Algorithms and Complexity Group | Institute of Logic and Computation | TU Wien, Vienna, Austria

ac I I I [ALGORITHMS AND
COMPLEXITY GROUP

Technical Report AC-TR-2021-009
May 2021

Solving the Longest
Common Subsequence
Problem Concerning
Non-uniform Distributions
of Letters in Input Strings

Bojan Nikolic, Aleksandar Kartelj, Mako
Djukanovic, Milana Grbic, Christian Blum,
and Guenther Raidl

Submitted to the journal Applied Soft Computing

www.ac.tuwien.ac.at/tr

Technical Report AC-TR-2021-009

Article

Solving the Longest Common Subsequence Problem
Concerning Non-uniform Distributions of Letters in Input

Strings

Bojan Nikolic 4, Aleksandar Kartelj 4%, Marko Djukanovic *¥*, Milana Grbic ¥, Christian Blum 3%

Giinther Raidl #

Citation: Nikolic, B.; Kartelj, A.;
Djukanovic, M.; Grbic, M; Blum, C.;
Raidl, G. Solving the Longest
Common Subsequence Problem on
Non-uniform Distributions.
Mathematics 2021, 1, 0.

https:/ /doi.org/

Received:
Accepted:
Published:

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional
claims in published maps and insti-

tutional affiliations.

Copyright: (© 2021 by the authors.
Submitted to Mathematics for possi-
ble open access publication under
the terms and conditions of the
Creative Commons Attribution (CC
BY) license
mons.org/licenses/by/ 4.0/).

(https:/ /creativecom-

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

and

Faculty of Natural Science and Mathematics: University of Banja Luka, Bosnia and Herzegovina;
{bojan.nikolic | milana.grbic}@pmf.unibl.org

Institute of Logic and Computation, TU Wien, Austria; {djukanovic | raidl}@ac.tuwien.ac.at

3 Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain;

christian. blum@iiia.csic.es

Faculty of Mathematics, University of Belgrade, Serbia; aleksandar.kartelj@gmail.com
Correspondence: djukanovic@ac.tuwien.ac.at; Tel.: +387-65-699-683

1t These authors contributed equally to this work.

Abstract: The longest common subsequence (LCS) problem is a prominent A/P-hard optimization
problem where, given an arbitrary set of input string, the aim is to find a longest subsequence
which is common to all input strings. This problem has a variety of applications in bioinformatics,
molecular biology, file plagiarism checking, among others. All previous approaches from the
literature are dedicated to solving LCS instances sampled from uniform or near-to-uniform
probability distributions of letters in the input strings. In this paper we introduce an approach
that is able to effectively deal with more general cases, where the occurrance of letters in the
input strings follows a non-uniform distribution such as, for example, a multinomial distribution.
Texts in any spoken language, for example, are well approximated by multinomial distributions.
The proposed approach makes use of beam search, guided by a novel heuristic function named
GMPSUM. This heuristic synthesizes two complementary scores in form of a convex combination:
the first one performs well in the uniform case and the second one works well in the non-uniform
case. Furthermore, we introduce a time-restricted beam search algorithm that is able to adapt
the beam size during the algorithm execution in order to achieve a desired target runtime. Apart
from benchmark sets from the related literature, in which the distribution of letters is close to
uniform, we introduce three new benchmark sets that differ in terms of their statistical properties.
One of these benchmark sets concerns a case-study in the context of text analysis. We provide
a comprehensive empirical evaluation in two distinctive settings: (1) short-time execution with
fixed beam size in order to evaluate the guidance abilities of the compared search heuristics, and
(2) long-time executions with fixed target duration times in order to obtain high-quality solutions.
In both settings, the newly proposed approach performs comparably to state-of-the-art techniques
in the context of close-to-random instances, and outperforms state-of-the-art approaches for
non-uniform instances.

Keywords: Longest common subsequence problem; multi-nomial distribution; probability-based
search guidance

1. Introduction

In the field of bioinformatics, strings are commonly used to model sequences such
as DNA, RNA, and protein molecules or even time series. Strings represent fundamental
data structures in many programming languages. Formally, a string s is a finite sequence
of |s| letters over (usually) a finite alphabet X.. A subsequence of a string s is any sequence
obtained by removing arbitrary letters from s. Similarities among several strings can

Version May 21, 2021 submitted to Mathematics

https://www.mdpi.com/journal /mathematics

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 2 0f 24

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

be determined by considering common subsequences, which may serve for deriving
relationships and possibly to destil different aspects of the of input strings, such as
mutations. More specifically, one such measure of similarity can be defined as follows.
Given a set of m input strings S = {s1,...,5u}, the longest common subsequence (LCS)
problem [1] aims at finding a subsequence of maximum length that is common for all
strings from the set of input strings S. The length of the LCS for two or more input
strings is a widely used measure in computational biology [2], file plagiarism check,
data compression [3,4], text editing [5], detecting road itersections from GPS traces [6],
file comparison (e.g., in the Unix command diff) [7] and revision control systems such
as GIT. For a fixed m, polynomial algorithms based on dynamic programming (DP)
are known [8] in the literature. These dynamic programming approaches run in O(n™)
time, where n denotes the length of the longest input string. Unfortunately, these
approaches become quickly impractical when m and n get large. For an arbitrary
large number of input strings, the LCS problem is N'P-hard [1]. In practice, heuristic
techniques are typically used for larger m and n. Constructive heuristics such as the
Expansion algorithm and the Best-Next heuristic [9,10] appeared first in the literature to
tackle the LCS problem. Significantly better solutions are obtained by more advanced
metaheuristic approaches. Most of these are based on Beam Search (BS), see e.g., [11-
15]. These approaches differ in various important aspects, which include the heuristic
guidance, the branching scheme, and the filtering mechanisms.

Djukanovic et al. (2019) [16] proposed a generalized BS framework for the LCS
problem with the purpose of unifying all previous BS-based approaches from the
literature. By respective parametrization, each of the previously introduced BS-based
approaches from the literature could be expressed, which also enabled a more direct
comparison of all of them. Moreover, a heuristic guidance that approximates the expected
length of an LCS on uniform random strings was proposed. This way, a new state-of-the-
art BS variant that leads on most of the existing random and quasi-random benchmark
instances from the literature was obtained.

Concerning exact approaches for the LCS problem, an integer linear programming
model was considered in [17]. It turned out not to be competitive enough as it is was not
applicable to most of the commonly used benchmark instances from the literature. This
was primarily due to the model size — too many binary variables and a huge number of
constraints are needed even for small-sized problem instances. Dynamic programming
approaches also run out of memory already for small-to-middle sized benchmark in-
stances or typically return only weak solutions, if any. Chen et al. (2016) [18] proposed a
parallel FAST_LCS search algorithm that mightingated some of the runtime weaknesses.
Wang et al. (2011) in [14] proposed another parallel algorithm called QUICK-DP, which
is based on the dominant point approach and employs a quick divide-and-conquer tech-
nique to compute the dominant points. Li et al. (2016) in [19] suggested the TOP_MLCS
algorithm, which is based on a directed acyclic layered-graph model (called irredundant
common subsequence graph) and parallel topological sorting strategies used to filter
out paths representing suboptimal solutions. Another parallel and space efficient algo-
rithm based on a graph model, called the LEVELED-DAG, was introduced by Peng and
Wang [20]. Recently Djukanovic et al. proposed an A* search that is able to outperform
TOP_MLCS and previous exact approaches in terms of memory usage and the number
of instances solved to optimality. Nevertheless, the applicability of this exact A* search
is still limited to small-sized instances. In the same work, the A* search served as a basis
for a hybrid anytime algorithm, which can be stopped at almost any time and then be
expected to yield a reasonable heuristic solution. In this approach, classical A* search
iterations are intertwined with iterations of Anytime column search [21].

The methods so-far proposed in the literature were primarily tested on independent
random and quasi-random strings where the number or occurrences of letters in each
string is similar for each letter. In fact, we are aware of just one benchmark set with
different distributions (BB, see section 4), where the input strings are constructed in a

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 30f24

86

87

88

89

20

91

92

93

94

95

926

97

way so that they exhibit high similarity, but still the letters’ frequencies are similar. In
practical applications this assumption of uniform or close-to-uniform distribution of
letters does not need to hold. Some letters may occur substantially more frequently than
others. For example, if we are concerned of finding motifs in sentences of any spoken
language, each letter has its characteristic frequency [22]. Text in natural languages
can be modeled by a multinomial distribution over the letters. The required level of
model adaptation can vary depending on the distribution assumptions such as letter
dependence of a particular language. Also, letter frequencies in a language can differ
depending of text types (e.g., poetry, fiction, scientific documents, business documents).
For example, it is interesting that the letter ‘E’ is the most frequent letter in English
(12.702%) [22] and German (17.40%) [23], but only the second most common letter in
Russian [24]. Moreover, letter ‘N’ is very frequent in German (9.78%), but not so common
in English (6.749%) and Russian (6.8%).

Motivated by this considerations, we develop in the following a new BS-based algo-
rithm which is able to more effectively tackle instances with different string distributions.
The novel guidance heuristic applied at the core of this BS can be used as a credible and
simplified replacement of the so far leading approximate expected length calculation.
Additional advantages are that the novel heuristic is easier to implement than the ap-
proximate expected length calculation (which required a Taylor series expansion and
a divide-and-conquer approach in an efficient implementation) and that there are no
issues with numerical stability.

The main contributions of this article are as follows.

e We propose a novel search guidance for a BS which performs competitively on
the standard LCS benchmark sets known from literature and in some cases even
produces new state-of-the-art results.

e We introduce two new LCS benchmark sets based on multinomial distributions,
whose main property is that letters occur with different frequencies. The proposed
new BS variant excels on these instances in comparison to previous solution ap-
proaches.

e A new time-restricted BS version is described. It automatically adapts the beam
width over BS levels w.r.t. given time restrictions such that the overall running time
of BS approximately fits a desired target time limit. A tuning of the beam width to
achieve comparable running times among different algorithms is hereby avoided.

In the following we introducing some commonly used notation before giving an overview
on the remainder of this article.

