 20 50 100
n

10 2

10 1

100

Ru
nt

im
e 

(s
)

t: 10 minutes
EVS-SOC-LIN: Static
EVS-SOC-LIN: Cutting Plane

Figure 6. EVS-SOC-LIN runtime comparison for directly solving the LP problem versus the
cutting plane approach, corresponding to results of Table 2.

Overall, it can be said that the cutting plane variant outperforms the static model on473

larger instances and when nseg is large. We additionally conducted the experiments for474

P gridmax = 10n and 40n and observed the same trends.475

In Figure 6 we give a more detailed comparison of the runtimes between the static476

approach and the cutting plane approach with Emax-ex
v as maximum energy function.477

The figure shows that, when fixing ∆t, the static approach does not scale as well as478

the cutting plane approach in terms of computation time with an increasing number of479

vehicles. For ∆t ∈ {5, 10} the runtimes of the cutting plane approach barely increase as480

n grows. Only for ∆t = 1 minute the runtimes of the cutting plane approach increase481

slightly with a growing number of vehicles. In contrast, for the static approach the482

computation times increase much stronger than their cutting plane counterparts. As ∆t483

decreases the difference in performance becomes more and more obvious.484

6.2. EVS-SOC-GLIN485

Similar to before, we compare two variants of EVS-SOC-GLIN for the general486

nonconcave maximum charging power functions. In the first variant we directly solve487

the static MILP in which all linking constraints (17–19) are included from the beginning,488

whereas the second approach is the branch-and-cut variant (B&C) in which these linking489

constraints are dynamically separated as needed, cf. Section 4.2. As maximum energy490

function we use Emax-ex
v and Emax-lb

v , both based on the original full resolution Pmax
v491

functions. For P gridmax ∈ {10n, 25n, 40n} we report the results in Tables 3, 4, and492

5, respectively. Columns, nseg denote the total number of piecewise linear segments493

functions Emax
v consist of, summed over all n vehicles of an instance. Columns nfeas494

indicate the numbers of instances per group to which feasible solutions have been found495

and columns “Runtime” list the median computation times per group. Again, ncuts refers496

to the total number of cuts added within B&C. The last columns indicate the finally497

remaining optimality gaps between lower and upper bounds as reported by Gurobi. These498

gaps are calculated as the absolute difference between the respective upper and lower499

bounds divided by the upper bound. Moreover, for visual representation of the number500

of feasibly solved instances, the median runtimes, and the number of added cuts within501

B&C see Figure 7–9. Only gaps of instances with a feasible solution are considered. For502
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parameter combinations without gaps (marked with “-”), no feasible solution has been503

found for any instance within the time limit. For parameter combinations where no504

runtime is reported, all corresponding runs terminated due to an out-of-memory error.505

More detailed results can be found in Appendix B where also the number of instances506

solved to optimality as well as standard deviations for runtimes and the numbers of cuts507

are reported.508

Opposed to EVS-SOC-LIN, not all instances could be solved by the EVS-SOC-GLIN509

variants within the time limit. Considering the results with P gridmax = 10n, one can510

notice that the B&C approach shows performance benefits, as the approach was able to511

always find feasible solutions to as many or more instances than the static approach. It is512

difficult to compare the quality of the solutions obtained by each approach as the static513

approach sometimes found fewer feasible solutions. For groups for which both approaches514

could obtain feasible solutions to all instances, the quality of the generated solutions is515

almost identical. Moreover, except for two instance groups, the B&C approach was either516

as fast or faster than the static approach.517
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Figure 7. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with
Emax-lb

v based on five-segment piecewise linear approximations of the original P max
v functions,

P gridmax = 10n.
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Table 3: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 10n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 30 30 391.75 43.39 1038 0.01 0.01
5 5 139 30 30 6.58 1.43 144 0.00 0.01
5 10 119 30 30 1.67 0.83 56 0.00 0.00

