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Abstract

We study fundamental clustering problems for incomplete
data. Specifically, given a set of incomplete d-dimensional
vectors (representing rows of a matrix), the goal is to com-
plete the missing vector entries in a way that admits a par-
titioning of the vectors into at most k clusters with radius
or diameter at most . We give tight characterizations of the
parameterized complexity of these problems with respect to
the parameters k, r, and the minimum number of rows and
columns needed to cover all the missing entries. We show
that the considered problems are fixed-parameter tractable
when parameterized by the three parameters combined, and
that dropping any of the three parameters results in param-
eterized intractability. A byproduct of our results is that, for
the complete data setting, all problems under consideration
are fixed-parameter tractable parameterized by k + r.

Introduction

We study fundamental clustering problems for incomplete
data. In this setting, we are given a set of d-dimensional
Boolean vectors (regarded as rows of a matrix), some of
whose entries might be missing. The objective is to com-
plete the missing entries in order to enable a “clustering”
of the d-dimensional vectors such that elements in the same
cluster are “similar.”

There is a wealth of research on data completion prob-
lems (Candeés and Plan 2010; Candés and Recht 2009;
Candes and Tao 2010; Elhamifar and Vidal 2013; Ganian
et al. 2018; Hardt et al. 2014) due to their ubiquitous ap-
plications in recommender systems, machine learning, sens-
ing, computer vision, data science, and predictive analytics,
among others. In these areas, data completion problems nat-
urally arise after observing a sample from the set of vectors,
and attempting to recover the missing entries with the goal
of optimizing certain criteria. Some of these criteria include
minimizing the number of clusters into which the completed
vectors can be partitioned, or forming a large cluster, where
the definition of what constitutes a cluster varies from one
application to another (Balzano et al. 2012; Elhamifar 2016;
Elhamifar and Vidal 2013; Yi et al. 2012). Needless to say,
the clustering problem itself (i.e., for complete data) is a fun-
damental problem whose applications span several areas of
computing, including data mining, machine learning, pat-
tern recognition, and recommender systems (Aggarwal and

Reddy 2013; Gan, Ma, and Wu 2007; Leskovec, Rajaraman,
and Ullman 2014; Mirkin 2005).

In many cases, the goal of clustering is to optimize the
number of clusters and/or the degree of similarity within
a cluster (intra-cluster similarity). To measure the intra-
cluster similarity, apart from using an aggregate measure
(e.g., the variance in k-means clustering), two measures that
have been studied use the radius (maximum distance to a se-
lected “center” vector) and diameter (maximum distance be-
tween any two cluster-vectors) of the cluster (Charikar and
Panigrahy 2004; Dyer and Frieze 1985; Feder and Greene
1988; Gasieniec, Jansson, and Lingas 1999, 2004; Gonzalez
1985; Gramm, Niedermeier, and Rossmanith 2003). The ra-
dius is computed either with respect to a vector in the cluster
itself or an arbitrary d-dimensional vector (Leskovec, Ra-
jaraman, and Ullman 2014).

Regardless of which of the above measures of intra-
cluster similarity is used, the vast majority of the cluster-
ing problems that arise are NP-hard. Consequently, heuris-
tics are often used to cope with the hardness of clustering
problems, trading in a suboptimal clustering for polynomial
running time. In this paper we take a different approach: we
maintain the optimality of the obtained clustering by relax-
ing the notion of tractability from polynomial-time to fixed-
parameter tractability (FPT) (Cygan et al. 2015; Downey
and Fellows 2013; Gottlob and Szeider 2008), where the
running time is polynomial in the instance size but may in-
volve a super-polynomial factor that depends only on some
problem parameter, which is assumed to be small for cer-
tain instances of interest. In the context of clustering, two
natural parameters that are desirable to be small are upper
bounds on the number of clusters and the radius/diameter.