1.1. Preliminaries

By S we always refer to the set of m input strings, i.e. S = {s1,...,5,}, m > 1. The
length of a string s is denoted by |s|, and its i-th letter, i € {1,...,|s|}, is referred to by
s[i]. Let n refers to the length of a longest string and #min to the length of a shortest
string in S. A continuous subsequence (substring) of string s that starts with the letter
at index i and ends with the letter at index j is denoted by s[i, j|; if i > j, this refers to
the empty string . The number of occurrences of a letter 4 € X in string s is denoted
by |s|s. For a subset of the alphabet A C %, the number of appearances of each letter
from A in s is denoted by |s| 4. For an m-dimensional integer vector 6 € N and the set
of strings S, we define the set of suffix-strings S [@] = {s1[61, 511}, ---,Sm[On, |sn|}, which
induce a respective LCS subproblem. For each letter a € %, the position of the first
occurrence of a in s;[6;, |s;|] is denoted by gi,a, i=1,...,m. Last but not least, if a string s
is a subsequence of a given string r, we write s < 7.

1.2. Overview

This article is organized as follow. Section 2 provides theoretical aspects concerning
the calculation of the probability that a given string is a subsequence of a random
string chosen from a multinomial distribution. Section 3 describes the BS framework

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 4 0f 24

168

for solving the LCS problem as well as the novel heuristic guidance. Moreover, the
time-restricted BS variant is also proposed. In Section 4, a comprehensive experimental
study and comparison is conducted. Section 5 extends the experiments by considering
instances derived from a textual corpus. Finally, Section 6 draws conclusions and outlines
interesting future work.

2. Theoretical Aspects of Different String Distributions

Most papers in literature are dedicated to the development and improvement of
methods for finding an LCS of instances on strings that come from a uniform distribution.
In our work, we propose new methods for the more general case where strings are
assumed to come from a multinomial distribution MN(py,...,py) of strings. More
precisely, for an alphabet © = {ay,...,a,}, 7 > 1, as sample space for the letter of the
strings, a multinomial distribution MN(py, ..., p;) is determined by specifying a (real)
number p; for each letter a; such that p; represents the probability of seeing letter a;
n

and E pi; = 1. Note that the uniform distribution is a special case of the multinomial
i=1

distribution MN (p1,...,py), withpy = ... = p, = l

Assuming that the selection of each letter in a string is independent, each string can
be considered a random vector composed of independent random variables, resulting
that its probability distribution is being completely determined by a given multinomial
distribution. By a random string in this paper, we refer to a string whose letters are
chosen randomly in accordance with the given multinomial distribution.

Let r be a given string. We now aim at determining the probability that a random
string s, chosen from the same multinomial distribution MN(py, ..., p;) as string 7, is a
subsequence of the string r. We denote this probability by P(s < r). In the next theorem,
we propose a new recurrence relation to calculate this probability.

Theorem 1. Let v be a given string and s be a random string chosen from the same multinomial
distribution. Then,

1, if|s| =0;
P L if [s| > |r|;
Ple=7) P(s[1] = r[1]) - P(s[2, [s]] =< r[2, |r]])+

P(s[1] #r[1]) - P(s < r[2,]r]]), otherwise.

)

Proof. Itis clear by the definition of a subsequence that the empty string is a subsequence
of every string and that a string cannot be a subsequence of a shorter one. Therefore, the
cases |s| = 0and |s| > || are trivial. In the remaining case (1 < |s| < |r]),

P(s <r)=P(s[1] =r[1]) - P(s[2,|s|]] < r[2,|r]]) + P(s[1] # r[1]) - P(s < r[2,|r]])
follows from the law of total probability. O

The probability P(s < r) in recurrence relation (1) is dependent not only on the
length of string r, but also on the letter distribution of this string. Therefore, it is hard to
come up with a closed-form expression for the general case of a multinomial distribution
MN(p1,...,py). One way to deal with this problem is to consider some special cases of
the multinomial distribution, for which closed-form expressions may be obtained.

2.1. Multinomial Distribution — Special Case 1: Uniform Distribution

The most frequently used form of the multinomial distribution considered in the
literature is the uniform distribution. Since in this case every letter has the same occur-
rence probability, probability P(s < r) in the recurrence relation (1) depends only on the

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 5o0f 24

lengths k = |s| and | = |r| and can be simpler written as P(k,). This case is covered by
Mousavi and Tabataba in [12], where the recurrence relation (1) is reduced as follows:

1, if k = 0;
P(k1) =10, ifk > I; @)
L.P(k—=1,1-1)+ L2 -P(k,1—1), otherwise.

Probabilities P(k,) can be calculated using dynamic programming as described by
Mousavi and Tabataba in [12].

2.2. Multinomial Distribution — Special Case 2: Single Letter Exception

Let one letter a; € X have occurrence probability p € (0,1), p # 1/7 and each
other letter a;, i € {1,...,1} \ {j} have occurrence probability (1 — p)/(n — 1). For this
multinomial distribution, recurrence relation (1) reduces to:

1, if |s| = 0;
P(s<r)=<0, if [s| > |r|; ()
q-P(s[2,|s]] <r2,]r]]) + (1 —q) - P(s < r[2,]r]]), otherwise.
where

r ifr[1] = a;
1= %, otherwise.

Note that, besides lengths |s| and |r|, (3) depends only on whether or not a letter in
the string r is equal to a;.

2.3. Multinomial Distribution — Special Case 3: Two Sets of Letters

We now further generalize the previous case. Let {¥1,%;} be a partitioning of the
alphabet 2, i.e., let X1, Xy C X be nonempty sets such that> = > UXp and X1 NXy = @.
Let us assume that every letter in X1 has the same occurrence probability and also, that
every letter in ¥, has the same occurrence probability. We define

P e {21, ifa; € Xq;

1-p e
=Tl ifa; € Ly,

where p € (0,1) is the probability mass assigned to the set X1. For this multinomial
distribution, recurrence relation (1) reduces to

1, if [s| = 0;
P(s<r)=<0, if[s| > |r]; (4
q-P(s[2,]s]] <r2,|r]]) + (1 —q)-P(s < r[2,]r]]), otherwise.

where

gi= ﬁ, if?’[l] € 21
' % if r[1] € .

This probability therefore depends on whether or not a letter in r belongs to the set
%1 or not.

2.4. The Case of Independent Random Strings

Another approach of calculating the probability that a string s is a subsequence of a
string r is based on the assumption that both s and r are random strings chosen from
the same multinomial distribution and are independent as a random vectors. Using this
setup, we established a recurrence relation for calculating probability P(s < r).

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 6 of 24

Theorem 2. Let r and s be random independent strings chosen from the same multinomial
distribution MN (p1, ..., py). Then

1, if|s| = 0;

if[s| > [rl;

P(s<r)= (5)

(S p7) - P(sl2,Isl] < 72, Ir[]) +
(1-X7,p%) - P(s<r[2]r]]), otherwise.

Proof. The first two cases are trivial, so it remains to show the last case. Using the law
of total probability, we obtain

P(s < r) = P(s[1] = r[1]) - P(s[2, Isl] < r[2,|rl]) + P(s[1] # r[1]) - (s < r{2,Ir]).

Probability P(s[1] = r[1]) can be calculated with another application of the law of total
probability, using the assumption that random strings s and r are mutually independent:

i~
—
¥2)
=
|
-
—
[
SN—
I
1=
e
—
~
=
I
2
SN—
e,
—
2
—
=
|
=,
=
=,
=
I
2
SN—

Il
—_

I
1=
T
—~
=
=
|
2
SN—
J
—
1%2)
=
Il
2
SN—
Il
M=
=
=N
O

I
—

Except for the obvious dependency on the multinomial distribution MN (py, ..., py),
probability P(s < r) is determined by the lengths of strings s and r, only. Therefore, as
in the case of the uniform distribution, we can abbreviate this probability with P(k, 1),
where k = |s| and | = |r|. This allows us to pre-compute a probability matrix for all
relevant values of k and / by means of dynamic programming.

3. Beam Search for Multinomially Distributed LCS Instances

Beam search (BS) is a well-known search heuristic widely applied to many problems
from various research fields, such as scheduling [25], speech recognition [26], machine
learning tasks [27], packing problems [28], etc. It is a reduced version of breadth-first-
search (BFS), where instead of expanding all not-yet-expanded nodes from the same
level, only up to a specific number > 0 of nodes appearing most promising are selected
and considered for expansions. In this way, BS keeps the search tree polynomial in size.
The selection of the up to § nodes for further expansion is made according to a problem-
specific heuristic guidance function /. The effectivity of the search thus substantially
depends on this function. More specifically, BS works as follows. First, an initial beam B
is set up with a root node r representing an initial state, in case of the LCS problem the
empty partial solution. At each major iteration, all nodes from beam B are expanded in
all possible ways by considering all feasible actions. The so obtained child nodes are kept
in the set of extensions Vext. Note that for some problems efficient filtering techniques
can be applied to discard nodes from Vey; that are dominated by other nodes, i.e., nodes
that cannot yield better solutions. It is controlled by an internal parameter k.. This
(possibly filtered) set of extensions is then sorted according to the nodes’ values obtained
from the guidance heuristic /1, and the top f nodes (or less if Vext is smaller) then form the
beam B of the next level. The whole process is repeated level-by-level until B becomes
empty. In general, to solve a combinatorial optimization problem, information about
the longest (or shortest) path from the root node to a feasible goal node is kept to finally
return a solution that maximizes or minimizes the problem’s objective function. The
pseudocode of such a general BS is given in Algorithm 1.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 7 of 24

Algorithm 1 Beam Search.

1: Input: A problem instance, heuristic 1, B > 0, kjer
2: Output: A heuristic solution

3: B« {7’}
4: while B # @ do
5 Voxt — @
6 forv € Bdo
7: if v is a goal node then
8 if node represents new best solution, store it
9 else
10: add not-yet-visited child nodes of v to Vext
11: end if
12: end for
13: if kgjter > 0 then
14: Vext < Filter(Vext, kfiter) // optionally filter dominated nodes
15: end if

16: B < SelectBetaBest(Vext, B, 1)
17: end while
18: return best found solution

3.1. State Graph for the LCS Problem

The state graph for the LCS problem that is used by all BS variants is already well
known in the literature, see for example [16,29]. It is defined as a directed acyclic graph
G = (V,A), where anode v = (07,1”) € V represents the set of partial solutions which

1. have the same length [%;
2. induce the same subproblem denoted by S[6?] w.r.t. the position vector 67.

