
Algorithms and Complexity Group | Institute of Computer Graphics and Algorithms | TU Wien, Vienna, Austria

Technical Report AC-TR-21-012
July 2021

Davis and PutnamMeet
Henkin: Solving DQBF
with Resolution

Joshua Blinkhorn, Tomáš Peitl and Friedrich
Slivovsky

This is the authors’ copy of a paper that appeared in the Proceedings of SAT 2021

www.ac.tuwien.ac.at/tr

Davis and Putnam Meet Henkin: Solving DQBF
with Resolution?

Joshua Blinkhorn1[0000−0001−7452−6521], Tomáš Peitl1[0000−0001−7799−1568], and
Friedrich Slivovsky2[0000−0003−1784−2346]

1 Friedrich-Schiller-Universitt Jena, Jena, Germany
{joshua.blinkhorn,tomas.peitl}@uni-jena.de

2 TU Wien, Vienna, Austria
fslivovsky@ac.tuwien.ac.at

Abstract. Davis-Putnam resolution is one of the fundamental theo-
retical decision procedures for both propositional logic and quantified
Boolean formulas.

Dependency quantified Boolean formulas (DQBF) are a generalisation of
QBF in which dependencies of variables are listed explicitly rather than
being implicit in the order of quantifiers. Since DQBFs can succinctly
encode synthesis problems that ask for Boolean functions matching a
given specification, efficient DQBF solvers have a wide range of potential
applications. We present a new decision procedure for DQBF in the style
of Davis-Putnam resolution. Based on the merge resolution proof system,
it directly constructs partial strategy functions for derived clauses. The
procedure requires DQBF in a normal form called H-Form. We prove
that the problem of evaluating DQBF in H-Form is NEXP-complete. In
fact, we show that any DQBF can be converted into H-Form in linear
time.

1 Introduction

Continuing advances in the performance of propositional satisfiability (SAT)
solvers are enabling a growing number of applications in the area of electronic
design automation [29], such as model checking [6], synthesis [25], and symbolic
execution [3]. In artificial intelligence, SAT solvers are a driving force behind
recent progress in constrained sampling and counting [20], and they act as com-
binatorial search engines in competitive planning tools [10]. In most of these
cases, SAT solvers deal with problems from complexity classes beyond NP and
propositional encodings that grow super-polynomially in the size of the original
instances. Clever techniques such as incremental solving can partly alleviate this
issue, but ultimately the underlying asymptotics lead to formulas that are too
large to be solved by even the most efficient SAT solvers.

? This research was supported by the Vienna Science and Technology Fund (WWTF)
under grant number ICT19-060, and by the Austrian Science Fund (FWF) under
grant number J-4361N.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

2 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

This has prompted the development of decision procedures for more suc-
cinct generalizations of propositional logic such as Quantified Boolean Formulas
(QBFs). Deciding satisfiability of QBFs is PSPACE-complete [26] and thus be-
lieved to be much harder than SAT, but in practice the trade-off between encod-
ing size and tractability can be in favour of QBF [13]. Dependency QBF (DQBF)
in turn generalise QBF [1, 2]. Whereas the nesting of quantifiers implicitly de-
termines the arguments of Skolem (or Herbrand) functions of a QBF, Henkin
quantifiers explicitly specify the arguments of Skolem (or Herbrand) functions
in a DQBF. As a result, DQBFs can succinctly encode problems concerning
the existence of Boolean functions subject to a set of constraints. For instance,
equivalence checking of partial circuit designs (PEC) can be naturally encoded
as DQBF [16].

Existing decision procedures for DQBF either use quantifier expansion to
obtain an equivalent propositional formula or QBF, or else adapt search-based
algorithms from QBF by introducing additional constraints to make sure the
search tree is consistent with the dependency sets of the input DQBF. Seman-
tically, reasoning at the level of functions is more natural, but recent attempts
at lifting conflict-driven clause learning (CDCL) to the level of Skolem functions
are currently limited to 2QBF [22].

Our main contribution is a new decision algorithm for DQBF that oper-
ates directly at the level of functions. Based on the merge resolution (M-Res)
proof system [4], it maintains a set of clauses annotated with partial Herbrand
functions. Like the original Davis-Putnam procedure [12], it successively elim-
inates (existentially quantified) variables by creating all possible resolvents at
each step. Crucially, resolvents are created only for pairs of clauses with par-
tial Herbrand functions that are consistent and can be combined into a larger
partial Herbrand function. Once all variables have been eliminated, either the
set of clauses is empty, in which case the input DQBF is true, or it contains
the empty clause, in which case the formula is false and the Herbrand functions
in the annotation form a countermodel. In contrast to variable elimination by
Q-resolution [5, 18], where innermost existentially quantified variables must be
eliminated first, our algorithm may eliminate variables in any order. While this
is not surprising in DQBF, where there is no syntactic ordering of variables, it
means that our algorithm can be used to eliminate variables of a QBF in arbi-
trary order, too—possibly at the cost of increased computational complexity.

There is a surprising obstacle in the way of generalizing variable elimination
by resolution to DQBF—it is insufficient to resolve only clauses that contain the
current pivot variable being eliminated. In fact, we may need to resolve even pairs
of clauses neither of which contains the pivot variable. The requisite combination
of weakening and resolution has previously been studied under the name w-
resolution [8,9]. In turn, w-resolution paves the way for a seemingly absurd case:
a clause can now be resolved with itself—self-resolution. While self-resolution
is not essential, we show that it is a very natural explanation for why we keep
certain clauses between individual elimination steps. That understanding casts

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 3

the algorithm in a different light; as a series of transformations, which result in
a normal form where strategies are recorded explicitly.

Strictly speaking, our algorithm (as well as merge resolution) operates on
H-form DQBF, where Henkin quantifiers specify the arguments of universal
variables and the matrix is in conjunctive normal form [2]. NEXP-hardness of
evaluating DQBF in this form does not immediately follow from known results [1,
24], and determining the complexity of this problem was recently stated as an
open question [4]. As a further contribution, we show that it is in fact NEXP-
complete, and that DQBF in H-form and the more frequently studied S-form
(where Henkin quantifiers are used for existential variables) are interconvertible
at a linear overhead while preserving strategies. Thus our variable elimination
algorithm can be used to evaluate and construct (counter)models of arbitrary
DQBFs.

The paper is structured as follows: after preliminaries in Section 2, we give
our decision procedure in Section 3, and discuss NEXP-completeness of H-form
DQBF in Section 4, concluding with a summary in Section 5.