Contributions. Motivated by the above, we consider sev-
eral fundamental clustering problems in the incomplete data
setting. Namely, we consider the following three prob-
lems, referred to as IN-CLUSTERING-COMPLETION, ANY-
CLUSTERING-COMPLETION, and DIAM-CLUSTERING-
COMPLETION, that share a similar setting: In all three prob-
lems, the input is a (multi)set M of d-dimensional vectors
over the Boolean domain', some of whose entries might be
missing, and two parameters r, k € N; we use the symbol
O to denote a missing vector entry. For IN-CLUSTERING-

"We view M as the (multi)set of rows of a Boolean matrix.
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COMPLETION, the goal is decide whether the [J entries in
M can be completed to obtain a (complete) set of vectors
M* such that there is a subset S C M™* with |S| < k
satistying that, for every @ € AM*, the Hamming distance
between @ and some vector in .S is at most r. That is, the
goal for IN-CLUSTERING-COMPLETION is to complete the
missing entries so as to enable a partitioning of the result-
ing (complete) set into at most k clusters such that all vec-
tors in the same cluster are within Hamming distance at
most r from some “center” vector that belongs to the clus-
ter itself. For ANY-CLUSTERING-COMPLETION, the goal
is the same as that for IN-CLUSTERING-COMPLETION,
except that the center vectors need not be in the set M
(i.e., are chosen from {0,1}%). For DIAM-CLUSTERING-
COMPLETION, the goal is to complete the missing entries
in M so as to obtain a set M* such that the vectors of
M?* can be partitioned into at most k clusters/subsets, each
of diameter at most  (where the diameter of a set of vec-
tors S is the maximum pairwise Hamming distance over all
pairs of vectors in the set). We denote by IN-CLUSTERING,
ANY-CLUSTERING, and DIAM-CLUSTERING the com-
plete versions of IN-CLUSTERING-COMPLETION, ANY-
CLUSTERING-COMPLETION, and DIAM-CLUSTERING-
COMPLETION, respectively; that is, the restrictions of the
aforementioned data completion problems to input instances
in which the set of vectors contains no missing entries.

Our first order of business is to obtain a detailed map of
the parameterized complexity of the above three data com-
pletion problems. As we show in this paper, parameteriza-
tion by k + r is not sufficient to achieve tractability for any
of these three problems: one needs to restrict the occurrences
of the unknown entries in some way as well. We do so by
adopting a third parameter defined as the minimum num-
ber of vectors and coordinates (or, equivalently, rows and
columns in a matrix representation of M) needed to cover all
the missing entries. This parameter, which we call the cov-
ering number or simply cover, is guaranteed to be small
when the unknown entries arise from the addition of a small
number of new rows and columns (e.g., new users and at-
tributes) into a known data-set; in particular, the parame-
ter may be small even in instances with a large number of
rows and columns that contain missing entries. The cover-
ing number has previously been used in the context of ma-
trix completion (Ganian et al. 2018) and is in fact the least
restrictive parameter considered in that paper.

Our main contribution is a complete parameterized com-
plexity landscape for the complete and incomplete versions
of all three clustering problems w.r.t. all combinations of the
parameters k, r, and cover. Our main algorithmic contri-
bution shows that the incomplete variants of all three clus-
tering problems are fixed-parameter tractable parameterized
by k 4+ r + cover, and as a consequence the complete vari-
ants are fixed-parameter tractable parameterized by k + 7.
Notably, our tractability results are obtained using kernel-
ization (Fomin et al. 2019; Gaspers and Szeider 2014) and
therefore provide efficient polynomial-time preprocessing
procedures, which can be applied before the application of
any available (even heuristic) clustering algorithm. To per-
form the kernelization, we apply a two-step approach: first

we build on the well-known Sunflower Lemma (Erdos and
Rado 1960) to develop new tools that allow us to reduce
the number of rows in the target instance, and after that we
use entirely different techniques to identify a small set of
“distance-preserving” relevant coordinates. Together with a
set of algorithmic lower bound results (and an XP algorithm
for IN-CLUSTERING parameterized by k), this provides the
comprehensive parameterized complexity landscape illus-
trated in Table 1. We also show that all our tractability results
can be lifted from the Boolean domain to any finite domain,
for the Hamming as well as Manhattan distance.

Related Work. In previous work, Hermelin and Rozen-
berg (2015) studied the CLOSEST STRING WITH WILD-
CARDS problem, which corresponds to ANY-CLUSTERING-
COMPLETION with & = 1. Independently of our work,
Koana et al. (2020b) very recently revisited the earlier work
of Hermelin and Rozenberg (2015) and obtained, among
other results, a fixed-parameter algorithm for that problem
parameterized by r plus the maximum number of miss-
ing entries per row; in that same paper, they also stud-
ied IN-CLUSTERING-COMPLETION with £k = 1. Even
more recently, the same group (Koana, Froese, and Nie-
dermeier 2020a) also studied a problem related to DIAM-
CLUSTERING-COMPLETION for a single cluster, i.e., for
k = 1. They obtain a classification orthogonal to ours w.r.t.
constant lower and upper bounds on the diameter and the
maximum number of missing entries per row.