We say that a partial solution s induces a subproblem S[67] iff s;[1,6? — 1] is the smallest
prefix of s; among all prefixes that has s as a subsequence.
An arca = (v1,v2) € A exists between two nodes v; # v, € V and carries label
l(a) € X, iff
1. [2="141;
2. the partial solution that induces v, is obtained by appending ¢(a) to the partial
solution inducing v;.

The root node r = ((1, 1), 0) of G refers to the original LCS problem on input string
set S and can be said to be induced by the empty partial solution .

For deriving the successor nodes of anode v € V, we first determine the subset >, C
2 of letter that feasibly extend the partial solutions represented by v. The candidates
for letter a € ¥, are therefore all letter a € X that appear at least once in each string in
the subproblem given by strings 5[67]. This set £, may be reduced by determining and
discarding dominated letters. We say that letter a € X, dominates letter b € L, iff

69, <69 Vie{l,...,m} (6)

Dominated letters can be safely omitted since they lead to suboptimal solutions. Let
ng C X, be the set of feasible and non-dominated letters. For each letter a € ng, graph
G contains a successor node v/ = (5”’,1” +1) of v, where 9;?” = §f’; +1,ie{l,...,m}
(remember that 9;”; denotes the position of the first appearance of letter a in string s;

from position é;”l onward). A node v that has no successor node, i.e., when 20 = @, is
called a non-extensible node, or goal node. Among all goal nodes v we are looking for
one representing a longest solution string, i.e., a goal node with largest [°. Note that any
path from the root node r to any node in v € V represents the feasible partial solution
obtained by collecting and concatenating the labels of the traversed arcs. Thus, it is not
necessary to store actual partial solutions s in the nodes. In the graph G, any path from

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 8 of 24

b C

C a b C

| |

c a C d d b a
P N\ \ v\

d
b b

~~

b ~d__b

)

d a C

<— T

(8,7,9,4)

=

(@wsom) (wsna) D) (wa

<« o —]

I
b b b
(tts.lio).s)) («mx»,s)) (w1019)
I
b
Figure 1. State graph for the LCS problem instance on strings {s; = bcaacbdba,s; =

cbccadcebbd, s3 = bbccabedbba} and alphabet ¥ = {a,b,c,d}). Light-gray nodes are non-
extensible goal nodes. The longest path in this state graph is shown in blue, leads from the
root to node ((1,10,11), 6) and corresponds to the solution s = bcacbb, having length six.

root r to a non-extensible node represents a common, non-extensible subsequence of
S. Any longest path from r to a goal node represents an optimal solution to problem
instance S. As an example for a full state graph of an instance, see Figure 1.

Still we have to explain the filtering of dominated nodes from the set Vey, ie.,
procedure Filter in Algorithm 1. We adopt the efficient restricted filtering proposed
in [13], which is parameterized by a filter size kg, > 0. The idea is to select only
the (up to) kgjjter best nodes from Vet and to check the dominance relation (6) for this
subset of nodes in combination with all other nodes in Vey. If the relation is positively
evaluated, the dominated node is removed from V. Note that parameter settings
kiiter = 0 and kgper = |Vext| represent the two extreme cases of no filtering and full
filtering, respectively. A filter size of 0 < kgjer < |Vext| may be meaningful as full
filtering may be to costly in terms of running time for larger beam widths.

3.2. Novel Heuristic Guidance

We now present a new heuristic for evaluating nodes in the BS in order to rank them
and to select the beam of the next level. This heuristic, called GMPSUM, in particular
aims at unbalanced instances and is a convex combination of the following two scores.

e The GM score is based on the geometric mean and geometric standard deviation of
the letters’ occurrences across all input strings of the respective subproblem. It is
calculated on a per letter basis aggregated into a single numeric value;

e The PSUM score is based on the previously introduced probability matrix P(k,!) for
the arbitrary unbalanced multinomial distribution case, see recurrence relation (5),
or in the special cases, any of recurrence relations (3)—(4) might be used instead.

More specifically, for a given node v, the GM score is calculated as

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 9 of 24

-

G(e) = (s = X :gg<(cia<(;[[é’v?>)> TR0

where
Ca(S[07]) = (s1[07s1l]a - - - 5m [0 [5ml]a)

is the vector indicating for each remaining string of the respective subproblem the
number of occurrences of letter a € X, while yig(-) and og(-) denote the geometric
mean and geometric standard deviation, respectively, which are calculated for ¥ =
(x1,...,xn) € R" by

oe(X) =e m

Function UB4 (v) in expression (7) is the known upper bound on the length of an LCS
for the subproblem represented by node v from [30] and calculated as

UB;(v) =) min Ca(S[6°));.

acy, i=1,....m

Overall, the GM score is thus a weighted average of the adjusted geometric means
(1g(-)/0g(-)) of the number of letter occurrences, and the weight of each letter is deter-
mined by normalizing the minimal number of the letter occurrences across all strings
with the sum of minimal number occurrences across all letters. The motivation behind
this calculation is three-fold:

1. Letters with higher average numbers of occurrences across the strings will increase
the chance of finding a longer common subsequence (composed of these letters).

2. Higher deviations around the mean naturally reduce this chance.

3. The minimal numbers of occurrences of a letter across all input strings is an upper
bound on the length of common subsequences that can be formed by this single
letter. Therefore, by normalizing it with the sum of all minimal letter occurrences,
an impact of each letter in the overall summation is quantified.

The GM score is relevant if its underlying sampling geometric mean and standard
deviation are based on a sample of sufficient size. In all our experiments, the minimal
number of input strings is therefore ten. Working on samples of smaller sizes would
make the GM score likely not that useful.

In addition to the GM score, we consider the PSUM score that is calculated by

Imax ('U) m .

PsuM(v) = PsumM(S[6°)) = Y TPk |si| — 67 +1) (8)
k=1 =1

where B
Imax(v) = min (|s;| — 67 +1).
i=1,....m

Unlike the GM score that considers mostly general aspects of an underlying prob-
ability distribution, PSUM better captures more specific relations among input strings.
It represents the sum of probabilities that a string of length k will be a common subse-
quence for all remaining input strings relevant for further extensions. Index k goes from
one to Imax (), i.e., the length of the shortest possible non-empty subsequence up to the
length of the longest possible one, which corresponds to the size of the shortest input
string residual. The motivation behind using a simple (non-weighted) summation across
all potential subsequence lengths is three-fold:

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 10 of 24

1. Itis not known in advance the exact length of the resulting subsequence. Note that
in the case of the HP heuristic proposed in [12], the authors heuristically determine
an appropriate value of k for each level in the BS.

2. The summation across all k provides insight on the overall potential of node v
— approximating the integral on the respective continuous function. Note that it
is not required for this measure to have an interpretation in absolute terms since
throughout the BS it is used strictly to compare different alternative extensions on
the same level of the BS tree.

3. A more sophisticated approach that assigns different weights to the different k
values would impose the challenge of deciding these specific weights. This would
bring us back to the difficult task of an expected length prediction — which would
be particularly hard when considering now the arbitrary multinomial distribution.

Finally, the total GMPSUM score is calculated by the linear combination
GMPSUM(v,A) = A - GM(v) + (1 — A) - PSuM(v), 9)

where A € [0,1] is a strategy parameter. Based on an empirical study with different
benchmark instances and values for parameter A, we came up with the following rules
of thumb to select A.

1. Since GM and PSUM have complementary focus, i.e., they capture and award (or
implicitly penalize) different aspects of the extension potential, their combined
usage is indeed meaningful in most cases, i.e,, 0 < A < 1.

2. GM tends to be a better indicator when instances are more regular, i.e., when each
input string better fits the overall string distribution.

3. PSuM tends to perform better when instances are less regular, i.e., when input
strings are more dispersed around the overall string distribution.

Regarding the computational costs of the GMPSUM calculation, the GM score calcu-
lation requires O(|X| - m) time. This can be concluded from (7) where the most expensive
part is the iteration through all letters from ¥ and finding the minimal number of the
letter occurrences across all m input strings (y¢ () and 0 (+) have the same time complex-
ity). Note that the number of occurrences of each letter across all possible suffixes of all
m input strings positions is calculated in advance, before starting the beam search, and
stored in an appropriate three-dimensional array, see [29]. The worst-case computational
complexity of this step is O(|X| - 7 - fimax). This is because the number of occurrences of
a given letter across all positions inside the given input string can be determined in a
single linear pass. Since this is done only at the start and the expected number of GM
calls is much higher than rnpy;y, this up-front calculation can be neglected in the overall
computational complexity The PSUM score given by (8) takes O(71,,, - m) time to be
calculated due to a definition of /,4x(-). Similarly as in GM, the calculation of matrix P is
performed in pre-processing — its computational complexity corresponds to the number
of entries, i.e., O(Mymax - Nmax), see (5).

Finally, the total computational complexity of GMPSUM can be concluded to be
O((|X] 4+ 1) - m). The total computational complexity of the beam search is therefore
a product of the number of calls of GMPSUM O(n,;,, - B - |£|) and the time complexity of
GMPSUM. Note that the number of GMPSUM calls equals the number of nodes created
within a BS run. Since the LCS length, i.e. the number of BS levels, is unknown, we use
here 1,,;,, as upper bound. In overall, the BS guided by GMPSUM runs in O(#,,;;, - B -
|Z| - m - (|Z| + 15,)) time if no filtering is performed. In case of filtering, at each level of
the BS, O(B - kgjter - ™) time is required, which gives O (#min - B - kiiter - 1) total time for
executing the filtering within the BS. According to this, the BS guided by GMPSUM and
utilizing (restricted) filtering requires O (#imin - B+ 1 - (kgier + |Z|? + |Z| * 1min)) time.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 11 of 24

352

3.3. A Time-Restricted BS

In this section we extend the basic BS from Algorithm 1 to a time-restricted beam
search (TRBS). This BS variant is motivated by the desire to compare different algorithms
with the same time-limit. The core idea we apply is to dynamically adapt the beam
width in dependence of the progress over the levels.