2 Preliminaries

H-form DQBF intuition. The notion of H-form DQBF is arguably counter-
intuitive, and so instead of a formal definition, we start informally. Consider an
S-form DQBF, i.e. a formula of the form ∀u1 · · · ∀um∃x1(Sx1

) · · · ∃xn(Sxn
) · φ,

where each existential variable xi has a dependency set Sxi
⊆ {u1, . . . , um}, and

φ is a DNF. The goal with such a formula is to find a set of functions—called
a model—for the existential variables respecting the dependencies so that after
substitution into φ, the formula becomes a tautology in the universal variables.
An example of such a formula is

Ψ = ∀u1 ∀u2 ∃x1(u1) ∃x2(u2) (u1 ∧ x2) ∨ (u1 ∧ x2) ∨ (u2 ∧ x1) ∨ (u2 ∧ x1)

along with the model x1 = u1, x2 = u2—whose substitution into Ψ indeed
produces a tautology. An H-form DQBF with a CNF matrix is then simply a
negation of an S-form DQBF with a DNF matrix, where strategies are sought for
universal variables and the goal is to make the substituted formula unsatisfiable,
rather than valid.

H-form DQBF syntax. A variable is an element z of the countable set V. A
literal is a variable z or its negation z. The negation of a literal a is denoted
a, where z := z for any variable z. A clause is a disjunction of literals. A
conjunctive normal form formula (CNF) is a conjunction of clauses. The set of
variables appearing in a formula ψ is denoted vars(ψ). For ease, we often write
clauses as sets of literals, and CNFs as sets of clauses.

An H-form dependency quantified Boolean formula (DQBF) is a sentence of
the form Ψ := ∃x1 · · · ∃xn∀u1(Hu1

) · · · ∀um(Hum
) · ψ, where the part that holds

quantification information is called the prefix, and the matrix ψ is a CNF. In the
quantifier prefix, each universal variable ui is associated with a dependency set

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

4 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

Hui
, which is a subset of the existential variables {x1, . . . , xn}. With vars∃(Ψ)

and vars∀(Ψ) we denote the existential and universal variable sets of Ψ , and with
vars(Ψ) their union. We deal only with DQBFs for which vars(ψ) ⊆ vars(Ψ).

H-form DQBF semantics. An assignment α to a set Z of Boolean variables
is a function from Z into the set {0, 1, ∗}. An assignment whose range is {0, 1}
is called total. The set of all assignments to Z is denoted 〈〈Z〉〉, and the set of all
total assignments is denoted 〈Z〉. The domain restriction of α to a subset Z ′ of
its domain is written α�Z′ . We say that α extends α′, denoted by α′ ⊆ α, when
α(z) = α′(z) for each z ∈ dom(α′) with α′(z) ∈ {0, 1}.

The restriction of a formula ψ by an assignment α, denoted ψ[α], is the result
of substituting each variable z in the preimage α−1({0, 1}) by α(z), followed by
applying the standard simplifications for Boolean constants, i.e. 0 7→ 1, 1 7→ 0,
φ∨ 0 7→ φ, φ∨ 1 7→ 1, φ∧ 1 7→ φ, and φ∧ 0 7→ 0. We say that α satisfies ψ when
ψ[α] = 1, and falsifies ψ when ψ[α] = 0.

For a DQBF Ψ := ∃x1 · · · ∃xn∀u1(Hu1) · · · ∀um(Hum) ·ψ, any set of functions
h := {hu : u ∈ vars∀(Ψ)} of the form hu : 〈Hu〉 → 〈〈{u}〉〉 is called a strategy
for Ψ . For convenience, we use the alias h(α) := {hu(α�Hu

) : u ∈ vars∀(Ψ)}. A
strategy for Ψ is called winning when each combined assignment α∪h(α) falsifies
ψ. The terms ‘winning strategy’ and ‘countermodel ’ are used interchangably. A
DQBF is called false when it has a countermodel, otherwise it is called true.

3 Davis-Putnam Resolution for H-Form DQBF

In this section we describe a decision procedure for H-form DQBF in the style
of Davis-Putnam resolution. We start by explaining the high-level idea by com-
parison to propositional DP-resolution.

In a nutshell, DP-resolution for propositional logic eliminates variables by
exhaustive resolution—pick variables one at a time in arbitrary order, for every
variable produce all resolvents, and then drop all clauses containing the elimi-
nated variable.3 If at the end the clause set is empty, the formula is satisfiable.
If, on the other hand, we are left with the empty clause (we have eliminated
all variables, so any clause must be empty), the formula is unsatisfiable, and we
have constructed a resolution refutation.

For DQBF we adapt this process in three ways: First, we will only eliminate
existential variables. We can still do so in arbitrary order.

Second, we treat universal variables in the spirit of the DQBF proof system
M-Res [4]—by splitting clauses into the existential part and a partial-strategy
part, initially constructed from universal literals. Strategies may prevent resolu-
tion steps if they mismatch; or they may be updated for variables that depend
on the pivot—similarly to how it is done in M-Res—with a consistency check in
place of the originally used and more strict isomorphism test. Consequently, at

3 The algorithm described by Davis and Putnam [12] also considers unit clauses and
pure literals, but since these are neither necessary for completeness, nor complete
on their own, we think of DP-resolution as consisting of variable elimination.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 5

the end we obtain either the empty set, in which case the formula is true, or a
set containing clause-strategy pairs with empty existential parts, in which case
the formula is false, and the partial strategies form a countermodel.

Third, when eliminating an existential variable x, we will need to weaken
clauses that do not contain any literal on x with both x and x (separately), and
such weakened clauses will enter the elimination step for x. M-Res is incomplete
for DQBF without weakening, and the same issue forces us to include weakening
in our algorithm as well. No such thing is necessary in the propositional case,
intuitively because the only way how a variable can directly interact with a
clause is if it occurs in the clause. In DQBF however, existential variables can
affect dependent universal variables and thereby interact in complex ways with
clauses where they do not occur at all. An elegant way of capturing this is by
incorporating weakening directly into the resolution rule—resulting in a system
known as w-resolution [8].

We begin the algorithm exposition by defining some relations and operations
in Subsection 3.1. The algorithm itself is described in Subsection 3.2, and its
correctness and completeness are shown in Subsection 3.3. We discuss suitable
data structures for the storage and manipulation of strategies in 3.4.

3.1 Strategy Operations.

We introduce a consistency relation and two operations for the manipulation of
individual strategy functions.

Definition 1. Let X be a set of variables and ε, δ ∈ 〈〈X〉〉. We say that ε and
δ are consistent, denoted by ε ' δ, if for every x ∈ X for which ε(x) 6= ∗ and
δ(x) 6= ∗ we have ε(x) = δ(x).