The main differences between the problems studied
by Koana et al. (2020b; 2020a) and the restrictions of
ANY-CLUSTERING-COMPLETION and IN-CLUSTERING-
COMPLETION (studied in this paper) to k = 1 (i.e., the re-
striction to the special case where we seek precisely 1 clus-
ter) is the parameter used to capture the number of missing
entries per row. Indeed, the authors of these works consider
the maximum number of missing entries (over all rows),
whereas we consider the parameter cover. The two param-
eters are orthogonal: there are instances in which the max-
imum number of missing entries per row is very small yet
cover is large, and vice versa.

The parameterized complexity of a related problem—
MATRIX COMPLETION—has been studied in a different
context than that of clustering (Ganian et al. 2018); the prob-
lem considered therein corresponds to the special case of IN-
CLUSTERING-COMPLETION in which the clustering radius
r1s 0. There is also an extensive body of research on cluster-
ing problems for complete data. Examples include the work
of Frances and Litman (1997), Gramm, Niedermeier and
Rossmanith (2003), as well as many other works (Boucher
and Ma 2011; Cabello et al. 2011; Fomin et al. 2020; Fomin,
Golovach, and Panolan 2020; Fomin, Golovach, and Si-
monov 2019; Gasieniec, Jansson, and Lingas 1999, 2004;
Gonzalez 1985). Note also that IN-CLUSTERING and ANY-
CLUSTERING are special instances of the well-known k-
center problem.

We remark that related problems have also been studied
by a variety of other authors, such as, e.g., Chen, Hermelin,
Sorge (2019).
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Parameter: k T k+r k+r+ cover
IN-CLUSTERING W[2]-c paraNP-c FPT N/A
ANY/DIAM-CLUSTERING paraNP-c paraNP-c FPT N/A
IN/ANY/DIAM-CLUSTERING-C paraNP-c paraNP-c paraNP-c FPT

Table 1: Parameterized complexity results for exact clustering with complete data (top) and incomplete data (bottom). FPT
means fixed-parameter tractability, while paraNP-c and W[2]-c mean completeness for these complexity classes and indicate

fixed-parameter intractability.

Preliminaries

A parameterized problem @) is a subset of Q* x N, where (2
is a fixed alphabet. Each instance of @ is a pair (1, k), where
k € Nis called the parameter. A parameterized problem @)
is fixed-parameter tractable if there is an algorithm, called
an FPT-algorithm, that decides whether an input (I, x) is a
member of Q in time f(x)-|I|®("), where f is a computable
function and |I| is the input instance size. The class FPT
denotes the class of all fixed-parameter tractable parame-
terized problems. A parameterized problem is kernelizable
if there exists a polynomial-time reduction that maps an in-
stance (I, ) of the problem to another instance (I’, ) such
that (1) |I'| < f(k) and &’ < f(k), where f is a computable
function, and (2) (I, ) is a YES-instance of the problem if
and only if (I, k') is. The instance (I’, k') is called the ker-
nel of I.1tis well known that a decidable problem is FPT if
and only if it is kernelizable. A hierarchy, the W-hierarchy,
of parameterized complexity has been defined, and the no-
tions of hardness and completeness have been introduced for
each level W[i] of the W-hierarchy for ¢ > 1. It is com-
monly believed that W[2] > W]1] D FPT, and the notion of
WI1]-hardness has served as the main working hypothesis
of fixed-parameter intractability. An even stronger notion of
intractability is that of paraNP-hardness, which contains all
parameterized problems which remain NP-hard even if the
parameter is fixed to a constant. We refer readers to the rele-
vant literature (Flum and Grohe 2006; Downey and Fellows
2013; Cygan et al. 2015) for more information.