Similarly to the standard BS from Algorithm 1, TRBS is parameterized with the
problem instance to solve, the guidance heuristic &, and the filtering parameter ke,
Moreover, what was previously the constant beam width f now becomes only the
initial value. The goal is to achieve a runtime that comes close to a target time fnax
now additionally specified as input. At the end of each major iteration, i.e., level, if
tmax < 409, i.e., the time limit is actually enabled, the beam width for the next level is
determined as follows.

1. Let tjter be the time required for the current iteration.

2. We estimate the remaining number of major iterations (levels) by taking the max-
imum of lower bounds for the subinstances induced by the nodes in Vey;. More
specifically, .

LBmax(Vext) = max min C,(S[0°]);. (10)

(v,0) EVext XX i=1,...,m

Thus, for each node v € Veyt and each letter a we consider the minimal number
of occurrences of the letter across all string suffixes S [5”] and select the one that
is maximal. In other words, this LCS lower bound is based on considering all
common subsequences in which a single letter is repeated as often as possible. In
the literature, this procedure is known under the name Long-run [31] and provides
a |Z|-approximation.

3. Let trem be the actual time still remaining in order to finish at time #max.

4. Let trem = titer - LBmax(Vext) be the expected remaining time when we would
continue with the current beam width and the time spent at each level would stay
the same as it was measured for the current level.

5. Depending on the discrepancy of the actual and expected remaining time, we
possibly increase or decrease the beam width for the next level:

1B-12] if trem /Frem > 1.1;
B+ {min(100,|8/12]) if trem/Frem < 0.9; (11)
B otherwise.

In this adaptive scheme, the thresholds for the discrepancy to increase or decrease
the beam width, as well as the factor by which the beam width is modified, were
determined empirically. Note that there might be better estimates of the LCS length than
LBmax, however, this estimate is inexpensive to obtain, and even if it underestimate or
overestimate the LCS length in early phases, gradually, it converges toward the actual
LCS length as the algorithm progresses. This allows TRBS to smoothly adapt its expected
remaining runtime to the desired one. Note that we only adapt the beam width and not
set it completely anew based on the runtime measured for the current level in order to
avoid too erratic changes of the beam width in case of a larger variance of the level’s
runtimes. Based on preliminary experiments, we conclude that the proposed approach in
general works well in achieving the desired time limit, while changing B not dramatically
up and down in the course of a whole run. But of course, how close the time limit is met,
depends on the actual length of the LCS. For small solutions strings, the approach has
less opportunities to adjust § and then tends to overestimate the remaining time, thus,
utilizing less time than desired.

4. Experimental Results

In this section we evaluate our algorithms and compare them with the state-of-the-
art algorithms from the literature. The proposed algorithms are implemented in C# and

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 12 of 24

416

417

418

»
iy

9

executed on machines with Intel i9-9900KF CPUs with @ 3.6GHz and 64 Gb of RAM
under Microsoft Windows 10 Pro OS. Each experiment was performed in single-threaded
mode. We have conducted two types of experiments:

e Short runs: these are limited-time scenarios—that is, BS configurations with g =
600 are used—executed in order to evaluate the quality of the guidance of each of
the heuristics towards promising regions of the search space.

e Long runs: these are fixed-duration scenarios (900 seconds) in which we compare
the time-restricted BS guided by the GMPSUM heuristic with the state-of-the-art
results from the literature. The purpose of these experiments is the identification of
new state-of-the-art solutions, if any.

4.1. Benchmark sets
All relevant benchmark sets from the literature were considered in our experiments:

e Benchmark sets RAT, VIRUS and RANDOM, each one consisting of 20 single in-
stances, are well known from the related literature [32]. The first two sets are
biologically motivated, originating from the NCBI database. In the case of the third
set, instances were randomly generated. The input strings in these sets are 600
characters long. Moreover, they contain instances based on alphabets of size 4 and
20.

e Benchmark set ES, introduced in [33], consists of randomly distributed input strings
whose length varies from 1000 to 5000, while alphabet sizes range from 2 to 100.
This set consists of 12 groups of instances.

e Benchmark set BB, introduced in [34], is different to the others, because the input
strings of each instance are generated in a way that there is a high similarity between
them. For this purpose, first, a randomly generated base string was generated.
Second, all input strings were generated based on the base string by probabilistically
introducing small mutations such as delete/update operations of each letter. This
set consists of eight groups (each one containing 10 single instances).

e Benchmark set BACTERIA, introduced in [35], is a real-world benchmark set used
in the context of the constrained longest common subsequence problem. We make
use of these instances by simply ignoring all pattern strings (constraints). This set
consists of 35 single instances.

e Finally, we introduce two new sets of instances:

- Theinput strings of the instances of benchmark set POLY are generated in a way
such that the number of occurrences of each letter in each input string are deter-
mined by a multinomial distribution with known probabilities py, ..., py; >0,
such that) ; p; = 1; see [36] for how to sample such distributions. More specif-

1 .
ically, we used the multinominal distribution with p; = 5= ..., —-1
=1
and p; = 1— Zl 5 for generating the input strings. The number of the
1=
occurrences of different letters is very much unbalanced in the obtained input
strings. This set consists 10 instances for each combination of the input string
length n € {100,500,1000} and the number of input strings m € {10,50},
which makes a total of 60 problem instances.

— Benchmark set ABSTRACT, which will be introduced in Section 5, is a real-world
benchmark set whose input strings are characterized by close-to-polynomial
distributions of the different letters. The input strings originate from abstracts
of scientific papers written in English.

4.2. Considered algorithms

All considered algorithms make use of the state-of-the-art BS component. In order
to test the quality of the newly proposed GMPSUM heuristic for the evaluation of the
partial solutions at each step of BS, we compare to the other heuristic functions that were

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 13 of 24

Table 1: Short-run results summary.

Benchmark set BS-Ex BS-Pow BS-HP BS-GMPSUM

Name # | Js| #b. Pl sl #b. Pl s #b. Pl 5] . i
Random 20 | 1089 16 27 | 1081 T4 [10815 T1 | 10895 16 67

RAT 20 102.8 13 2.6 101.6 1.2 100.95 0.9 102.9 14 55
VIRUS 20 | 115.85 11 2.6 114.1 15 115.35 1.1 116.3 17 7.4

BB 8 | 407.13 2 8.5 | 430.13 . 422.94 . 424.86 5 26.9

Es 12 | 24218 8 23 | 24151 15.6 | 241.14 13.8 | 242.12 4 1188
Poly 6 | 23267 0 56 | 23227 33 | 231.53 2.7 | 233.02 6 6.7
Bacteria 35 | 809.97 12 147 | 814.86 8.2 | 830.69 7.9 | 832.09 18 29.3

N1 O O OO = O
(=2}
@
OINOOH=IND
[S5]
[=)}

W=
NN

All 121 62

proposed for this purpose in the literature: EX [16], POw [13], and HP [12]. The four
resulting BS variants are labeled BS-GMPSUM, BS-EX, BS-POw, and BS-HP, respectively.
These four BS variants were applied with the same parameter settings (8 = 600 and
kéiter = 100) in the short-run scenario in order to ensure that all of them use the same
amount of resources.

In the long-run scenario, we tested the proposed time-restricted BS (TRBS) guided
by the novel GMPSUM heuristic, which is henceforth labeled as TRBS-GMPSUM. Our
algorithm was compared to the current state-of-the-art approach from the literature:
A*+ACS [29]. These two algorithms were compared in the following way:

e Concerning A*+ACS, the results for benchmark sets RANDOM, VIRUS, RAT, ES and
BB were taken from the original paper [29]. They were obtained with a computation
time limit of 900 seconds per run. For the new benchmark sets—that is, POLY and
BACTERIA—we applied the original implementation of A*+ACS with a time limit
of 900 seconds on the above-mentioned machine.

e TRBS-GMPSUM was applied with a computation time limit of 600 seconds per run
to all instances of benchmark sets RANDOM, VIRUS, RAT, ES and BB. Note that we
reduced the computation time limit used in [29] by 50% because the CPU of our
computer is faster than the one used in [29]. In contrast, the time limit for the new
instances was set to 900 seconds. Regarding restricted-filtering, the same setting
(kgiter = 100) as for the short-run experiments was used.

Regarding GMPSUM parameter A, we performed short-run evaluations across a
discrete set of possible values: A € {0,0.25,0.5,0.75,1}. The conclusion was that the
best performing values are A = 0 for BB, A = 0.5 for VIRUS and BACTERIA, A = 0.75 for
RANDOM, RAT and POLY, and A = 1 for ES. The same settings for A were used in the
context of the long-run experiments.

4.3. Summary of the results

Before studying the results for each benchmark set in detail, we present a summary
of the results in order to provide the reader with the broad picture of the comparison.
More specifically, the results of the short-run scenarios are summarized in Table 1, while
the ones for the long-run scenarios are given in Table 2. Table 1 displays the results
in a way such that each line corresponds to a single benchmark set. The meaning of
columns is as follows: the first column contains the name of the benchmark set, while
the second column provides the number of instances—respectively, instance groups—in
the set. Then there are four blocks of columns, one for each considered BS variant. The
first column of each block shows the obtained average solution quality (|s]) over all
instances of the benchmark set. The second column indicates the number of instances—
respectively, instance groups—for which the respective BS variant achieves the best
result (#b.). Finally, the third column provides the average running time () in seconds
over all instances of the considered benchmark set.

The following conclusions can be drawn:

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 14 of 24

Table 2: Long-run results summary.