By abuse of notation, we treat (partial) assignments as both functions and
sets of literals, i.e. an assignment ε corresponds to the set of literals it satisfies,
namely {x : ε(x) = 1} ∪ {x : ε(x) = 0}. Through this correspondence we define
the union of two assignments, and we say that δ extends (is an extension of) ε
if ε ⊆ δ.

Lemma 1. Let X be a set of variables and ε, δ ∈ 〈〈X〉〉. The following conditions
are equivalent: (1) ε and δ are consistent; (2) there is an assignment γ ∈ 〈〈X〉〉
which extends both ε and δ; (3) ε ∪ δ is an assignment.

Furthermore, any assignment that extends both ε and δ also extends ε ∪ δ.

Let Ψ be a DQBF, let u ∈ vars∀(Ψ) be a universal variable, and let hu and h′u
be individual strategy functions for the variable u; that is, functions from 〈Hu〉
into 〈〈{u}〉〉.

• Consistency: We say that hu and h′u are consistent (written hu ' h′u) when
hu(ε) ' h′u(ε) for each ε ∈ 〈Hu〉.

• Union: Provided hu ' h′u, their union is (hu ◦ h′u)(ε) := hu(ε) ∪ h′u(ε).

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

6 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

• If-then-else: For each x ∈ vars∃(Ψ), we define the if x then hu else h′u
function

(
hu

x
./ h′u

)
(ε) :=

{
hu(ε) if ε(x) = 1 ,

h′u(ε) if ε(x) = 0 ,
ε ∈ 〈Hu〉 .

3.2 Definition of the construction

Given a DQBF ∃x1 · · · ∃xn∀u1(Hu1
) · · · ∀um(Hum

) · ψ, we define recursively a
collection of sets DP(Ψ , i), for i in {0, . . . , n}. Each DP(Ψ , i) is a set of clause-
strategy pairs. A clause-strategy pair is of the form (C, h), where C is a clause
with vars(C) ⊆ vars∃(Ψ), and h is a strategy for Ψ .

We will obtain the set DP(Ψ , i) by applying w-resolution—resolution pre-
ceded by weakening—to DP(Ψ , i− 1). The w-resolvent of C and D, over a pivot
z with z 6∈ C and z 6∈ D, is defined as C ∪· zD := (C \ {z})∪ (D \ {z}) [8,9]. The
w-resolvent is equal to the traditional resolvent if the pivot literals are present
in the clauses, but it additionally extends resolution to cases when the pivot is
absent from one or both premises—the condition z 6∈ C and z 6∈ D ensures that
weakening by the corresponding pivot literal does not create a tautology.

The recursive definition begins with DP(Ψ , 0) := {(C∃, hC∀) : C ∈ ψ}, where
C∃ and C∀ are the existential and universal subclauses of C, and the strategy
hC∀ is the collection of constant functions

hC∀
u (ε) :=





u 7→ 0 if u ∈ C∀ ,
u 7→ 1 if u ∈ C∀ ,
u 7→ ∗ otherwise ,

ε ∈ 〈Hu〉 ,

over u ∈ vars∀(Ψ). Here, DP(Ψ , 0) is merely a representation of the matrix of Ψ
as clause-strategy pairs. The universal subclauses are replaced by strategies, in
which each individual literal is represented by the falsifying constant function.

For i ≥ 1, we define the set R(Ψ , i) as consisting of all resolvent clause-
strategy pairs (C0 ∪· xi

C1, h
1,0) for (C0, h

0) 6= (C1, h
1) ∈ DP(Ψ , i− 1) satisfying

(a) xi 6∈ C0 and xi 6∈ C1, (b) C0 ∪· xi
C1 is not a tautology, and (c) h1u ' h0u, for

each u with xi /∈ Hu, where the strategy h1,0 is the collection of functions

h1,0u :=

{
h1u

x
./ h0u if xi ∈ Hu ,

h1u ◦ h0u if xi /∈ Hu ,

over u ∈ vars∀(Ψ). Finally we define DP(Ψ , i) as the set

R(Ψ , i) ∪ {(C, h) ∈ DP(Ψ , i− 1) : xi /∈ vars(C)} ,

The set R(Ψ , i) consists of all possible w-resolvents with pivot xi formed
from clause-strategy pairs (C1, h

1) and (C0, h
0) in the previous set DP(Ψ , i− 1),

where the individual strategy functions h1u, h0u must be consisent whenever u does

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 7

not depend on xi. The strategy for the resolvent is the union of h1u and h0u when
u is indeed independent of xi, otherwise it is ‘if xi then h1u else h0u.’ 4

Note that, for any clause-strategy pair (C, h) ∈ DP(Ψ , i), each individual
function hu depends only on the variables {x1, . . . , xi}∩Hu. This is an important
observation, which we use later in our proof of completeness (Theorem 2).

We will be particularly interested in the final set of clause-strategy pairs
generated by this process. Hence we write DP(Ψ) := DP(Ψ , n). An immediate
consequence of the construction is that each clause-strategy pair (C, h) ∈ DP(Ψ)
has the empty clause C = �. The construction is summarised in Aglorithm 1.

Algorithm 1 Davis-Putnam resolution for DQBF.

function DP(Ψ)
Ψ∗ = DP(Ψ , 0)
for x ∈ vars∃(Ψ) do

Ψ∗ = Ψ∗ ∪ weaken and resolve(x,Ψ∗)
Ψ∗ = Ψ∗ \ {(C, h) ∈ Ψ∗ : x ∈ vars(C)}

end for
return Ψ∗ 6= ∅

end function

function weaken and resolve(x,Ψ∗)
R = ∅
for all (C0, h

0) 6= (C1, h
1) ∈ Ψ∗ ×Ψ∗ do

if x 6∈ C0, x 6∈ C1 and h0
u ' h1

u when x 6∈ Hu then

h1,0 = {h1
u

x
./ h0

u : x ∈ Hu} ∪ {h1
u ◦ h0

u : x 6∈ Hu}
R = R ∪ {(C1 ∪· x C0, h

1,0)}
end if

end for
return R

end function

There is a crucial difference compared to propositional or even QBF DP-res-
olution. While in those cases we only resolve pairs of clauses that do contain the
pivot, here we need to resolve all pairs that have a w-resolvent (provided that
the strategies are compatible where necessary). An interesting special case that
arises out of this is self-resolution: when we take the w-resolvent of a clause with
itself. It is readily verified that a clause C has a self-resolvent on a variable x
if, and only if, x 6∈ vars(C). Self-resolving C on any variable simply produces C
again. Moreover, since both the self-union and the if-then-else of any strategy
function is equivalent to itself, self-resolving an entire clause-strategy pair makes
no change to it. Thus, keeping the set {(C, h) ∈ DP(Ψ , i− 1) : xi /∈ vars(C)} for