Let @ and b be two binary vectors. We denote by A(d, b)

the set of coordinates in which @ and b are guaranteed to dif-
fer, ie., A(d@,b) = {i | (@li] = 1 ABi] = 0) Vv (ali] =
0 A B[i] = 1) }, and we denote by 8(a, b) the Hamming dis-
tance between @ and b measured only between known en-
tries, i.e., |A(@, b)|. We denote by A(@) the set A(0, @), and
for a set C' of coordinates, we denote by A~ (C') the vector
that is 1 at precisely the coordinates in C' and 0 at all other
coordinates. We extend this notation to sets of vectors and a
family of coordinate sets, respectively. For a set NV of vec-
tors in {0, 1} and a family C of coordinate sets, we denote
by A(N) the set { A(?) | ¥ € N } and by A™1(C) the set
{A~YC) | C € C}. We say that a vector @ € {0,1}%is a
t-vector if |A(@)| = ¢ and we say that @ contains a subset
S of coordinates if S C A(@). For a subset S C {0, 1}¢
and a vector @ € {0,1}%, we denote by §(S,d) the mini-
mum Hamming distance between @ and the vectorsin .S, i.e.,
d(S, @) = mingeg 6(3, @). We denote by v(S) the diameter

of S, i.e., v(S) := maxg ses0(51,53).

Let M C {0,1}¢ and let [d] = {1,...,d}. For a vector
d € M, we denote by N,.(@) the r-Hamming neighborhood
of @, i, the set {b € M | 6(@,b) < r} and by N,(M)
the set (Jzc s V- (@). Similarly, we denote by N_,.(a@) the
the set {b € M | §(@,b) = r} and by N_,.(M) the set

aent N=r(@). We say that M* C {0,1}4 is a completion
of M C {0,1,0}¢ if there is a bijection o : M — M* such
that for all @ € M and all ¢ € [d] it holds that either a[i| = O
or a(a)[i] = dli].

Let {#1,...,U,} be an arbitrary but fixed ordering of a
subset M of {0, 1,0}4. If 4;[j] = O, we say that O at ; []
is covered by row ¢ and column j. The covering number of
M, denoted as cover (M) or simply cover, is the mini-
mum value of r+c such that there exist 7 rows and c columns
in M with the property that each occurrence of [] is covered
by one of these rows or columns. We will generally assume
that for a set M € {0,1,0}¢ we have computed sets Ty,
and Ry such that cover(M) = |Ty| + |Ry| and each
O occurring in a vector ¥ € M is covered by a row in Ry
or a column in T;; we note that this computation can be
done in polynomial time (Ganian et al. 2018, Proposition
1), and in our algorithms parameterized by cover(M), we
will generally assume that T, and Rj; have already been
pre-computed.

It will sometimes be useful to argue using the com-
patibility graph G associated with an instance Z of
IN/ANY/DIAM-CLUSTERING-COMPLETION. This is the
graph whose vertex set is M and which has an edge between

two vectors @ and b if and only if: §(@,b) < r (for the IN-

-

and DIAM- variants) or 6(@,b) < 2r (for the ANY- vari-
ant). Notice that vectors in different connected components
of G cannot interact with each other: every cluster contain-
ing vectors from one connected component cannot contain a
vector from any other connected component.

The Toolkit

In this section, we present key structural results that are em-
ployed in several algorithms and lower bounds in the paper.
The first part of our toolkit and structural results for matrices
are obtained by exploiting the classical sunflower lemma of
Erdos and Rado, a powerful combinatorial tool that has been
used to obtain kernelization algorithms for many fundamen-
tal parameterized problems (Fomin et al. 2019). A sunflower
in a set family F is a subset 7/ C F such that all pairs of
elements in 7' have the same intersection.
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7= (0,0,0,0,0,0,0,0) i ‘

a=(1,1,1,1,1,0,0,0)

Figure 1: The figure shows an example for the setting in
Lemma 3. Here » = 3 and ¢ = 2 and the figure shows the
vectors ¢ and @ as well as the sunflower resulting from the
vectors p1, . . ., pr with p;[j] = 1 if and only if either j = 1
or j = i + 1. In this example three of the petals, i.e., the
white petals p5, pg, and p7, only share the core of the sun-
flower with @, which implies that all three of these petals are
of maximum Hamming distance to a.

Lemma 1 (Erdos and Rado 1960; Flum and Grohe 2006).
Let F be a family of subsets of a universe U, each of cardi-
nality exactly b, and let a € N. If | F| > bl(a — 1), then F
contains a sunflower F' of cardinality at least a. Moreover,
F' can be computed in time polynomial in | F|.