Benchmark set A*+ACS TRBS-GMPSUM 600s/900s
Name # ‘ [s| #b. ‘ s #b.
Random 20 109.9 20 109.7 16
RAT 20 104.3 17 1044 18
VIRUS 20 117.0 14 117.3 19
BB 8 | 412.81 3 | 430.28 6

Es 12 243.82 9 243.73 4

Poly 6 234.13 4 234.23 5
Bacteria 35 | 829.26 10 | 862.63 33
All 121 77 101

Concerning the fully random benchmark sets RANDOM and Es in which input
strings were generated uniformly at random and are independent, it was already
well-known before that the heuristic guidance EX performs strongly. Nevertheless,
it can be seen that BS-GMPSUM performs nearly as well as BS-EX, and clearly better
than the remaining two BS variants.

In the case of the quasi-random instances of benchmark sets VIRUS and RAT, BS-
GMPSUM starts to show its strength by delivering the best solution qualities in 31
out of 40 cases. The second best variant is BS-EX, which is still performing very
well, and is able to achieve the best solution qualities in 24 out of 40 cases.

For the special BB benchmark set, in which input strings were generated in order
to be similar to each other, GMPSUM turns out to perform comparably to the best
variant BS-Pow.

Concerning the real-world benchmark set BACTERIA, BS-GMPSUM is able to deliver
the best results for 18 out of 35 groups, which is slightly inferior to the BS-HP variant
with 22 best-performances, and superior to variants BS-EX (12 cases) and BS-Pow
(15 cases). Concerning the average solution quality obtained for this benchmark set,
BS-GMPSUM is able to deliver the best one among all considered approaches.
Concerning the multinominal non-uniformly distributed benchmark set POLY, BS-
GMPSUM clearly outperforms all other considered BS variants. In fact, BS-GMPSUM
is able to find the best solutions for all 6 instance groups. Moreover, it beats the
other approaches in terms of the average solution quality.

Overall, BS-GMPSUM finds the best solutions in 80 (out of 121) instances or instance
groups, respectively. The second best variant is BS-EX, which is able to achieve
best-performance in 62 cases. In contrast, BS-Hp and BS-POw are clearly inferior
to the other two approaches. We conclude that BS-GMPSUM performs well in the
context of different letter distributions in the input strings, and it is worth to try
this variant first when nothing is known about the distribution in the considered
instance set.

Overall the running times of all four BS variants are comparable. The fastest one is
BS-HP, while BS-GMPSUM requires somewhat more time compared to the others
since it makes use of a heuristic function that combines two functions.

Table 2 provides a summary concerning the long-run scenarios, i.e., it compares

the current state-of-the-art algorithm A*+ACS with TRBS-GMPSUM. As the benchmark
instances are the same as in the short-run scenarios, the first two table columns are
the same as in Table 2. Then there are two blocks of columns, presenting the results of
A*+ACS and TRBS-GMPSUM in terms of the average solution quality over all instances
of the respective benchmark set (|s[), and the number of instances (or instance groups)
for which the respective algorithm archived the best result (#b.).

The following can be concluded based on the results obtained for the long-run scenarios:

Concerning RANDOM and ES, A*+ACS is—as expected—slightly better than TRBS-
GMPSUM in terms of the number of best results achieved. However, when com-
paring the average performance, there is hardly any difference between the two

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 15 of 24

approaches: 109.9 vs. 109.7 for the RANDOM benchmark set, and 243.82 vs. 243.73
for the ES benchmark set.

e In the context of benchmark sets RAT and VIRUS, TRBS-GMPSUM improves over
the state-of-the-art results by a narrow margin. This holds both for the number of
best results achieved and for the average algorithm performance.

e Concerning benchmark set BB, TRBS-GMPSUM significantly outperforms A*+ACS.
In six out of eight groups it delivers the best average solution quality, while A*+ACS
does so only for three cases.

e The same holds for the real-world benchmark set BACTERIA, that is, TRBS-GMPSUM
achieves the best results for 33 out of 35 instances, in contrast to only 10 instances in
the case of A*+ACS. Moreover, the average solution quality obtained is much better
for TRBS-GMPSUM, namely 862.63 vs. 829.26.

e Finally, the performances of both approaches for benchmark set POLY are very
much comparable.

e Overall, we can conclude that TRBS-GMPSUM is able to deliver the best results in
101 out of 121 cases, while A*+ACS does so only in 77 cases. This is because TRBS-
GMPSUM provides a consistent solution quality across instances characterized by
various kinds of letter distributions. It can therefore be stated that TRBS-GMPSUM
is a new state-of-the-art algorithm for the LCS problem.

In summary, for the 32 random instances—respectively, instance groups—from the
literature (sets RANDOM and Es) A*+ACS performs quite strong due to the presumed
randomness of the instances. However, the new TRBS-GMPSUM approach is not far
behind. A weak point of A*+ACS becomes obvious when instances are not generated
uniformly at random. In the 40 cases with quasi-random input strings (sets RAT and
VIRUS) TRBS-GMPSUM performs best in 37 cases, while A*+ACS does so in 31 case.
When input strings are similar to each other—see the 8 instance groups of set BB—
A*+ACS performs weak compared to TRBS-GMPsSUM. This tendency is reinforced in
the context of the instances of set POLY (6 instance groups) for which TRBS-GMPSUM
clearly outperforms A*+ACS in all cases. The same holds for the real-world benchmark
set BACTERIA. The overall conclusion yields that TRBS-GMPSUM works very well on a
wide range of different instances. Moreover, concerning the instances from the previous
literature (80 instances/groups) our TRBS-GMPSUM approach is able to obtain new
state-of-the-art results in 13 cases. This will be shown in the next section.

4.4. New state-of-the-art results for instances from the literature

Due to space restrictions we provide the complete set of results, for each problem
instance, in a document on supplementary material (https://github.com/milanagrbic/
LCSonNuD/LCSonNuD_Supplementary_file.pdf). Instead of providing all results we
decided to focus on those cases in which new state-of-the-art results are achieved. These
cases are presented in Table 3 (short-run scenario) and Table 4 (long-run scenario).

Table 3: New best results for the instances from literature in the short-run scenario.

Instance (group) Literature Best [s] BS-EX BS-Pow BS-HP BS-GMPSUM
Benchmark set [X] m n_| |s| Alg. | |s|] |s| t] [s| t] |s| t
RAT 4 20 600 172 BS-EX 172 2.3 170 0.9 168 0.5 173 2.5
RAT 4 40 600 152 BS-Ex 152 1.8 150 1 145 0.5 154 3.4
RAT 4 200 600 123 BS-Ex 123 2.7 123 0.7 122 0.8 124 9.9
RAT 20 20 600 54 BS-Ex 54 2.5 54 1.7 54 1.2 55 35
RAT 20 40 600 49 BS-Ex 49 3 49 1.1 49 1.2 50 4.6
VIRUS 4 25 600 194 BS-Ex 194 22 192 1.2 194 0.7 195 3.1
VIRUS 4 40 600 170 BS-Ex 170 22 170 1.2 169 0.9 172 38
VIRUS 4 60 600 166 BS-Ex 166 2.4 165 0.8 166 0.7 168 51
VIRUS 4 100 600 158 BS-Ex 158 2.3 155 12 158 0.9 160 7.8
VIRUS 4 150 600 156 BS-Ex 156 2.4 147 1.2 156 0.7 157 11
VIRUS 4 200 600 155 BS-Hpr 154 2.6 148 14 155 1.2 156 14.8
VIRUS 20 40 600 50 BS-EX 50 2.9 49 1.9 50 0.9 51 5.5
BB 2 100 1000 560.7 BS-Pow 536.6 6.1 560.7 5.7 558.9 1.9 560.8 23.7
ES 2 10 1000 | 615.06 BS-Ex | 615.06 44 614.2 14 612.5 0.9 615.1 5.1
ES 10 50 1000 | 136.32 BS-Ex | 136.32 39 | 135.52 2.1 | 13522 14 | 136.34 9.9
ES 25 10 2500 | 23522 BS-Pow | 231.12 19.1 23522 105 | 233.34 8 | 23558 29
ES 100 10 5000 1449 BS-POwW 14418 919 1449 759 14362 716 1451 1854

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 16 of 24

Table 4: New best results for the instances from literature in the long-run scenario.

Instance (group) Literature best [s] A*+ACS TRBS-GMPSUM
Benchmark set |%| m n_| |s| Alg. | Is| | Is|
RAT 4 20 600 174 A*+ACS 174 175
RAT 4 40 600 154 A*+ACS 154 156
RAT 20 25 600 52 A*+ACS 52 53
VIRUS 4 10 600 228 A*+ACS 228 229
VIRUS 4 15 600 206 A*+ACS 206 207
VIRUS 4 60 600 168 A*+ACS 168 169
VIRUS 4 80 600 163 A*+ACS 163 164
VIRUS 4 100 600 160 A*+ACS 160 162
VIRUS 4 150 600 157 A*+ACS 157 158
BB 2 100 1000 | 563.6 APS 547.1 571.1
BB 4 100 1000 | 390.2 APS 344.3 391.8
ES 2 10 1000 | 618.9 A*+ACS 618.9 619.1
ES 10 50 1000 | 1375 A*+ACS 137.5 137.6
ES 25 10 2500 | 236.6 ~A*+ACS-DIST 235 238

The tables reporting on the new state-of-the-art results are organized as follows.
The first column contains the name of the corresponding benchmark set, while the
following three columns identify the respective instance (in the case of RAT and VIRUS),
respectively the instance group (in the case of BB and Es). Afterwards, there are two
columns that provide the best result known from the literature. The first of these columns
provides the result, and the second column indicates the algorithm (together with the
reference) that was the first one to achieve this result. Next, the tables provide the
results of Bs-EX, Bs-Pow, Bs-HP and Bs-GMPSUM in the case of the short-run scenario,
respectively the results of A*+ACS and TRBS-GMPSUM in the case of the long-run
scenario. Note that computation times are only given for the short-run scenario, because
time served as a limit in the long-run scenario.

Concerning the short-run scenario (Table 3), BS-GMPSUM was able to produce new
best results in 17 cases. This includes even four cases of benchmark set ES, which was
generated uniformly at random. Remarkable are the four cases of sets VIRUS and RAT in
which the currently best-known solution was improved by two letters (see, for example,
the case of set RAT and the instance [Z| = 4, m = 40, and n = 600). Concerning the
more important long-run scenario, the best-known results so far were improved in 14
cases. Especially remarkable is the case concerning set BB for which an impressive
improvement of around 24 letters was achieved.