4 Note that we still take the if-then-else even if the functions are compatible, and in
particular also if one of the functions is undefined. This is slightly counter-intuitive at
first because we could just take the union in those cases, but the if-then-else results
in a more compatible strategy and is in fact necessary to ensure completeness.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

8 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

DP(Ψ , i) is tantamount to self-resolving each of those clauses and keeping only
resolvents, discarding DP(Ψ , i− 1) fully. This allows us to see the algorithm in
a slightly different light; as a series of formula transformations. However, self-
resolving clauses is not the most intuitive thing to do, and so for the sake of
clarity and similarity to other versions of DP-resolution we assume we always
resolve different clause-strategy pairs, as written in the pseudocode of Algo-
rithm 1. We invite the reader to appreciate how adopting self-resolution and
full discarding would eliminate case distinctions from some of the forthcoming
proofs, arguably making them more elegant, if less humanly.

3.3 Correctness and completeness

Now we show that the Davis-Putnam construction is both correct and com-
plete, by which we mean that DP(Ψ) is non-empty if (completeness), and only
if (correctness), Ψ is false.

Correctness. Our proof of correctness follows the same argument as the proof
of soundness in the proof system M-Res [4].5 For any pair (C, h) ∈ DP(Ψ , i), we
show that h is a partial countermodel for Ψ with respect to C. This means that
h behaves like a countermodel on input assignments that falsify C. The notion
is captured formally in the statement of the following lemma.

Lemma 2. Given a DQBF Ψ, an existential variable xi, a clause-strategy pair
(C, h) ∈ DP(Ψ , i), and an assignment γ ∈ 〈vars∃(Ψ)〉, the following holds:

γ falsifies C ⇒ γ ∪ h(γ) falsifies ψ .

Proof. We prove the theorem by induction on i ∈ {0, . . . , n}. Let Ψ be the
arbitrary DQBF Ψ := ∃x1 · · · ∃xn∀u1(Hu1

) · · · ∀um(Hum
) · ψ.

Base case i = 0. Let (C∃, hC∀) ∈ DP(Ψ , 0). By definition, hC∀(γ) falsifies C∀ for
each γ, and the lemma statement follows immediately.

Inductive step i ≥ 1. Let (C, h) ∈ DP(Ψ , i). Then, there are pairs (C0, h
0)

and (C1, h
1) in DP(Ψ , i− 1) such that C = C0 ∪· xi C1 and h = h1,0. Aiming

for contradiction, suppose that there exists some γ ∈ 〈vars∃(Ψ)〉 violating the
lemma statement; that is, γ falsifies C, but γ ∪ h1,0(γ) does not falsify ψ.

Now, let us assume for the moment that γ(xi) = 1. For each u, let us consider
the value of h1,0u (γ�Hu

). If xi ∈ Hu, then

h1,0u (γ�Hu
) =

(
h1u

xi
./ h0u

)
(γ�Hu

) = h1u(γ�Hu
) . (1)

Otherwise, if xi /∈ Hu, then h1,0u (γ�Hu
) =

(
h1u ◦ h0u

)
(γ�Hu

), from which we get

h1u(γ�Hu
)(u) 6= ∗ ⇒ h1,0u (γ�Hu

) = h1u(γ�Hu
) , (2)

5 We cannot use soundness of M-Res, because our strategy compatibility notion is
stronger.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 9

by definition of h1u ◦ h0u.
From (1) and (2), we see that h1,0(γ) extends h1(γ). Together with the fact

that γ ∪ h1,0(γ) does not falsify ψ, we deduce that γ ∪ h1(γ) does not falsify ψ.
This contradicts the inductive hypothesis, which asserts the lemma statement
for (C1, h

1) ∈ DP(Ψ , i− 1) and the assignment γ, which falsifies C1 ⊆ C ∪ {xi}.
The alternative case γ(xi) = 0 follows the same lines, where the roles of C1,

h1 and h1u are played instead by C0, h0 and h0u. One shows that γ ∪ h0(γ) does
not falsify ψ, and a contradiction with the inductive hypothesis ensues.

The correctness of DP-resolution follows from Lemma 2.

Theorem 1. Given a DQBF Ψ, if DP(Ψ) is non-empty, then Ψ is false.

Proof. Suppose that DP(Ψ) is non-empty for some DQBF Ψ . Then there exists
at least one pair (�, h) ∈ DP(Ψ). Since every assignment falsifies �, h is a
countermodel for Ψ , by Lemma 2. Therefore Ψ is false.

Completeness. To demonstrate completeness, we must show that DP(Ψ) is
non-empty whenever Ψ is false. A false DQBF must have at least one counter-
model, h say. We show that h is ‘represented’ at each level of the DP construction;
that is, for each 0 ≤ i ≤ n we can find a subset of DP(Ψ , i) whose strategies
collectively describe h. Consequently the final set DP(Ψ) must be non-empty.

Lemma 3. Let Ψ := ∃x1 · · · ∃xn∀u1(Hu1
) · · · ∀um(Hum

)·ψ, and let h be a coun-
termodel for Ψ. For each i ∈ {0, . . . , n} and each ε in 〈{xi+1, . . . , xn}〉, there
exists some pair (C, g) ∈ DP(Ψ , i) such that (a) ε falsifies C, and (b) g(γ) ⊆ h(γ)
for every ε ⊆ γ ∈ 〈vars∃(Ψ)〉.

Proof. Base case i = 0. Let ε ∈ 〈{x1, . . . , xn}〉 = 〈vars∃(Ψ)〉. Since ε is a full
assignment, there is only one extension γ = ε. By definition of countermodel,
γ ∪ h(γ) falsifies some C ∈ ψ. By definition of DP(Ψ , 0), there exists a clause-
strategy pair (C∃, gC∀) ∈ DP(Ψ , 0), where γ falsifies C∃ and h(γ) extends gC∀(γ).

Inductive step i ≥ 1. Let ε ∈ 〈{xi+1, . . . , xn}〉 be an assignment with extensions
ε0 = ε ∪ {xi} and ε1 = ε ∪ {xi}. By the inductive hypothesis, there exists a
pair (C0, g

0) ∈ DP(Ψ , i− 1) such that ε0 falsifies C0 and h(γ0) extends g0(γ0)
for every extension γ0 ⊇ ε0, and similarly (C1, g

1) ∈ DP(Ψ , i− 1) for ε1. If
(C0, g

0) = (C1, g
1), we have xi 6∈ vars(C0), so (C0, g

0) ∈ DP(Ψ , i), and it is the
witness for ε.