10 1 311 21 29 1800.00 1800.00 4068 0.03 0.03
10 5 279 30 30 79.94 8.84 498 0.01 0.01
10 10 242 30 30 7.04 2.06 194 0.00 0.01
20 1 612 2 11 1800.00 1800.00 8974 0.08 0.19
20 5 553 30 30 500.49 684.63 1846 0.01 0.01
20 10 475 30 30 40.18 13.35 505 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 15910 - -
50 5 1393 26 30 1800.00 1800.00 6106 0.05 0.05
50 10 1192 30 30 307.62 827.59 1930 0.01 0.01
100 1 3095 0 0 1800.00 1800.00 11886 - -
100 5 2796 9 9 1800.00 1800.00 9961 0.08 0.12
100 10 2399 30 30 1800.00 1800.00 4434 0.01 0.03

Emax-ex
v

5 1 901 8 27 1800.00 1800.00 5304 0.03 0.01
5 5 901 30 30 143.42 9.59 820 0.00 0.00
5 10 901 30 30 34.53 2.60 319 0.00 0.00

10 1 1802 1 21 1800.00 1800.00 13982 0.04 0.08
10 5 1802 29 30 1800.00 725.37 2858 0.01 0.01
10 10 1802 30 30 201.32 10.29 680 0.00 0.01
20 1 3605 0 10 1800.00 1800.00 23449 - 0.14
20 5 3605 14 30 1800.00 1800.00 6479 0.07 0.05
20 10 3605 30 30 1038.91 116.59 1507 0.01 0.01
50 1 9041 0 0 1800.00 1800.00 6856 - -
50 5 9041 0 23 1800.00 1800.00 15048 - 0.11
50 10 9041 4 30 1800.00 1800.00 6160 0.18 0.03
100 1 18078 0 0 - 1800.00 0 - -
100 5 18086 0 10 1800.00 1800.00 18944 - 0.08
100 10 18086 0 25 1800.00 1800.00 10750 - 0.06

For the results with P gridmax = 25n, the runtime performance benefit of B&C is still518

noticeable for small n, however it is not as strong as for P gridmax = 10n. Moreover, for519

Emax-lb
v the number of feasible solutions found by the static approach is, except for one520

group, never worse than for B&C. Though, for Emax-ex
v B&C still yielded significantly521

more feasible solutions.522

A similar observation can be made for P gridmax = 40n. For P gridmax = 40n, the523

static approach has a better runtime with almost all parameter configurations.524

A possible explanation for this observation seems to be that for P gridmax = 10n the525

charging energy of a vehicle v is more limited by P gridmax than by Emax
v . Initial solutions526

of B&C will then violate Constraints (14) less often, which implies spending less time527

for the separation of cuts. This presumption is supported by considering the number of528

added cuts. Fixing n and ∆t, one can observe that with growing P gridmax clearly more529

cuts are added.530

When comparing Emax-lb
v and Emax-ex

v for any fixed P gridmax, n, and ∆t, Emax-ex
v531

has more segments than Emax-lb
v due to the nature of its computation. Also, for Emax-lb

v532

smaller ∆t values imply a higher number of Emax-lb
v segments. For a fixed n and ∆t533

the larger number of Emax-ex
v segments comes with fewer feasible solutions and higher534

runtimes for the static approach and the B&C.535
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Table 4: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 25n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 30 1800.00 1800.00 3184 0.02 0.06
5 5 139 30 30 25.52 6.68 422 0.01 0.01
5 10 119 30 30 1.27 1.62 153 0.01 0.01

10 1 312 20 23 1800.00 1800.00 7298 0.10 0.12
10 5 279 30 30 183.39 770.59 1132 0.01 0.01
10 10 242 30 30 17.87 11.88 452 0.01 0.01
20 1 612 4 3 1800.00 1800.00 11938 0.26 0.28
20 5 553 30 30 1800.00 1800.00 2702 0.01 0.05
20 10 475 30 30 60.59 201.06 967 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 22034 - -
50 5 1393 29 30 1800.00 1800.00 6997 0.08 0.11
50 10 1192 30 30 902.21 1800.00 2575 0.01 0.03
100 1 3095 0 0 1800.00 1800.00 29193 - -
100 5 2796 14 7 1800.00 1800.00 11737 0.12 0.18
100 10 2399 30 30 1800.00 1800.00 5340 0.03 0.06