Finding Irrelevant Vectors. The first structural lemma we
introduce is Lemma 3, which is also illustrated in Figure 1.
Intuitively speaking, the lemma says that if the t-Hamming
neighborhood of a vector ¢’ contains a large sunflower, then
at least one of its elements can be removed without chang-
ing the maximum distance to any vector @ that is of dis-
tance at most r to the elements in the sunflower. The proof of
Lemma 3 utilizes the straightforward Lemma 2, which cap-
tures a useful observation that is also used in other proofs.
We note that the idea of applying the Sunflower Lemma
on a similar set representation of an instance was also used
in a previous work by Marx (2005) (see also Kratsch, Marx
and Wahlstrém, 2016) to obtain FPT and kernelization re-
sults, albeit in the context of studying the weighted satis-
fiability of CSPs. There, the authors used the sunflower to
reduce the arity of constraints by replacing the sets in the
sunflower (which correspond to the scope of the constraints)
by constraints defined over the petals without the core plus
one additional constraint defined only on the variables of the
core. We, however, use the sunflower in a different manner,
namely to identify irrelevant vectors that can be safely re-
moved from the instance. Note also that in contrast to many
other applications of the sunflower, where all petals are re-
moved and replaced by the core, this is not possible in our
setting since we need to keep a certain number of petals in
order to maintain the clustering properties of the instance.

Lemma 2. Let t,r € N. Let N C {0,1}4 be a set of t-
vectors such that F := A(N) is a sunflower with core C. If
|N| > r, then for every vector @ € {0, 1} with |A(a@)| <,
N contains a vector that has maximum distance to @ among
all t-vectors that contain C.

Lemma 3. Let t,r € N, ¥ € {0,1}%, N C N_(¥), and
F = {A,Z) | v € N} such that F is a sunflower with

core C. Then for every subset N' of N with |N'| > r+t+2
and every vector @ € {0,1}¢ such that 5(N',a@) < r, we

have §(f, @) < MaX e\ g 7y §(Z, @) for every f € N.

The following lemma now employs Lemmas 3 and 1 to
show that if the -Hamming neighborhood of a vector ¥ is
large enough, at least one of its elements can be removed
without changing the clustering properties of the instance.

Lemma 4. Let k,r,t € N, M C {0,1}%, ¢ € M, and
N = N_ (%) N M. If IN| > tl(k(r +t + 2)), then
there is a vector f € N satisfying the following two prop-
erties:  (P1) for every set S C {0,1}% with |S| < k and
satisfying 0(S,m) < r for every m € M, it holds that
maxgenr 0(S,9) = MaXze v g 7 0(S, ), and (P2) M has
a partition into at most k clusters, each of diameter at most

r, if and only if M \ {f} does. Moreover, f can be deter-
mined in time polynomial in M.

Irrelevant Coordinates and Diameter Bound. Our
clustering algorithms for IN/ANY/DIAM-CLUSTERING-
COMPLETION will broadly proceed in two steps. Given an
instance Z = (M, k,r) of IN/ANY/DIAM-CLUSTERING-
COMPLETION, we will first compute an equivalent instance
(M',k,r) such that the size of M’ can be bounded by
a function of the parameter k + r + cover(M) (this is
done by the irrelevant vector technique). However, since
our aim is to obtain a kernel, we then still need to reduce
the number of coordinates for every vector in M’. That
is where we use our irrelevant coordinate technique. This
subsection introduces the tools and notions that are cen-
tral to this technique. Throughout this section, we will as-
sume that Z = (M, k,r) is the considered input instance of
IN/ANY/DIAM-CLUSTERING-COMPLETION.

Let Z(M) for M C {0, 1} be the set of all coordinates
i such that at least two vectors in M disagree on their ¢-th
coordinate, i.e., there are two vectors ¥,y € M such that
{91, ¥'[i]} = {0, 1}. Intuitively, Z (M) is the set of impor-
tant coordinates, since all other coordinates can be safely
removed from the instance; this is because they can always
be completed to the same value and hence do not influence
the properties of a clustering of M. Note that if we could
show that the number of important coordinates is bounded
by a function of M’ and our parameter k + r 4+ cover (M),
then we would obtain a kernel by simply removing all coor-
dinates that are not important. Unfortunately, this is not the
case for two reasons: First the compatibility graph G(Z) can
consist of more than one component and the vectors in dif-
ferent components can differ in arbitrary coordinates. Fur-
thermore, even inside a component the number of important
coordinates can be arbitrary large. For instance, a compo-
nent could consist of the all-zero vector, the all-one vector,
and the all [ vector. Note that the all O vector is crucial for
this example and indeed, the next lemma shows that if we
restrict ourselves to a component containing only vectors in
M \ Ry, then the number of important coordinates can be
bounded in terms of the diameter and the number of vectors
inside the component.