Otherwise, we claim that the pairs (C0, g
0) and (C1, g

1) are resolvable. Firstly,
xi 6∈ C0 because C0 is falsified by ε0 and xi 6∈ C1 because C1 is falsified by ε1;
hence the existential parts have an w-resolvent, and this resolvent cannot be a
tautology because it is falsified by ε. Secondly, we need to show that the strate-
gies g0u and g1u for variables u that do not depend on xi are consistent. Consider
u ∈ vars∀(Ψ) with xi 6∈ Hu, and an assignment γ ∈ 〈vars∃(Ψ)〉. We will show
that g0u(γ�Hu

) ' g1u(γ�Hu
). For j ∈ {0, 1}:

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

10 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

• let γj be γ with values of the variables xi, . . . , xn overwritten to match εj .
Since xi 6∈ Hu, we have γ0�Hu

= γ1�Hu
.

• Because gju only depends on x1, . . . , xi−1 (because we have so far only re-
solved on those variables), we have gju(γj�Hu

) = gju(γ�Hu
).

• Because εj ⊆ γj , by the inductive hypothesis, gju(γj�Hu
)) ⊆ hu(γj�Hu

).

Because γ0�Hu
= γ1�Hu

, we have hu(γ0�Hu
) = hu(γ1�Hu

), and by Lemma 1
g0u(γ0�Hu

) ' g1u(γ1�Hu
). Put together, we have

g0u(γ�Hu
) = g0u(γ0�Hu

) ' g1u(γ1�Hu
) = g1u(γ�Hu

).

Thus, g0u ' g1u.
We claim that the resolvent (C1 ∪· xi

C0, g
1,0) of (C0, g

0) and (C1, g
1) is the

witness for ε we are looking for. Clearly, ε falsifies C1∪· xi
C0. To verify the second

condition, consider an extension γ ⊇ ε, and consider γ0 and γ1 with the values
of xi overwritten to 0 and 1, respectively.

Consider u ∈ vars∀(Ψ) with xi ∈ Hu. Without loss of generality assume
γ = γ0 ⊇ ε0. Then, by definition of g1,0, we have g1,0u (γ�Hu

) = g0u(γ�Hu
), and by

the inductive hypothesis g0u(γ�Hu
) ⊆ hu(γ�Hu

), as required.
On the other hand, consider u ∈ vars∀(Ψ) with xi 6∈ Hu, and observe that

γ0�Hu
= γ1�Hu

= γ�Hu
. Then, by definition of g1,0, we have

g1,0u (γ�Hu
) = g0u ◦ g1u(γ�Hu

) = g0u(γ�Hu
) ∪ g1u(γ�Hu

) = g0u(γ0�Hu
) ∪ g1u(γ1�Hu

).

Because ε0 ⊆ γ0, we have g0u(γ0�Hu
) ⊆ hu(γ0�Hu

) = hu(γ�Hu
), and similarly

g1u(γ1�Hu
) ⊆ hu(γ�Hu

). Thus g0u(γ�Hu
) ∪ g1u(γ�Hu

) ⊆ hu(γ�Hu
) by Lemma 1.

Theorem 2. Given a DQBF Ψ, if Ψ is false, then DP(Ψ) is non-empty.

Theorem 2 follows directly from Lemma 3 for i = n since DP(Ψ) = DP(Ψ , n).
We will prove a slightly stronger version, which gives a finer lower bound on the
size of DP(Ψ) based on the number of minimal countermodels.

Definition 2. Let g, h be two strategies for a DQBF Ψ. We say that g extends
h, denoted by h ⊆ g, if for every total assignment γ ∈ 〈vars∃(Ψ)〉, h(γ) ⊆ g(γ).
A countermodel g is minimal, if for every countermodel h with h ⊆ g, g = h.
We denote the set of minimal countermodels of Ψ by µ(Ψ).

Since the existential part of every pair in DP(Ψ) is the empty clause, we can
afford to abuse our notation and treat DP(Ψ) as a set of strategies. This allows
us to state the following theorem.

Theorem 3. For a DQBF Ψ, µ(Ψ) ⊆ DP(Ψ).

Proof. By Lemma 3, every minimal countermodel g extends some strategy h in
DP(Ψ). By Lemma 2, h is a countermodel, and by minimality of g, h = g.

Theorem 2 now follows from Theorem 3 as any false DQBF must have a
minimal countermodel.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 11

Example 1. Let us illustrate a run of Algorithm 1 on the following DQBF Ψ :

∃x1 ∃x2 ∀u1(x1) ∀u2(x2) (u1 ∨ x2) ∧ (u1 ∨ x2) ∧ (u2 ∨ x1) ∧ (u2 ∨ x1)

Algorithm 1 first constructs the set DP(Ψ , 0), which is

{
(x2, {u1 = 1, u2 = ∗}), (x2, {u1 = 0, u2 = ∗}),
(x1, {u1 = ∗, u2 = 1}), (x1, {u1 = ∗, u2 = 0})

}
.

We begin by eliminating x1 (we could just as well start with x2). Resolving
the two clauses that contain literals on x1 is impossible due to strategy mismatch
on u2, which is independent of x1. Moving on to w-resolution, resolving (on
x1) the only two clauses that contain x2 produces a tautology and so can be
safely ignored. This leaves us with four w-resolution steps to take: clause pairs
(1, 3); (1, 4); (2, 3); (2; 4). Consequently, the set DP(Ψ , 1) looks as follows:

{
from DP(Ψ ,0)︷ ︸︸ ︷

(x2, {u1 = 1}), (x2, {u1 = 0}),
(x2, {u1 = 1

x1
./ ∗, u2 = 1}), (x2, {u1 = 0

x1
./ ∗, u2 = 1}),

(x2, {u1 = ∗ x1
./ 1, u2 = 0}), (x2, {u1 = ∗ x1

./ 0, u2 = 0})
}
.

In the next iteration we eliminate x2. This time no weakening is necessary as
all clauses contain a literal on x2. Examining all pairs we find out that strategy
mismatch on u1 prevents resolving either of the original pairs with any of the
new pairs, and that among the new pairs we can resolve only the first with the
fourth and the second with the third. That finally gives us DP(Ψ , 2) = DP(Ψ):

(�, {u1 = 1
x1
./ 0, u2 = 0

x2
./ 1}), (�, {u1 = 0

x1
./ 1, u2 = 1

x2
./ 0}).