Emax-ex
v

5 1 901 9 25 1800.00 1800.00 15258 0.21 0.20
5 5 901 30 30 448.47 761.59 2153 0.01 0.01
5 10 901 30 30 56.12 16.43 866 0.00 0.01

10 1 1802 1 18 1800.00 1800.00 23328 0.23 0.33
10 5 1802 26 30 1800.00 1800.00 5220 0.04 0.06
10 10 1802 30 30 204.26 233.60 2063 0.01 0.01
20 1 3605 0 2 1800.00 1800.00 17970 - 0.32
20 5 3605 15 29 1800.00 1800.00 10784 0.08 0.12
20 10 3605 29 30 1097.26 1800.00 4647 0.01 0.03
50 1 9041 0 0 1800.00 1800.00 23986 - -
50 5 9041 0 17 1800.00 1800.00 23708 - 0.18
50 10 9041 16 28 1800.00 1800.00 12160 0.04 0.08
100 1 18086 0 0 1800.00 1800.00 0 - -
100 5 18086 0 0 1800.00 1800.00 25754 - -
100 10 18086 0 19 1800.00 1800.00 19752 - 0.09

In general, regardless of P gridmax, all reported median gaps for both approaches are536

below 0.2%. Moreover, while the B&C approach usually finds a higher number of feasible537

solutions, the static approach finds generally more optimal solutions, as can be seen in538

Appendix B.539

In order to see how both solution approaches to EVS-SOC-GLIN perform on instances540

with fewer piecewise linear segments in Emax
v , we conduct similar experiments using the541

approximations of Pmax
v with five segments. For this we only consider Emax-lb

v , since542

the number of Emax-ex
v segments does not depend on the number of Pmax

v segments.543

Experimental results for P gridmax = 25n are given in Table 6. The table shows again the544

total number of piecewise linear segments of Emax-lb
v (nseg), the number of instances for545

which a feasible solutions was found within the time limit (nfeas ), the median computation546

time (“Runtime”), the total number of cuts added within B&C (ncuts), and optimality547

gaps (%-gap) of the generated solutions.548

For each parameter group, B&C always finds at least as many feasible solutions as549

the static approach. When the static and the B&C approaches find the same number of550

feasible solutions, the resulting gaps are almost identical, though, the solutions of the551

static variant are typically slightly better than the ones of B&C. In terms of computation552

times, no approach is significantly faster than the other.553
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Figure 8. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with
Emax-lb

v based on five-segment piecewise linear approximations of the original P max
v functions,

P gridmax = 25n.

Due to the smaller number of segments in the Pmax
v functions and consequently also554

simpler Emax-lb
v functions, a higher number of feasible as well as optimal solutions could555

generally be found, when comparing Tables 6 and 4. Moreover, the impact of fewer Pmax
v556

segments is also observable when we consider the median runtimes and the number of557

added cuts. For almost all parameter combinations of n and ∆t, fewer Pmax
v segments558

lead to lower median runtimes and fewer cuts.559

6.2.1. Charging Cost Differences & Charging Errors560

While the simpler approximations of the original Pmax
v functions lead to shorter561

runtimes, there is clearly a tradeoff concerning the precision of the model, introduced562

errors, and final solution qualities. We have a closer look on these aspects in the following.563

Specifically, we are interested in the error made when using Emax-lb
v instead of Emax-ex

v and564

the error between the five-segment Pmax
v approximation compared to the original Pmax

v .565

For this purpose, we evaluate EVS-SOC-GLIN on four different Emax
v functions: Emax-lb

v566

and Emax-ex
v , each based on the five-segment Pmax

v approximation and the original Pmax
v .567
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Table 5: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

and Emax-ex
v based on the original Pmax

v functions and P gridmax = 40n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 155 29 29 1800.00 1800.00 4476 0.04 0.15
5 5 139 30 30 31.04 55.93 619 0.01 0.01
5 10 119 30 30 2.49 4.05 247 0.01 0.01