Lemma 5. Let M’ C M \ Ry such that G(Z)[M'] is con-
nected. Then |Z(M')\ Tpr| < v(M")(|M'| —1).
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The next lemma now shows how to bound the diameter
of every component in M \ Ry in terms of our parameter
k+r+ cover(M).

Lemma 6. Let T = (M,k,r) be an instance
of IN-CLUSTERING-COMPLETION, ANY-CLUSTERING-
COMPLETION, or DIAM-CLUSTERING-COMPLETION and
let M' C M \ Ry be such that G(Z)[M'] is connected.
Then T is a NO-instance if either:

e 7T is an instance of IN-CLUSTERING-COMPLETION and
’Y(M/) >3rk —r+ |T]\/j N

e T is an instance of ANY-CLUSTERING-COMPLETION
and y(M') > 4rk — r + |Ta); or

* 7 is an instance of DIAM-CLUSTERING-COMPLETION
and v(M'") > 2rk —r + |Th|.

We now already know how to bound the number of im-
portant coordinates inside a component of M \ Rj;. Unfor-
tunately, as we have illustrated previously, it is not possible
to do the same for M \ Ry, let alone for the complete vector
set M. However, the following lemma shows that there is a
(small) set D’ of coordinates that satisfy a slightly weaker
property: it preserves distances up to r within components
of M \ Ry as well as to and between the vectors in Ry.

Lemma 7. Let M’ C M and r' be a natural number. Then
there is a subset D' C [d] of coordinates such that:

* (C1) ID'| < (Kymax (M) + [Rag|(|M'| = 1) (r" + 1) +
‘T]\ﬂ and

* (C2) for any two vectors m and v in M’ such that m and
n are in the same component of G(I)[M'] or one of m or
m’ is in Ry, it holds that §(m, m') = §(m[D'], m'[D'])
if (m,m') <’ and §(M[D’'],n'[D’]) > r', otherwise.

Here Ymax(M') is equal to the maximum diameter of any

connected component of G(I)[M’].

The following lemma now shows that keeping only the set
D’ of coordinates is sufficient to preserve the equivalence for
our three clustering problems.

Lemma 8. Let M’ C M. Then we can compute a set D' C
[d] of coordinates in polynomial-time such that:

CID] S (oMY [Ral(M] — D)2 +
1) + |Tnm| and (M',k,r) is a YES-instance of
ANY-CLUSTERING-COMPLETION if and only if
(Mp,, k,r) is.

e 1D (i (M) 4 [ Rag (1M~ 1)) (r-+ 1)+ Ti | and
for X € {IN,DiaM}: (M', k,r) is a YES-instance of X -
CLUSTERING-COMPLETION if and only if (M}, , k,r) is.

Here, M, is the matrix obtained from M’ after removing
all coordinates (columns) that are not in D’.

Clustering with Incomplete Data

We will show that IN/ANY/DIAM-CLUSTERING-
COMPLETION are fixed-parameter tractable parameterized
by k + r + cover(M). Our algorithmic results are
achieved via kernelization: we will apply the irrelevant
vector and irrelevant coordinate techniques to obtain an
equivalent instance of size upper bounded by a function of
k+r+ cover(M).

Note that this implies that also the variants
IN/ANY/DIAM-CLUSTERING for complete data are
fixed-parameter tractable parameterized by only k& + r
(and also have a polynomial kernel) and, as we will show
in a later section, both parameters are indeed required.
To explain how we obtained our results, we will start by
considering the general procedures for complete data first
and then provide the necessary changes for the case of
incomplete data. Throughout the section we will assume
that (M, k,r) is the given instance of IN/ANY/DIAM-
CLUSTERING-COMPLETION. Recall that, when using the
parameter cover (M), we will use the sets T and Ry (as
defined in the preliminaries), where Ty C [d], Ry C M,
and |T| + |Rap| = cover(M), and such that all (s in
M \ Ry occur only in coordinates in T';.