4.5. Results for benchmark sets POLY and BACTERIA

The tables reporting on the results for benchmark set POLY are structured in the
same way as those described before in the context of the other benchmark sets. The
difference is that instances groups are identified by means of |X| (first column), m (sec-
ond column), and 7 (third column). Best results per instance group—that is, per table
row—are displayed in bold font.

The results of the short-run scenario for benchmark set POLY are given in Table
5. According to the obtained results, a clear winner is BS-GMPSUM which obtains the
best average solution quality for all six instance groups. This indicates that GMPSUM
is clearly better as a search guidance than the other three heuristic functions for this
benchmark set. As previously motivated, this is due to the strongly non-uniform nature
of the instances, i.e., the intentionally generated imbalance of the number of occurrences
of different letters in the input strings. Nevertheless, the absolute differences between the
results of BS-GMPSUM and BS-EX are not so high. The results of the long-run executions
for benchmark set POLY are provided in Table 6. It can be observed that TRBS-GMPSUM
and the state-of-the-art technique A*+ACS perform comparably.

Remember that, as in the case of POLY, the instances of benchmark set BACTERIA
are used for the first time in a study concerning the LCS problem. They were initially

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 17 of 24

Table 5: Short-run results for benchmark set POLY.

Instance group BS-Ex BS-Pow BS-Hp BS-GMPsuM
Z m nl s t] sl t] s] t]s] t

4 10 100 | 432 05| 432 03| 431 03| 433 0.1
10 500 | 232.5 4.1 | 2327 26|231.3 21| 233 2.5
10 1000 | 470.7 8.8 | 470.1 54 | 4673 42 | 4709 103
50 100 | 357 0.6 | 356 04| 355 03| 358 0.3
50 500 | 2014 6.1 | 2008 35 |2004 3| 2023 6.2
50 1000 | 4125 132 | 4112 74 | 4116 6.3 | 4128 209

(Ll S S

Table 6: Long-run results for benchmark set POLY.

Instance group A*+ACS TRBS-GMPSUM

= m n | Is| | s] t
4 10 100 434 43.4 580.7
4 10 500 234.3 | 234.3 890.5
4 10 1000 473.9 | 4734 896.2
4 50 100 35.9 35.9 83.6
4 50 500 203 | 203.5 883.8
4 50 1000 414.3 | 414.9 892.3

proposed in a study concerning the constrained LCS problem [35]. The results are
again presented in the same way as described before. This set consists of 35 instances.
Therefore, each line in Table 7 (short-run scenario) and Table 8 (long-run scenario) deals
with one single instance which is identified by |X| (always equal to 4), m (varying
between 2 and 383), timin (the length of the shortest input string) and nmax (the length of
the longest input string). Best results are indicated in bold font. The results obtained
for the short-run scenario allow to observe that BS-HP performs very well for this
benchmark set. In fact, it obtains the best solution in 22 out of 35 cases. However,
BS-GMPSUM is not far behind with 18 best solutions. Moreover, BS-GMPSUM obtains a
slightly better average solution quality than Bs-HP. Concerning the long-run scenario,
as already observed before, TRBS-GMPSUM clearly outperforms A*+ACS. In fact, the
differences are remarkable in some cases such as, for example, instance number 32
(fourth but last line in Table 8) for which TRBS-GMPSUM obtains a solution of value
1241, while A*+ACS finds—in the same computation time—a solution of value 1204.

4.6. Statistical significance of the so-far reported results

In this section we study the results of the short-run and long-run executions from a
statistical point of view. In order to do so, Friedman’s tests was performed simultane-
ously considering all four algorithms in the case of the short-run scenario, respectively
the two considered algorithms in the case of the long-run scenario.!

Given that in all cases the test rejected the hypothesis that the algorithms perform
equally, pairwise comparisons were performed using the Nemenyi post-hoc test [38].
The corresponding critical difference (CD) plots considering all benchmark sets together
are shown in Figure 2, respectively Figure 3a. Each algorithm is positioned in the
segment according to its average ranking w.r.t. average solution quality over all (121)
considered instance groups. The critical difference was computed with a significance
level of 0.05. The performances of those algorithms whose difference is below the CD
are regarded as performing statistically in an equivalent way—that is, no difference of
statistical significance can be detected. This is indicated in the figures by bold horizontal
bars joining the respective algorithm markers.

Concerning short-run executions, BS-GMPSUM is clearly the overall best-performaing
algorithm, with statistical significance. BS-EX is in second position. Moreover, the differ-
ence between BS-HP and BS-POW is not statistically significant. Concerning the long-run

1

All these tests and the resulting plots were generated using R’s scmamp package [37].

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 18 of 24

Table 7: Short-run results for benchmark set BACTERIA.

Instance BS-EX BS-Pow BS-HP BS-GMPSUM
M Amin fmax | s t] sl t]s] t] s t
383 610 1553 | 256 31.1| 252 139 | 279 16.8 | 271 94.1
3 1458 1458 | 1365 2.1 | 1365 1| 1365 1.8 | 1365 7.7
33 1349 1577 | 610 176 | 605 10.6 | 755 10.8 | 689 36.5
106 1252 1520 | 503 25.1 | 483 12 | 515 122 | 514 61.8
2 1502 1502 | 1499 0 | 1499 0 | 1499 0 | 1499 0.1
12 1274 1413 | 659 133 | 636 85| 627 69| 659 18.9
15 1302 1515 | 598 133 | 602 85| 655 7.7 | 678 20.7
13 1479 1557 | 811 158 | 752 10.1 | 1061 10 | 883 21.7
13 1308 1507 | 1037 17.6 | 1039 11.1 862 8.6 | 882 259
44 873 1543 | 493 163 | 473 93| 470 7.8 | 494 29.6
4 1408 1530 | 1204 911271 63| 1271 58| 1271 159
173 1234 1847 | 502 34.7 | 463 15| 541 183 | 525 97.5
13 1446 1551 681 145 | 713 95| 794 86| 785 222
88 1360 1545 | 583 273 | 570 138 | 667 151 | 601 67
2 1540 1548 | 1522 0.2 | 1522 0.1 | 1522 0.1 | 1522 0.3
3 1395 1424 | 1141 112 | 1141 6.8 | 1141 6.1 | 1141 15
4 1410 1488 | 886 9.8 | 1123 8 | 1123 6.7 | 1123 17.4
51 1266 1522 | 681 252 | 552 123 | 667 12 | 641 48.7
2 1461 1539 | 1354 09 | 1354 05| 1354 1.7 | 1354 8.6
13 1246 1411 687 13| 662 74| 609 6.7 699 19.6
4 1434 1478 | 876 9.6 | 1112 8 | 1112 6.9 | 1112 16.3
18 1023 1438 | 464 119 | 468 76 | 458 58| 475 14.2
2 1454 1460 | 1431 0.2 | 1431 0.1 | 1431 0.1 | 1431 0.3
8 1401 1533 | 1024 159 | 1061 98 | 858 7.5 | 864 18.8
33 990 1483 | 410 12.1 | 492 88 | 467 69| 456 16.4
29 1422 1549 | 587 163 | 581 9.8 | 634 89| 590 26.3
20 571 1394 | 438 96| 405 54| 401 45| 431 11.7
96 1270 1565 | 516 24 | 467 11 531 123 | 522 55.5
10 1322 1455 | 1026 16 | 1026 9.7 | 796 7.1 | 1026 19.5
26 1334 1596 | 617 167 | 584 94| 640 8.6 | 631 26.2
195 1345 1547 | 503 382 | 448 153 | 537 192 | 524 1009
8 1454 1532 | 1221 16.4 | 1241 10 | 1241 8.6 | 1241 25.5
8 1359 1612 | 555 189 | 555 11.2 | 600 10.3 | 627 38.4
89 455 1587 | 251 113 | 214 47| 233 48| 239 18.2
2 1465 1469 | 1358 0.7 | 1358 0.4 | 1358 0.5 | 1358 6.8

>-$>>J>>J>>J>>J>>J>rh»b»b»-lkﬂéﬂk%%%%%%%%%%%%%%%%%%%%%%%E

BS-Gupsuy——m— BS-Hp
BS-Ex BS-Pow

Figure 2. Critical difference (CD) plot over all considered benchmark sets (short-run executions).

1 2 1 2
L] 1
TRBS-GyvpsuM TRBS-GumpsuM
A+ ACS— A*+ACS
(a) All instances (b) Benchmark set BACTERIA.

Figure 3. Criticial difference (CD) plots concerning the long run scenario.

e13 scenario, the best average rank is obtained by TRBS-GMPSUM. In the case of bench-
e1s mark set BACTERIA, the difference between TRBS-GMPSUM and A*+ACS is significant,
eis see Figure 3b. For the other benchmark sets the two approaches perform statistically
e1s equivalent.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 19 of 24

Table 8: Long-run results for benchmark set BACTERIA.