10 1 311 20 20 1800.00 1800.00 8161 0.21 0.17
10 5 279 30 30 301.14 1800.00 1410 0.01 0.03
10 10 242 30 30 27.80 36.06 456 0.01 0.01
20 1 612 2 1 1800.00 1800.00 13361 0.27 0.48
20 5 553 30 30 1800.00 1800.00 2863 0.04 0.10
20 10 475 30 30 69.51 571.16 1078 0.01 0.01
50 1 1544 0 0 1800.00 1800.00 25908 - -
50 5 1393 28 28 1800.00 1800.00 7110 0.12 0.21
50 10 1192 30 30 1097.80 1800.00 2748 0.01 0.05
100 1 3095 0 0 1800.00 1800.00 29066 - -
100 5 2796 7 2 1800.00 1800.00 11782 0.22 0.21
100 10 2399 29 30 1800.00 1800.00 5650 0.06 0.10

Emax-ex
v

5 1 901 9 24 1800.00 1800.00 20190 0.23 0.44
5 5 901 30 30 582.18 1800.00 3180 0.01 0.07
5 10 901 30 30 80.12 34.07 1228 0.00 0.01

10 1 1802 1 13 1800.00 1800.00 24450 0.49 0.77
10 5 1802 26 30 1800.00 1800.00 6026 0.02 0.17
10 10 1802 30 30 245.17 1147.26 2161 0.01 0.01
20 1 3605 0 0 1800.00 1800.00 17460 - -
20 5 3605 15 29 1800.00 1800.00 13276 0.14 0.22
20 10 3605 29 30 1437.18 1800.00 5692 0.01 0.08
50 1 9041 0 0 1800.00 1800.00 12253 - -
50 5 9041 0 11 1800.00 1800.00 27617 - 0.21
50 10 9041 14 27 1800.00 1800.00 13538 0.10 0.12
100 1 18083 0 0 - 1800.00 0 - -
100 5 18086 0 0 1800.00 1800.00 31692 - -
100 10 18086 0 11 1800.00 1800.00 23081 - 0.14

Since we want to measure the impact of the different charging curves on the charging568

costs, we select a high P gridmax value of 40n as in this case the variable maximum charging569

power constraints have higher impact. Only results on instances solved to optimality570

are reported. Also, we only consider instances where an optimal solution for all four571

Emax
v functions was found. Parameter combinations where no such instances exist are572

omitted. The mean charging costs can be found in Table 7. The charging cost %-gaps573

are calculated by 100% · (|Emax-ex
v −Emax-lb

v |)/Emax-ex
v .574

Observe that for fixed ∆t and varying n, the charging cost gap between Emax-lb
v and575

Emax-ex
v does not change significantly. It seems that the difference in charging costs mainly576

depends on ∆t. Specifically, one might notice that the charging cost gaps become smaller577

as ∆t decreases. Overall, the largest mean charging cost gap is 0.64%, the differences578

therefore seem to be negligible for practical purposes for the considered parameter groups.579

Note however that not all instances could be solved to optimality (even when increasing580

the time limit) and hence the number of reported instances in some instance groups581

varies for each instance group. Therefore, to give a better idea about the distribution582

of the charging cost gaps, we additionally provide standard deviations to the charging583

cost gaps in Table 7. For groups with the same ∆t we can observe that the standard584

deviations are quite similar.585
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Figure 9. Visualization of EVS-SOC-GLIN results for solving the static model versus B&C with
Emax-lb

v based on five-segment piecewise linear approximations of the original P max
v functions,

P gridmax = 40n.