The strategy in the first pair can also be succinctly written as u1 = x1, u2 = x2,
and the one in the second pair is u1 = x1, u2 = x2. It can easily be verified that
both of them are indeed countermodels, in fact minimal ones. Moreover, since
these strategies cannot be extended (they already assign a definitive value to
all variables in all cases), and every countermodel must extend a strategy from
some final pair, Ψ has no further countermodels. ut

A natural question is why and how much weakening do we need to make
Algorithm 1 work. The fewer clauses to resolve, the better the performance of
the algorithm, and while Algorithm 1 works as presented thanks to Theorems 1
and 2, it would be ideal if we could limit ourselves to resolving only clauses that
contain the pivot, like in the propositional case. Example 1 shows that does not
work—without weakening, resolving on both x1 and x2 would be impossible due
to strategy mismatch, and hence the algorithm would finish with the empty set,
wrongly concluding that Ψ is true. Example 2 goes a step further—it shows
that already restricting the algorithm to resolving only pairs where at least one
premise contains the pivot kills completeness.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

12 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

Example 2. Consider the following DQBF Ψ :

∃x1 ∃x2 ∀u1(x1) ∀u2(x2) (x2 ∨ u1 ∨ u2) ∧ (x2 ∨ u1 ∨ u2) ∧
(x1 ∨ x2 ∨ u1 ∨ u2) ∧ (x1 ∨ x2 ∨ u1 ∨ u2).

It is readily verified that Ψ is false, with the unique countermodel u1 = x1
and u2 = x2.

Imagine now that Algorithm 1 was modified to resolve only those pairs of
clauses where the pivot is present in at least one clause. We will show that this
variant would report the formula to be true. We start with DP(Ψ , 0) as usual:

{
(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 1}),
(x1, x2, {u1 = 1, u2 = 0}), (x1, x2, {u1 = 0, u2 = 0})

}
.

Assume we first resolve on x1. We can resolve the third and the fourth clause,
the pivot is present in both premises. Tautologies on x2 prevent all other reso-
lution steps except with the first two clauses. But x1 does not occur in either of
those clauses, so that resolution is forbidden. Thus, DP(Ψ , 1) is

{
(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 0}), (x2, {u1 = 1

x1
./ 0, u2 = 0})

}
.

The u1-strategies are now pairwise incompatible, and hence resolution on x2
is impossible. Since all clauses contain a literal on x2, they are all deleted, and
the algorithm finishes with the empty set DP(Ψ), wrongly concluding that Ψ is
true.

Had we resolved the first two clauses on x1 as required, DP(Ψ , 1) would have
instead been
{

(x2, {u1 = 0, u2 = 1}), (x2, {u1 = 1, u2 = 0}), (x2, {u1 = 1
x1
./ 0, u2 = 0}),

(x2, {u1 = 0
x1
./ 1, u2 = 1}), (x2, {u1 = 1

x1
./ 0, u2 = 1})

}
,

and a further resolution step is possible, after which we arrive at the correct

DP(Ψ) = {(�, {u1 = 1
x1
./ 0, u2 = 1

x2
./ 0}), containing the unique countermodel.

Notice how we have to weaken each clause that does not contain x1 in both
possible ways, and take both resolvents—only one of them ends up being useful
in the next iteration, but we cannot know which one it will be upfront. ut

3.4 Representing Strategies

In this subsection we discuss some details for a potential implementation of Al-
gorithm 1. The most complicated component of the algorithm is the storage and
reasoning with strategy functions, which can in general become exponentially
large. Naturally, it is preferable to store strategies in such a way that consis-
tency checking, union, and if-then-else are as fast as possible. We will show that
ordered binary decision diagrams (OBDDs) with a fixed ordering, a well-studied
target language in knowledge compilation, are a suitable data structure for all
these tasks.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 13

Definition 3 ([11,23]). Let V be a countable set of propositional variables and
≤ a total order on V. An OBDD≤ on V is a finite rooted labeled directed acyclic
graph O whose each sink is labeled with either 0 or 1, whose non-sinks have out-
degree 2, are labeled with variables from V, and their outgoing edges are labeled
with the two literals of the vertex label, and such that the vertex labels along any
path are pairwise different and respect the order ≤.

The order ≤ we use for the OBDD is the same as the order in which we
eliminate variables in Algorithm 1, which can be arbitrary but fixed. However,
since our strategy functions are 3-valued, we cannot simply write them down as
an OBDD (which is 2-valued). Instead, we will rewrite each strategy gu into a
pair of Boolean strategy functions (g>u , g

⊥
u) defined as

g>u (γ) =

{
1 if gu(γ) = 1

0 otherwise
, g⊥u (γ) =

{
1 if gu(γ) = 0

0 otherwise
,

and we will represent g>u and g⊥u as OBDDs. We refer to the pair (g>u , g
⊥
u) as the

Boolean basis of gu. Clearly, any strategy uniquely defines its Boolean basis, and
for any Boolean basis it holds that g>u ∧ g⊥u is unsatisfiable. Conversely, from a
Boolean basis, we can easily reconstruct the original function.

Lemma 4. Let g1, g2 be two Boolean functions such that g1∧g2 is unsatisfiable.
Then, there is a unique 3-valued function g such that g1 = g> and g2 = g⊥.

Proof. g is defined to output 1 when g1 outputs 1, 0 when g2 outputs 1, and ∗
otherwise. This is well defined thanks to g1 ∧ g2 being unsatisfiable, and clearly
it is the only such g.

The following proposition, which is an easy consequence of the definition,
shows how to answer consistency queries with Boolean bases, as well as how to
perform union and if-then-else on them.

Proposition 1. Let gu, hu be strategy functions for a universal variable u of a
DQBF Ψ. Then

– gu ' hu ⇐⇒ both g>u ∧ h⊥u and g⊥u ∧ h>u are unsatisfiable;
– (gu ◦ hu)> = g>u ∨ h>u ; (gu ◦ hu)⊥ = g⊥u ∨ h⊥u ;

– (gu
x
./ hu)> = g>u

x
./ h>u ; (gu

x
./ hu)⊥ = g⊥u

x
./ h⊥u ;

Proposition 1 requires satisfiability checking (also known as consistency check-
ing), taking the conjunction and the disjunction of two functions (also known
as bounded conjunction and disjunction), and the if-then-else. OBDDs support
consistency checking and bounded conjunction and disjunction in polynomial
time [11]. Since the variables on which we perform if-then-else come in a fixed

order, it is clear we can compute g
x
./ h simply by creating a new x-labeled vertex

pointing to g and h. The constant functions in DP(Ψ , 0) can be represented with
1-node OBDDs, and thus we can perform all updates and all consistency checks
in polynomial time.6 At the end, the algorithm will produce the Boolean basis
of a countermodel represented as a pair of OBDDs.