Instance A*+ACS TRBS-GMPSUM

=] M Mmin Amax | Is| | Is] t
4 383 610 1553 265 | 273 887.2
4 3 1458 1458 1365 | 1365 810.9
4 33 1349 1577 670 | 723 899
4 106 1252 1520 518 | 532 897.1
4 2 1502 1502 1499 | 1499 0.1
4 12 1274 1413 665 | 694 899.7
4 15 1302 1515 680 | 708 899.6
4 13 1479 1557 842 | 883 899.5
4 13 1308 1507 870 | 1043 899.7
4 44 873 1543 514 | 501 897.3
4 4 1408 1530 1204 | 1271 898.4
4 173 1234 1847 520 | 528 895.6
4 13 1446 1551 732 | 816 899.6
4 88 1360 1545 557 | 634 897.9
4 2 1540 1548 1522 | 1522 0.3
4 3 1395 1424 1141 | 1141 899.7
4 4 1410 1488 1059 | 1123 899.4
4 51 1266 1522 659 | 871 898.9
4 2 1461 1539 1354 | 1354 851.9
4 13 1246 1411 716 | 727 899.6
4 4 1434 1478 1030 | 1112 899.2
4 18 1023 1438 481 | 488 898.4
4 2 1454 1460 1431 | 1431 0.3
4 8 1401 1533 1040 | 1063 899.2
4 33 990 1483 449 | 510 899.1
4 29 1422 1549 643 | 661 899
4 20 571 13%4 439 | 432 899.7
4 96 1270 1565 529 | 546 897.2
4 10 1322 1455 1026 | 1026 899.7
4 26 1334 159 654 | 676 899.3
4 195 1345 1547 514 | 544 894.2
4 8 1454 1532 1204 | 1241 898.3
4 8 1359 1612 624 | 644 897.9
4 89 455 1587 250 | 252 898.2
4 2 1465 1469 1358 | 1358 829.6

5. Textual Corpus Case Study

In the previous section we showed that the proposed method is highly competitive
with state-of-the art methods and generally outperforms them on instances sampled
from non-uniform distributions. In order to further investigate the behavior of the
proposed method on real-world instances with non-uniform distribution, we performed
a case study on a corpus of textual instances originating from abstracts of scientific
papers written in English. This set will henceforth be called ABSTRACT. It is known that
letters in English language are polynomially distributed [22]. The most frequent letter
is e, with a relative frequency of 12.702%. The next most common letter is ¢ (9.056%),
followed by a (8.167%), and o (7.507%), etc.

In order to make a meaningful choice of texts we followed [39], where the authors
measured the similarity between scientific papers, mainly from the field of artificial intel-
ligence, by making use of various algorithms and metrics. By using tf-idf statistics with
cosine similarity, their algorithm identified similar papers from a large paper collection.
After that, the similarity between the papers proposed by their algorithm was manually
checked and tagged by an expert as either similar (positive) or dissimilar (negative). The
results of this research can be found at https://cwi.ugent.be/respapersim.

Keeping in mind that the LCS problem is also a measure of text similarity, we
decided to check whether the abstracts of similar papers have longer common subse-
quences than abstracts of dissimilar papers. Therefore, the purpose of this case study is
twofold: (1) to execute the LCS state-of-the art methods along with the method proposed
in this paper and to compare their performances on this specific instance set, and (2) to

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 20 of 24

check whether the abstracts of similar papers have a higher LCS than those of dissimilar
papers.

Based on these considerations, we formed two groups of twelve papers each, named
POS and NEG. Group POS contains twelve papers which have been identified as similar,
while group NEG contains papers which are not similar to each other. We extracted
abstracts from each paper and pre-processed them in order to remove all letters except
for those letters from the English alphabet. In addition, each uppercase letter was
replaced with its lowercase pair.

For each if the two groups we created a set of test instances as follows. For each

k € {10,11,12} we generated P different instances containing k input strings (con-

sidering all possible combinations). This resulted in the following set of instances for
both POS and NEG:

¢ One instance containing all 12 abstracts as input strings.
e 12 instances containing 11 out of 12 abstracts as input strings.
e 66 instances containing 10 out of 12 abstracts as input strings.

Repeating our experimental setup presented in the previous section, we performed both
short and long runs for the described instances. The obtained results for the short-run
scenarios are shown in Table 9. The table is organized into five blocks of columns. The
first block provides the general information on the instances: NEG vs. POS, number of
input strings (column with heading), and the total number of instances (column #).
The remaining four blocks contain the results of BS-Ex, BS-POw, BS-HP and BS-GMPSUM,
respectively. For each considered group of instances and each method, the following
information about the obtained results is shown:

e |s|: solution quality of the obtained LCS for the considered group of instances.
#b.: number of cases in which the method reached the best result for the considered
group of instances.

e :average execution time in seconds for the considered group of instances.

Table 9: Short-run results for the textual corpus instances (ABSTRACT).

Instance set BS-EX BS-Pow BS-Hp BS-GMPSUM
Name m # ‘ [s| #b. t ‘ |s| #b. t ‘ |s| #b. t ‘ |s| #b. t
NEG 12 1 128 0 146 123 0 108 126 0 118 130 1 114
NEG 11 12 132.08 7 15 127 0 112 129.42 0 122 132.58 8 117
NEG 10 66 136.47 29 149 132.5 0 113 134.82 4 117 | 13727 50 11.6
POS 12 1 134 1 15.2 128 0 119 131 0 118 133 0 74
POS 11 12 | 137.67 5 15 | 131.58 0 112 | 13592 1 115 | 13842 11 7.2
POS 10 66 143.33 42 145 135.85 0 107 | 14153 10 115 143.14 39 7.2
All Negative 79 36 0 4 59
All Positive 79 48 0 11 50
All 158 84 0 15 109

The results from Table 9 clearly indicate that the best results for instances based on
group NEG are obtained by BS-GMPSUM. More precisely, BS-GMPSUM works best for the
instance with 12 input strings, for eight out of 12 instances with 11 input strings and for
50 out of 66 instances with 10 input strings. In contrast, the second-best approach (BS-Ex)
reached the best result for 29 out of 66 instances with 10 input strings and seven out of 12
instances with 11 input strings. The remaining two methods were less successful for this
group of instances. For the instances derived from group P0S, BS-GMPSUM also achieved
very good results. More specifically, BS-GMPSUM obtained the best results in almost all
instances with 11 input strings. For instances with ten input strings, BS-EX obtained the
best results in 42 out of 66 cases, with BS-GMPSUM performing comparably (best result
in 39 out of 66 cases). For the instance with twelve strings, the best solution was found
by the BS-EX. Similarly to the instances from the NEG group, BS-HP and BS-Pow are
clearly less successful.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 21 of 24

A summary of these results is provided in the last three rows of Table 9. Note
that, in total, this table deals with 158 problem instances: 79 regarding group NEG, and
another 79 regarding group P0S. The summarized results show that the new GMPSUM
guidance is, overall, more successful than its competitors. More precisely, BS-GMPSUM
achieved the best results in 59 out of 79 cases concerning NEG, and in 50 out of 79 cases
concerning POS. Moreover, it can be observed that the average LCS length regarding the
POS instances is greater than the one regarding the NEG instances, across all m values.

Table 10: Long-run results for the textual corpus instances (ABSTRACT).

Instance set A*+ACS TRBS-GMPSUM
Name m # ‘ |[s| #best ‘ |[s| #best t
NEG 12 1 129 0 130 1 895.7
NEG 11 12 133.25 2 134.33 11 897.2
NEG 10 66 | 138.32 31 139.12 60 897.8
POS 12 1 136 1 136 1 896.5
POS 11 12 | 140.17 6 | 14042 9 89.8
POS 10 66 145.33 41 145.52 45 897.4
All Negative 79 33 72
All Positive 79 48 55
All 158 81 127

Table 10 contains information for the long-run executions. The results obtained
by A*+ACS and TRBS-GMPSUM are shown. The table is organized in a similar way as
Table 9, with the exception that it does not contain information about execution times,
since computation time served as the stopping criterion. As it can be seen from the
overall results at the bottom of Table, TRBS-GMPSUM obtains more best results than
A*+ACS for both groups of instances (NEG and P0S). More precisely, it obtained the best
result for the instances with 12 input strings, both in the case of POS and NEG, while
A*+ACS achieved the best result only in the case of the POS instance with 12 input strings.
Concerning the results for the instances with 11 input strings, it can be noticed that—in
the case of the NEG instances—TRBS-GMPSUM delivers 11 out of 12 best results, while
A*+ACS method does so only in two out of twelve cases. Regarding the POS instances
with 11 input strings, the difference becomes smaller. More specifically, TRBS-GMPSUM
achieves nine out of 12 best results, while A*+ACS achieved six out of 12 best results. A
corresponding comparison can be done for the instances with 10 input strings. For the
instances concerning group NEG, TRBS-GMPSUM delivers the best results for 60 out of 66
instances, while A*+ACS can find the best results only in 31 cases. Finally, in the case of
the POS instances, the best results were achieved in 45 out of 66 cases by TRBS-GMPSUM,
and in 41 out of 66 cases by A*+ACS. The long run results also indicate that abstracts of
similar papers are characterized by generally longer LCS measures.

6. Conclusions and Future Work

In this paper we considered the prominent longest common subsequence problem
with an arbitrary set of input strings. We proposed a novel search guidance, named
GMPSUM, for tree search algorithms. This new guidance function was defined as a convex
combination of two complementary heuristics: (1) the first one is suited for instances in
which the distribution of letters is close to uniform-at-random, and (2) the second one is
convenient for all cases in which letters are non-uniformly distributed. The combined
score produced by these two heuristics provides a guidance function which navigates the
search towards promising regions of the search space, on a wide range of instances with
different distributions. We ran short-run experiments in which beam search makes use of
a comparable number of iterations under different guidance heuristics. The conclusion
was that the novel guidance heuristic performs statistically equivalent to the best-so-far
heuristic from the literature on close-to-random instances. Moreover, it was shown that
it significantly outperforms the known search guidance functions on instances with a
non-uniform letter frequency per input string. This capability of the proposed heuristic
to deal with a non-uniform scenario was validated on two newly introduced benchmark

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 22 of 24

71 sets: (1) POLY, whose input strings are generated from a multinomial distribution, and
722 (2) ABTRACT, which are real-world instances whose input strings follow a multinomial
722 distribution and originate from abstracts of scientific papers written in English. In a
724 second part of the experimentation we performed long-run executions. For this purpose
725 we combined the GMPSUM guidance function with a time-restricted BS that dynamically
726 adapts its beam width during execution such that the overall running time is very close
727 to the desired time limit. This algorithm was able to outperform the best approach from
=8 the literature (A*+ACS) significantly. More specifically, the best-known results from the
720 literature were at least matched for 63 out of 80 considered instance groups. Moreover,
70 regarding the two new benchmark sets (POLY and BACTERIA), the time-restricted BS
71 guided by GMPSUM was able to deliver equally good, and in most cases better, solutions
732 than A*+ACS in 38 out of 41 instance groups.

733 In future work we plan to adapt GMPSUM to other LCS-related problems such as
73¢ the constrained longest common subsequence problem [40], the repetition-free longest
735 common sunsequene problem [41], the LCS problem with a substring exclusion con-
736 straint [42], and the longest common palindromic subsequence problem [43]. Also, it
73z would be interesting to incorporate this new guidance function into the leading hybrid
73s approach A*+ACS to possibly further boost the obtained solution quality.