When comparing the five-segment Pmax
v approximation to the original Pmax

v , the586

difference in charging costs is marginal, even for large instances. For example consider587

n = 20, ∆t = 10 minutes and Emax-ex
v and observe that the objective value differs588

on average by about 0.07 cent only between the original Pmax
v and the five-segment589

approximation. This insight seems to be particularly relevant, since it shows that590

approximating Pmax
v with a lower number of linear pieces is reasonable for practice.591

When realizing a charging plan in practice with a different Emax
v function than used592

for scheduling, the specified target SOCs sdep
v might not be reached for some vehicles.593

We measure this error by generating an optimal charging schedule with Emax-ex
v and594

simulating the actual maximum energy function with Emax-lb
v . In the simulation, the595

actually charged energy is set to the minimum from the corresponding planned charged596

energy and the actual maximum energy function. The resulting mean deviation from597

the target SOC in percent, the mean charging error, can be seen in Table 8. For a single598

instance, we determined the mean charging error over all vehicles, whereas for an instance599

group we again report the mean and the standard deviation of these mean charging errors600

from the individual instances.601
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Table 6: EVS-SOC-GLIN results for solving the static model versus B&C with Emax-lb
v

based on five-segment piecewise linear approximations of the original Pmax
v functions,

P gridmax = 25n.

n ∆t (min)
nseg nfeas Runtime (s) ncuts %-gap

Mean Median Median Median
Static B&C Static B&C B&C Static B&C

Emax-lb
v

5 1 40 30 30 60.14 19.63 387 0.01 0.01
5 5 46 30 30 2.40 1.98 88 0.01 0.01
5 10 43 30 30 0.64 1.13 42 0.00 0.01
10 1 80 30 30 509.28 1800.00 1162 0.01 0.02
10 5 92 30 30 11.01 8.34 232 0.01 0.01
10 10 87 30 30 1.49 2.68 118 0.01 0.01
20 1 160 12 30 1800.00 1800.00 2488 0.03 0.06
20 5 185 30 30 54.58 61.09 516 0.01 0.01
20 10 174 30 30 5.03 7.45 217 0.01 0.01
50 1 398 0 12 1800.00 1800.00 5598 - 0.24
50 5 459 30 30 640.74 1800.00 1556 0.01 0.02
50 10 433 30 30 37.23 36.95 624 0.01 0.01

100 1 798 0 0 1800.00 1800.00 9312 - -
100 5 921 30 30 1800.00 1800.00 3237 0.01 0.06
100 10 871 30 30 112.16 84.83 1360 0.01 0.01

Table 7: Objective value comparison using EVS-SOC-GLIN and different Emax
v functions

based on the five-segment Pmax
v approximation and the original Pmax

v ; P gridmax = 40n.

n ∆t (min) nopt

Charging Costs
Emax-lb

v Emax-ex
v %-gap

Mean Mean Mean StdDev
Original Pmax

v

5 1 2 109.08 108.97 0.10 0.01
5 5 25 209.40 208.83 0.29 0.18
5 10 30 227.10 225.78 0.64 0.40

10 5 11 374.24 372.98 0.34 0.13
10 10 28 447.51 445.05 0.59 0.35
20 10 19 882.53 877.33 0.60 0.30

5-segment approx. Pmax
v

5 1 2 109.10 108.98 0.10 0.01
5 5 25 209.38 208.82 0.29 0.17
5 10 30 227.11 225.77 0.64 0.41

10 5 11 374.14 372.92 0.33 0.13
10 10 28 447.44 445.04 0.57 0.32
20 10 19 882.39 877.26 0.60 0.30

Similarly to before, it seems that the size of the charging error mainly depends on ∆t:602

Fixing the number of vehicles n, the mean charging error decreases with smaller ∆t, the603

number of vehicles does not seem to influence the mean charging error for fixed ∆t.604