6 In the size of the functions, which may, inevitably, become exponential.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

14 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

4 NEXP-completeness of CNF H-Form DQBF

For this section we recall an alternative syntactic form of DQBF: A DQBF in
S-form is an expression of the form ∀u1 · · · ∀um∃x1(Sx1

) · · · ∃xn(Sxn
) · ψ, where

ψ is a propositional formula. The roles of universal and existential variables are
swapped; we say that an S-form DQBF is true if there is a model, i.e. a set
of functions for the existential variables with the right universal dependencies
whose substitution in the matrix results in a propositional tautology. It is known
that evaluating S-form DQBF is NEXP-complete, even if the matrix is restricted
to a CNF [1,24].

It is easy to see that evaluating H-form DQBF, like evaluating S-form DQBF,
is in NEXP. Additionally, any S-form DQBF can be translated, via negation, into
an H-form DQBF, which shows that evaluating H-form DQBF with a DNF ma-
trix is NEXP-complete. If we want the resulting matrix to be a CNF, we must
start from an S-form DQBF in DNF. We therefore give a linear-time reduction
from S-form DQBF in CNF, which is known to be NEXP-complete, into S-form
DQBF in DNF, thereby establishing NEXP-hardness of the latter, and by exten-
sion of H-form DQBF in CNF. The reduction is in fact a direct generalization of
the Tseitin translation known from propositional logic and QBF [28]—we add
universal Tseitin variables and make no existential variable depend on them.

We say that two DQBFs Ψ and Ψ ′ are logically equivalent if they have the
same set of models.

Theorem 4. There is a linear-time algorithm that takes an input S-form DQBF
with a CNF matrix and outputs a logically equivalent S-form DQBF with a DNF
matrix.

Proof. Let Ψ = ∀u1 · · · ∀um∃x1(Sx1
) · · · ∃xn(Sxn

) ·ψ be an S-form DQBF where
the matrix ψ = C1 ∧ · · · ∧ Cr is a CNF. We define DNF(Ψ) as

∀t1 · · · ∀tr∀u1 · · · ∀um∃x1(Sx1
) · · · ∃xn(Sxn

) · DNF(ψ) ,

where DNF(ψ) is the usual propositional Tseitin conversion into DNF applied to
the matrix ψ, and whose auxiliary variables are T := {t1, . . . , tr}, i.e.

DNF(ψ) := DNF(C1) ∨ · · · ∨ DNF(Cr) ∨ (t1 ∧ · · · ∧ tr) ,

where DNF(Ci) := Ti
∨
a∈Ci

Ti,a , Ti,a := (ti ∧ a), and Ti := (ti
∧
a∈Ci

a). Note
that this translation does indeed generalise QBF Tseitin translation.

Clearly, DNF(Ψ) can be computed in linear time. We now show that Ψ and
DNF(Ψ) are logically equivalent. Since no existential variable depends on any
T -variable, the dependency structure of both formulas is the same.

Let f model Ψ , and let α ∈ 〈vars∀(DNF(Ψ))〉. If α(t1) = · · · = α(tr) = 1, then
the top-level term t1∧· · ·∧ tr is satisfied. Otherwise, let i be such that α(ti) = 0.
Because f is a model for Ψ , there is a literal a ∈ Ci for which the following
holds: α�vars∀(Ψ) ∪ f(α�vars∀(Ψ))(a) = 1. Hence, the term Ti,a is satisfied. That
means f is a model for DNF(Ψ) as well.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 15

Conversely, let f be a model for DNF(Ψ). For an assignment α ∈ 〈vars∀(Ψ)〉,
let Zα := {i : Ci[α ∪ f(α)] = 0} (we can write f(α) because no function in
f depends on any variable in T , and so α contains full information for the
application of f). We show that Zα = ∅ for every α ∈ 〈vars∀(Ψ)〉, which means
f is a model for Ψ . Let α ∈ 〈vars∀(Ψ)〉. Consider the β ∈ 〈T 〉 defined by
β(ti) = 0 ⇐⇒ i ∈ Zα. It is easy to see that, whether i ∈ Zα or not, α ∪ β ∪
f(α ∪ β) falsifies every term Ti and Ti,a, a ∈ Ci. But f is a model for DNF(Ψ),
so α ∪ β ∪ f(α ∪ β) must satisfy some term—we conclude that it satisfies the
top-level term t1 ∧ · · · ∧ tr, and hence Zα = ∅.

Corollary 1. Evaluating S-form DQBF in DNF and H-form DQBF in CNF is
NEXP-complete.

Note that the proof of Theorem 4 goes through without modification even if
we omit the terms Ti. Indeed, such a version would be a generalization of the
Plaisted-Greenbaum translation for propositional logic and QBF [21].

The computational complexity of H-form DQBF manifests in an interesting
way. Algorithm 1 proceeds in essentially the same way as QBF (and proposi-
tional) DP-resolution, eliminating variables one by one. In the QBF case, this
process runs in at most single-exponential time, since there is only a single-
exponential number of different clauses. In DQBF however, that would vio-
late the hypothesis that EXP 6= NEXP, and indeed, our algorithm can in gen-
eral take double-exponential time and space. This is because our objects are
clause-strategy pairs, and the number of different strategies is in general double-
exponential. Every variable elimination step can asymptotically square the num-
ber of objects in the database, and this repeated squaring, unchecked by a bound
on the total number of available objects, results in a double-exponential blow-
up. Thus, in a sense, DQBF is ‘one of the hardest’ problems that can still be
tackled with a DP-resolution-style algorithm—repeated squaring unfolds into its
worst case here and, under standard complexity assumptions, cannot work for
super-double-exponential problems anymore.

5 Conclusion

We presented a new decision procedure for DQBF in the style of Davis-Putnam
resolution [12]. Based on the M-Res proof system [4], it constructs partial Her-
brand functions along with derived clauses. The algorithm can thus be said to
reason directly at the level of strategies. This is in contrast with known decision
procedures for DQBF, which rely on quantifier expansion to reduce the problem
to SAT/QBF [7,17], or adapt search-based algorithms for QBF by imposing ad-
ditional constraints that enforce consistency with DQBF semantics [14, 15, 27].
Our decision procedure requires input DQBF in H-Form, as opposed to the more
commonly used S-Form [2]. We presented a linear-time algorithm that converts
S-Form DQBF into H-Form DQBF, thereby showing that this requirement can
be easily met. As a corollary, we establish NEXP-completeness of evaluating
DQBF in H-Form.