73 Author Contributions: B.N. was responsible for conceptualization, methodology, and writing.
720 A K. was responsible for software implementation, writing and methodology. M.D. was respon-
7a1 sible for conceptualization, witting and visualization. M.G. was responsible for resources and
7.2 writing. C.B. was responsible for writing, editing and supervision. G.R. was responsible for
743 concept polishing, supervision, and funding acquisition.

7as Data Availability Statement: The reported results can be found at https:/ /github.com/milanagrbic/
7as LCSonNuD.

726 Acknowledgments: This research was partially supported by Ministry for Scientific and Tech-
77 nological Development, Higher Education and Information Society, Government of Republic
7as Of Srpska, B&H under the Project “Development of artificial intelligence methods for solving
70 computer biology problems", project no. 19.032/-961-24/19. Marko Djukanovic was funded by the
7s0 Doctoral Program Vienna Graduate School on Computational Optimization (VGSCO), Austrian
751 Science Foundation, project no. W1260-N35. Christian Blum was funded by project CI-SUSTAIN
72 of the Spanish Ministry of Science and Innovation (PID2019-104156GB-100).

7ss Abbreviations

7sa The following abbreviations are used in this manuscript:

755

LCS Longest Common Subsequence
BS Beam Search
™ ACS Anytime column search

APS Anytime pack search

References

1. Maier, D. The Complexity of Some Problems on Subsequences and Supersequences. Journal of the ACM 1978, 25, 322-336.

2. Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Sokotowska,]J.; Starowicz, P.; Bucholska, J.; Hrynkiewicz, M. Common Amino
Acid Subsequences in a Universal Proteome—Relevance for Food Science. International Journal of Molecular Sciences 2015,
16,20748-20773.

3. Storer, J. Data Compression: Methods and Theory; Computer Science Press: MD, USA, 1988.

4. Beal, R;; Afrin, T.; Farheen, A.; Adjeroh, D. A new algorithm for “the LCS problem” with application in compressing genome
resequencing data. BMC Genomics 2016, 17, 544. doi:10.1186/512864-016-2793-0.

5. Kruskal, J.B. An overview of sequence comparison: Time warps, string edits, and macromolecules. SIAM review 1983, 25, 201-237.

6. Xie, X,; Liao, W.; Aghajan, H.; Veelaert, P,; Philips, W. Detecting Road Intersections from GPS Traces Using Longest Common
Subsequence Algorithm. ISPRS International Journal of Geo-Information 2017, 6.

7. Bergroth, L.; Hakonen, H.; Raita, T. A survey of longest common subsequence algorithms. In Proceedings of SPIRE 2000 — The
7th International Symposium on String Processing and Information Retrieval. IEEE, 2000, pp. 39-48.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 23 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.
21.
22.
23.
24.
25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.
39.

Gusfield, D. Algorithms on Strings, Trees, and Sequences; Computer Science and Computational Biology, Cambridge University
Press, 1997.

Fraser, C.B. Subsequences and Supersequences of Strings. PhD thesis, University of Glasgow, Glasgow, UK, 1995.

Huang, K; Yang, C.; Tseng, K. Fast Algorithms for Finding the Common Subsequences of Multiple Sequences. Proceedings of
ICS 2004 — The 9th International Computer Symposium. IEEE Press, 2004.

Blum, C.; Blesa, M.].; Lépez-Ibanez, M. Beam search for the longest common subsequence problem. Computers & Operations
Research 2009, 36, 3178-3186.

Mousavi, S.R.; Tabataba, F. An improved algorithm for the longest common subsequence problem. Computers & Operations
Research 2012, 39, 512-520.

Tabataba, F.S.; Mousavi, S.R. A hyper-heuristic for the longest common subsequence problem. Computational Biology and Chemistry
2012, 36, 42-54.

Wang, Q.; Korkin, D.; Shang, Y. A fast multiple longest common subsequence (MLCS) algorithm. IEEE Transactions on Knowledge
and Data Engineering 2011, 23, 321-334.

Djukanovic, M.; Raidl, G.R.; Blum, C. Anytime algorithms for the longest common palindromic subsequence problem. Computers
& Operations Research 2020, 114, 104827. doi:https://doi.org/10.1016/j.cor.2019.104827.

Djukanovic, M.; Raidl, G.; Blum, C. A Beam Search for the Longest Common Subsequence Problem Guided by a Novel
Approximate Expected Length Calculation. Proceedings of LOD 2019 — The 5th International Conference on Machine Learning,
Optimization, and Data Science. Springer, 2019, LNCS. to appear.

Blum, C.; Festa, P. Longest Common Subsequence Problems. In Metaheuristics for String Problems in Bioinformatics; Wiley, 2016;
chapter 3, pp. 45-60.

Chan, H.T,; Yang, C.B.; Peng, Y.H. The Generalized Definitions of the Two-Dimensional Largest Common Substructure Problems.
Proceedings of the 33rd Workshop on Combinatorial Mathematics and Computation Theory. National Taiwan University,
Department of Mathematics, 2016, pp. 1-12.

Li, Y.; Wang, Y.; Zhang, Z.; Wang, Y.; Ma, D.; Huang, J. A novel fast and memory efficient parallel MLCS algorithm for long and
large-scale sequences alignments. IEEE 32nd International Conference on Data Engineering, 2016, pp. 1170-1181.

Peng, Z.; Wang, Y. A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS) Problem. Frontiers in
Genetics 2017, 8, 104. doi:10.3389/fgene.2017.00104.

Vadlamudi, S.G.; Gaurav, P;; Aine, S.; Chakrabarti, PP. Anytime column search. Proceedings of AI’12 — The 25th Australasian
Joint Conference on Artificial Intelligence. Springer, 2012, pp. 254-265.

Lewand, R.E. Cryptological mathematics; Vol. 16, American Mathematical Soc., 2000.

Beutelspacher, A. Kryptologie; Vol. 7, Springer, 1996.

Bakaev, M. Impact of familiarity on information complexity in human-computer interfaces. MATEC Web of Conferences. EDP
Sciences, 2016, Vol. 75, p. 08003.

Ow, PS.; Morton, T.E. Filtered beam search in scheduling. The International Journal Of Production Research 1988, 26, 35-62.

Ney, H.; Haeb-Umbach, R.; Tran, B.H.; Oerder, M. Improvements in beam search for 10000-word continuous speech recognition.
[Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1992, Vol. 1, pp.
9-12.

Kumar, A.; Vembu, S.; Menon, A K,; Elkan, C. Beam search algorithms for multilabel learning. Machine learning 2013, 92, 65-89.
Araya, L; Riff, M.C. A beam search approach to the container loading problem. Computers & Operations Research 2014, 43, 100-107.
Djukanovic, M.; Raidl, G.R.; Blum, C. Finding Longest Common Subsequences: New anytime A search results. Applied Soft
Computing 2020, 95, 106499. doi:https://doi.org/10.1016/j.as0c.2020.106499.

Blum, C.; Blesa, M.].; Lopez-Ibanez, M. Beam search for the longest common subsequence problem. Computers & Operations
Research 2009, 36, 3178-3186.

Jiang, T.; Li, M. On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal on
Computing 1995, 24, 1122-1139.

Shyu, S.J.; Tsai, C.Y. Finding the longest common subsequence for multiple biological sequences by ant colony optimization.
Computers & Operations Research 2009, 36, 73-91.

Easton, T.; Singireddy, A. A large neighborhood search heuristic for the longest common subsequence problem. Journal of
Heuristics 2008, 14, 271-283.

Blum, C.; Blesa, M.]. Probabilistic beam search for the longest common subsequence problem. International Workshop on
Engineering Stochastic Local Search Algorithms. Springer, 2007, pp. 150-161.

Djukanovic, M.; Kartelj, A.; Matic, D.; Grbic, M.; Blum, C.; Raidl, G. Solving the Generalized Constrained Longest Common
Subsequence Problem with Many Pattern Strings. Technical Report AC-TR-21-008, AC, 2021.

Kesten, H.; Morse, N. A property of the multinomial distribution. The Annals of Mathematical Statistics 1959, 30, 120-127.

Calvo, B.; Santafé Rodrigo, G. scmamp: Statistical comparison of multiple algorithms in multiple problems. The R Journal, Vol.
8/1, Aug. 2016 2016.

Pohlert, T. The pairwise multiple comparison of mean ranks package (PMCMR). R package 2014, 27, 9.

Magara, M.B.; Ojo, S.O.; Zuva, T. A comparative analysis of text similarity measures and algorithms in research paper
recommender systems. 2018 conference on information communications technology and society (ICTAS). IEEE, 2018, pp. 1-5.

Technical Report AC-TR-2021-009

Version May 21, 2021 submitted to Mathematics 24 of 24

40.

41.

42.

43.

Gotthilf, Z.; Hermelin, D.; Lewenstein, M. Constrained LCS: Hardness and Approximation. Proceedings of CPM 2008 — The 19th
Annual Symposium on Combinatorial Pattern Matching. Springer, 2008, Vol. 5029, LNCS, pp. 255-262.

Adi, SS.; Braga, M.D.; Fernandes, C.G.; Ferreira, C.E.; Martinez, EV.; Sagot, M.E; Stefanes, M.A.; Tjandraatmadja,
C.; Wakabayashi, Y. Repetition-free longest common subsequence. Discrete Applied Mathematics 2010, 158, 1315-1324.
doi:https:/ /doi.org/10.1016 /j.dam.2009.04.023.

Zhu, D.; Wang, X. A Simple Algorithm for Solving for the Generalized Longest Common Subsequence (LCS) Problem with a
Substring Exclusion Constraint. Algorithms 2013, 6, 485-493.

Chowdhury, S.R.; Hasan, M.M.; Igbal, S.; Rahman, M.S. Computing a Longest Common Palindromic Subsequence. Fundamenta
Informaticae 2014, 129, 329-340, [arXiv:1110.5296v1]. doi:10.3233/FI-2014-974.