6.3. Comparison of EVS-SOC-LIN and EVS-SOC-GLIN605

Charging cost gaps between solutions of formulation EVS-SOC-LIN and EVS-SOC-606

GLIN can be found in Figure 10. As before, we only consider instances that were607

solved to optimality. For EVS-SOC-LIN we use Emax-lb
v based on the concave Pmax

v ,608

whereas for EVS-SOC-GLIN we use Emax-lb
v based on Pmax

v with five segments. The grid609

capacity P gridmax is again set to 40n. Charging cost gaps are calculated by dividing the610

difference of the EVS-SOC-GLIN objective values from the EVS-SOC-LIN objectives by611

the EVS-SOC-GLIN objective values. For n ∈ {50, 100} and ∆t = 1 minute, all mean612

charging cost gaps are zero, therefore the respective bars are not shown in the figure.613
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Table 8: Charging error comparison when scheduling with Emax-ex
v using EVS-SOC-GLIN

and realizing the schedule with Emax-lb
v ; P gridmax = 40n.

n ∆t (min) nopt

Mean Charging Error (% SOC)
Original Pmax

v 5-seg. approx. Pmax
v

Mean StdDev Mean StdDev
5 1 3 0.23 0.08 0.21 0.08
5 5 25 1.14 0.26 1.06 0.28
5 10 30 2.01 0.58 1.94 0.60

10 5 12 1.14 0.16 1.18 0.18
10 10 29 2.03 0.45 2.03 0.46
20 10 20 2.01 0.29 1.97 0.34

Comparing the gaps of both formulations, one can notice that the charging costs of614

solutions generated by EVS-SOC-LIN are slightly too optimistic, underestimating the615

actual costs. In comparison to the more exact EVS-SOC-GLIN, the costs of the solutions616

generated by EVS-SOC-LIN are lower by at most by 0.35%. Moreover, there are no617

significant differences between the charging cost gaps when varying n or ∆t values. When618

it comes to computation times, both variants of EVS-SOC-LIN are significantly faster619

than any EVS-SOC-GLIN variant, as we have seen before in Table 2 and Table 4.620
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Figure 10. Mean charging cost gaps of EVS-SOC-LIN and EVS-SOC-GLIN with P gridmax =

40n. Whiskers indicate the standard deviations. Note that for n = 20 and ∆t = 1 only a single
instance was solved to optimality and therefore the corresponding standard deviation is zero.

For the exact same setting as above, we also measure the charging error when621

scheduling with the convex Emax-lb
v used in EVS-SOC-LIN and realizing the plan with622

the, in general, nonconvex Emax-lb
v used in EVS-SOC-GLIN. The mean charging error623

is shown in Figure 11. It can be said that for a fixed ∆t, the mean charging error does624

not significantly change for a varying number of vehicles n. However, for a fixed number625

n, the mean charging error grows with decreasing ∆t. An explanation for this behavior626

seems to be that on instances with smaller ∆t, solutions tend to be more precise in terms627

of the error induced by the time discretization. Therefore the difference between a convex628

and nonconvex Emax
v function could have more impact on solutions of instances with629

small ∆t values. Overall, the mean charging cost difference does not exceed 1.5% SOC630

for any n and any ∆t and, thus, may be negligible in practice.631

6.4. Model Based Predictive Control Simulations632

For the rolling horizon scenarios, we conduct experiments using formulations EVS-633

SOC-LIN and EVS-SOC-GLIN. We use Emax-lb
v for both formulations, but for EVS-SOC-634

LIN the corresponding concave approximation of Pmax
v , whereas for EVS-SOC-GLIN the635

five-segment approximation of Pmax
v . P gridmax is set to 40n. Results of the experiments636

are shown in Table 9. Absolute charging cost differences are determined by subtracting637
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the EVS-SOC-GLIN objective values from the EVS-SOC-LIN objective values. Relative638

charging costs are based on the absolute charging costs divided by the objective values of639

EVS-SOC-GLIN.640
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Figure 11. Mean charging error when scheduling with convex Emax-lb
v and realizing the plan

with nonconvex Emax-lb
v using P gridmax = 40n. Whiskers indicate the standard deviations.