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

16 Joshua Blinkhorn, Tomáš Peitl, and Friedrich Slivovsky

References

1. Azhar, S., Peterson, G., Reif, J.: Lower bounds for multiplayer non-cooperative
games of incomplete information. Journal of Computers and Mathematics with
Applications 41, 957 – 992 (2001)

2. Balabanov, V., Chiang, H.K., Jiang, J.R.: Henkin quantifiers and Boolean for-
mulae: A certification perspective of DQBF. Theoretical Computer Science 523,
86–100 (2014)

3. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Comput. Surv. 51(3), 50:1–50:39 (2018)

4. Beyersdorff, O., Blinkhorn, J., Mahajan, M.: Building strategies into QBF proofs.
Journal of Automated Reasoning (2020), in press.

5. Biere, A.: Resolve and expand. In: SAT 2004 - The Seventh International Con-
ference on Theory and Applications of Satisfiability Testing, Online Proceedings
(2004)

6. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, R. (ed.) Tools and Algorithms for Construction and Analysis
of Systems, 5th International Conference, TACAS ’99, Proceedings. Lecture Notes
in Computer Science, vol. 1579, pp. 193–207. Springer (1999)

7. Bubeck, U., Kleine Büning, H.: Dependency quantified horn formulas: Models and
complexity. In: Biere, A., Gomes, C.P. (eds.) International Conference on Theory
and Practice of Satisfiability Testing (SAT). Lecture Notes in Computer Science,
vol. 4121, pp. 198–211. Springer (2006)

8. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution Trees with Lemmas: Res-
olution Refinements that Characterize DLL Algorithms with Clause Learn-
ing. Logical Methods in Computer Science Volume 4, Issue 4 (Dec 2008).
https://doi.org/10.2168/LMCS-4(4:13)2008, https://lmcs.episciences.org/860

9. Buss, S.R., Kolodziejczyk, L.A.: Small Stone in Pool. Logical Methods in Com-
puter Science Volume 10, Issue 2 (Jun 2014). https://doi.org/10.2168/LMCS-
10(2:16)2014, https://lmcs.episciences.org/852

10. Cashmore, M., Fox, M., Long, D., Magazzeni, D.: A compilation of the full PDDL+
language into SMT. In: Coles, A.J., Coles, A., Edelkamp, S., Magazzeni, D., Sanner,
S. (eds.) Proceedings of the Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016. pp. 79–87. AAAI Press (2016)

11. Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial
Intelligence Research 17, 229–264 (electronic) (2002)

12. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

13. Faymonville, P., Finkbeiner, B., Rabe, M.N., Tentrup, L.: Encodings of bounded
synthesis. In: Legay and Margaria [19], pp. 354–370

14. Fröhlich, A., Kovásznai, G., Biere, A.: A DPLL algorithm for solving DQBF
(2012), https://arise.or.at/pubpdf/Algorithm for Solving DQBF .pdf, presented
at Workshop on Pragmatics of SAT (POS)

15. Fröhlich, A., Kovásznai, G., Biere, A., Veith, H.: iDQ: Instantiation-based DQBF
solving. In: Berre, D.L. (ed.) Workshop on Pragmatics of SAT (POS). EPiC Series
in Computing, vol. 27, pp. 103–116. EasyChair (2014)

16. Gitina, K., Reimer, S., Sauer, M., Wimmer, R., Scholl, C., Becker, B.: Equivalence
checking of partial designs using dependency quantified boolean formulae. In: IEEE
31st International Conference on Computer Design, ICCD 2013,. pp. 396–403.
IEEE Computer Society (2013)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

Davis and Putnam Meet Henkin: Solving DQBF with Resolution 17

17. Gitina, K., Wimmer, R., Reimer, S., Sauer, M., Scholl, C., Becker, B.: Solving
DQBF through quantifier elimination. In: Nebel, W., Atienza, D. (eds.) Design,
Automation & Test in Europe Conference (DATE). pp. 1617–1622. ACM (2015)

18. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Information and Computation 117(1), 12–18 (1995)

19. Legay, A., Margaria, T. (eds.): International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), Lecture Notes in Com-
puter Science, vol. 10205. Springer (2017)

20. Meel, K.S., Vardi, M.Y., Chakraborty, S., Fremont, D.J., Seshia, S.A., Fried, D.,
Ivrii, A., Malik, S.: Constrained sampling and counting: Universal hashing meets
SAT solving. In: Darwiche, A. (ed.) Beyond NP. AAAI Workshops, vol. WS-16-05.
AAAI Press (2016)

21. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form
translation. Journal of Symbolic Computation 2(3), 293 – 304 (1986).
https://doi.org/10.1016/S0747-7171(86)80028-1

22. Rabe, M.N., Seshia, S.A.: Incremental determinization. In: Creignou, N., Berre,
D.L. (eds.) International Conference on Theory and Practice of Satisfiability Test-
ing (SAT). Lecture Notes in Computer Science, vol. 9710, pp. 375–392. Springer
(2016)

23. Randal E. Bryant: Graph-based algorithms for boolean function ma-
nipulation. IEEE Transactions on Computers C-35(8), 677–691 (1986).
https://doi.org/10.1109/TC.1986.1676819

24. Scholl, C., Jiang, J.R., Wimmer, R., Ge-Ernst, A.: A PSPACE subclass of depen-
dency quantified Boolean formulas and its effective solving. In: The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019. pp. 1584–1591. AAAI
Press (2019)

25. Solar-Lezama, A., Tancau, L., Bod́ık, R., Seshia, S.A., Saraswat, V.A.: Combinato-
rial sketching for finite programs. In: Shen, J.P., Martonosi, M. (eds.) Proceedings
of the 12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006. pp. 404–415. ACM (2006)

26. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: Prelim-
inary report. In: Aho, A.V., Borodin, A., Constable, R.L., Floyd, R.W., Harrison,
M.A., Karp, R.M., Strong, H.R. (eds.) ACM Symposium on Theory of Computing
(STOC). pp. 1–9. ACM (1973)

27. Tentrup, L., Rabe, M.N.: Clausal abstraction for DQBF. In: Janota, M., Lynce,
I. (eds.) International Conference on Theory and Practice of Satisfiability Test-
ing (SAT). Lecture Notes in Computer Science, vol. 11628, pp. 388–405. Springer
(2019)

28. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Studies in
Constructive Mathematics and Mathematical Logic, Part 2 pp. 115–125 (1968)

29. Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their ap-
plications in model checking. Proceedings of the IEEE 103(11), 2021–2035 (2015)

Te
ch
ni
ca
lR

ep
or
tA

C-
TR

-2
1-
01

2