Similarly to before, for fixed n and ∆t, the charging costs of EVS-SOC-LIN and641

EVS-SOC-GLIN only differ marginally. The maximum gap is 0.27% for n = 100 and642

∆t = 5 minutes. As expected, the absolute charging cost difference increases with a higher643

number of vehicles. The gaps, however, seem to stay in the same order of magnitude for644

growing n.645

Table 9: Rolling horizon charging cost difference for EVS-SOC-LIN vs. EVS-SOC-GLIN
using Emax-lb

v ; P gridmax = 40n.

n ∆t (min)
Charging Cost Difference

Absolute (cent) Relative (%)
Mean StdDev Mean StdDev

5 5 0.97 0.73 0.22 0.16
5 10 0.91 0.60 0.20 0.12
10 5 1.75 0.99 0.20 0.11
10 10 1.78 0.77 0.20 0.08
20 5 3.78 1.34 0.21 0.08
20 10 3.80 1.03 0.21 0.06
50 5 9.14 2.42 0.20 0.05
50 10 9.39 2.64 0.21 0.06
100 5 24.42 2.40 0.27 0.03
100 10 19.96 4.82 0.22 0.05

7. Conclusions646

We formally introduced the EVS-SOC problem in which we put particular focus on647

dealing with vehicle-specific SOC-dependent maximum charging power limitations. We648

addressed the issue that the maximum charging power Pmax
v may be regulated within a649

single time step in a time discretized solution approach by turning towards considering650

the maximum amount of energy that can be charged in a time step. To this end, we651

proposed an exact derivation Emax-ex
v as well as a simpler lower bound Emax-lb

v . One652

should keep in mind that the gap between Emax-lb
v and Emax-ex

v decreases with smaller653

time step duration ∆t. We recall that charging schedules generated with Emax-lb
v are654

guaranteed to be realizable in practice, whereas schedules generated with Emax-ex
v help655

us with the estimation of the charging cost differences and charging errors induced by656

the time discretization.657
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Let us recapitulate the most important experimental results. Two different MILP658

formulations, EVS-SOC-LIN and EVS-SOC-GLIN, were proposed, where EVS-SOC-LIN659

relies on the assumption that Emax
v is concave. When taking a closer look at EVS-SOC-660

LIN, both the static as well as the cutting plane variant, are quite fast. Compared to661

EVS-SOC-GLIN, EVS-SOC-LIN performs an order of magnitude faster in our experiments.662

Considering the runtime difference between the static and the cutting plane approach,663

a substantial performance benefit of the latter can be observed. Moreover, we have664

seen that the runtime of the cutting plane approach scales better with larger numbers665

of vehicles or decreasing ∆t values. Its advantages become even more visible when the666

maximum charging energy of a vehicle has to be exploited, i.e., a large number of cuts667

has to be separated.668

Concerning the static solution approach and the B&C for solving EVS-SOC-GLIN,669

we found that B&C performs better for instances with a small number of vehicles. For670

larger instances, however, the static variant is usually superior in terms of runtime. It671

also shows performance advantages for larger grid capacities. Results of the experiments672

indicate that the B&C is slower than the static variant when a large number of cuts has673

to be separated. Nevertheless, there are cases where B&C is faster, for example when674

Emax
v consists of many linear segments. Additionally, we realized that B&C finds more675

feasible solutions in the majority of the experiments, when solving to optimality is not676

possible anymore within the runtime limit. Overall, for both EVS-SOC-GLIN solution677

approaches it is also worth mentioning that fewer Pmax
v segments usually clearly reduce678

the runtime.679

Different approximations of the maximum charging power (e.g., piecewise linear680

approximation or convex hull approximation), as well as the maximum charging energy681

(Emax-lb
v , Emax-ex

v ) have been proposed. We studied the charging cost differences and the682

charging errors induced by these approximations. Regarding the charging cost differences,683

it turned out that there are only marginal charging cost differences between schedules684

generated with Emax-lb
v and schedules generated with Emax-ex

v . The number of vehicles685

did not show any noticeable impact on the cost differences for this comparison. Naturally,686

a smaller step duration ∆t reduces the charging cost differences. Moreover, in case of our687

benchmark instances the approximation of Pmax
v with five piecewise linear segments does688

not have any noticeable impact on the charging costs, despite the rather complex original689

functions. We also inspected the charging cost differences when generating schedules690

based on the original Pmax
v function and its concave approximation. It turned out that691

the charging cost differences are quite small, the mean differences did not exceed 0.35%692

for any shown parameter group.693

As already mentioned, approximating the maximum charging energy might lead to694

the issue that vehicles do not reach their desired target SOCs. To measure this effect,695

we generated charging schedules with Emax-ex
v and simulated the actual charging with696

Emax-lb
v . Experimental results have shown that the mean charging error does not exceed697

2.1% SOC even for ∆t = 10 minutes. For this experiments, we could also detect a698

correlation between the size of ∆t and the charging error, more specifically the mean699

charging error decreases with smaller ∆t. In another simulation, we considered the700

mean charging error when generating a charging schedule based on a concave Pmax
v701

approximation and realizing it with the original Pmax
v . The mean charging error is rather702

small again, the mean deviation from the vehicles’ target SOCs were at most 1.5%.703

To see whether the concave approximation of Pmax
v accumulates large charging704

cost differences in a whole day scenario, we conducted model based predictive control705

simulations with the original Pmax
v and its concave approximation. The relative charging706

cost gaps were even smaller with a maximum value 0.27% for 100 vehicles and ∆t = 5707

minutes.708

Overall, where we utilize one of the formulations within a model based predictive709

control strategy, we recommend the usage of EVS-SOC-LIN or EVS-SOC-GLIN together710

with a reasonably small ∆t value of few minutes, in order to reduce errors introduced by711
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time discretization. Depending on whether EVS-SOC-GLIN is performant enough for712

a given application setting (i.e., it finds a charging schedule within the re-optimization713

interval) its usage is advised to reduce the danger of significant charging cost differences714

and charging errors. It seems promising to approximate Pmax
v with five to ten piecewise715

linear segments to improve runtime in this scenario.716

In case EVS-SOC-GLIN does not find charging schedules in reasonable time, one717

might fall back to EVS-SOC-LIN and its cutting plane approach to rapidly generate718

charging schedules for a concave approximation of Pmax
v . The introduced errors are719

usually negligible as we have seen.720

In future work it would be interesting to investigate whether the runtime of solving721

EVS-SOC-GLIN can be further improved. As we have seen, B&C is frequently slower than722

the static variant. A more detailed polyhedral study of the model may reveal additional723

strengthening inequalities. Concerning the computational complexity of EVS-SOC, it is724

an open question whether or not the problem is NP-hard if Pmax
v is a general nonconcave725

function. Another aspect worth pursuing is the question whether known vehicle arrival726

times have a significant impact on the charging costs of a rolling horizon schedule. In727

the presented scenario, successively arriving vehicles are simulated, however they are not728

incorporated into the schedule before arrival at the charging station. One may expect729

that arrival times known in advance lead to better exploitation of cheap charging time730

slots and therefore come along with cheaper total charging costs.731

A further direction of future work should be the consideration of uncertainties, e.g.,732

in the future power limits or in the future occupation of charging stations. Furthermore it733

would be interesting to study the effect of the rescheduling interval on charging costs and734

charging errors in the rolling horizon context. Last but not least, it would be interesting735

to consider a problem variant in which discharging of vehicles is allowed in order to736

enable mutual charging of EVs. This idea has already been mentioned in [27], however737

its impact on the total charging costs has not yet been studied. One could further extend738

the model by allowing the charging station to supply energy to the electricity grid in739

exchange for monetary reward.740
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Appendix A753

In Figure A1 a comparison between the original Pmax
v and the simpler piecewise754

approximations is shown for all vehicle types used in the benchmark instances.
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Figure A1. Comparison of P max
v curves with different numbers of segments.

755

Appendix B756

Tables 10, 11, 12, and 13 give more detailed information to the results provided in757

Tables 3, 4, 5, and 6, respectively. Shown here are also the numbers of optimally solved758

instances in each instance groups as well as standard deviations to the runtimes and the759

numbers of cuts.760
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