Informal description of the algorithm for complete data.
To perform kernelization, we start by identifying and remov-
ing irrelevant vectors; those are vectors that can be removed
from the instance and safely added back to any valid cluster-
ing of the reduced instance to yield a valid clustering of the
original instance. One caveat is that, for IN-CLUSTERING,
the removed vectors may serve as cluster centers, and hence,
such vectors will have to be represented in the reduced in-
stance; we will discuss later (below) how this issue is dealt
with. To identify irrelevant vectors, we first show that, for
each vector, we can compute a “representative set” of vec-
tors of its (< r)-neighborhood whose size is upper bounded
by a function of the parameter. The identification of rep-
resentative sets is achieved via a non-trivial application of
the Sunflower Lemma (and several other techniques) in
Lemmas 3, 4 as well as Lemma 9 for ANY-CLUSTERING,
Lemma 9 and 11 for IN-CLUSTERING, and Lemma 13 for
ANY-CLUSTERING. The union of these representative sets
yields a reduced instance whose number of vectors is upper
bounded by a function of the parameter. For the final step
of our algorithm we use our toolkit to reduce the number of
dimensions for every vector in the reduced instance. This is
already sufficient to solve ANY-CLUSTERING.

As for IN-CLUSTERING, we need to ensure that the cen-
ters of the clusters in any valid solution are represented in the
reduced instance (whose size is now bounded by a function
of the parameter). To do so, we partition the set of vectors
removed from the reduced instance into equivalence classes
based on their “trace” on the set of important coordinates;
the number of equivalence classes is upper bounded by a
function of the parameter. Since each potential center must
be within distance r from some vector in the reduced in-
stance, for each (irrelevant) vector Z that differs in at most r
important coordinates from some vector in the reduced in-
stance, we add a vector from the equivalence class of Z (that
represents &) whose distance to the vectors in the reduced
instance w.r.t. nonimportant coordinates (which all vectors
in the reduced instance agree on) is minimum. Lemma 11
provides a bound on the number of these added vectors.

Finding Redundancy when Data is Missing. In the case of
incomplete data, we will in principle employ the same gen-
eral strategy that we used for clustering problems with com-
plete data. Namely, we will again identify irrelevant vectors



Technical Report AC-TR-21-007

and coordinates whose removal results in an instance whose
size can be bounded by our parameter. However, due to the
presence of incomplete data, we need to make significant
adaptations at every step of the algorithm.

Consider the first step of the algorithm, which allowed us
to identify and remove irrelevant vectors. For this step, we
can focus only on the vectors in M \ Ry, since |Rpy| is
already bounded by cover(M); crucially, this allows us to
assume that vectors only have [J-entries at positions in 7).

Now consider Lemma 4, which allowed us to remove any

vector, say f in a sufficiently large sunflower occurring in
the t-Hamming neighborhood of some vector ¢/. Informally,
this was because in every solution of the reduced instance,
a large part of the sunflower must end up together in one of
the clusters; this in turn meant that for every vector in the
cluster there is a vector in the sunflower that is at least as far
as f. This is what allowed us to argue that f can always be
safely added back into that cluster. But this can no longer be

guaranteed once [J-entries are allowed, since whether f can
be added back into the cluster or not depends on how the
other vectors in the sunflower have been completed.

Note that the problem above would disappear if we could
ensure that a sufficiently large number of vectors from the
initial sunflower that end up together in the same cluster
have the [J-entries at the exact same positions. Since we ob-
served earlier that we can assume that all vectors have their
U-entries only in T, and consequently there are at most
2|7l different allocations of the (-entries to these vectors,
we can now enforce this by enlarging the initial sunflower
by a factor of 2!/T™|. This approach allows us to obtain the
following lemma, which uses Lemma 4 in a way that allows
us to reduce the number of vectors for IN-CLUSTERING-
COMPLETION and ANY-CLUSTERING-COMPLETION.

Lemma9. Let k,7 € Nand M C {0,1,0}" Then there is

a subset M’ of M with Ry C M’ satisfying:

* (P1) For every ¥ € M \ Ry it holds that |N,.(¥) N M’ \
Rag| < 2Tal(370 t1(k(r +t) +2)*); and

s (P2) for every set S C {0,1}4 with |S| < k and sat-
isfying 6(S,m) < r for every mi € M it holds that
maxge v 0(S, i) = maxgenr 0(S, Y).

Moreover, M’ can be computed in time polynomial in M.

Using the above Lemma 9 together with our toolbox (for
reducing the number of relevant coordinates), we are now
ready to show our first fixed-parameter algorithm for ANY-
CLUSTERING-COMPLETION.

Theorem 10. ANY-CLUSTERING-COMPLETION is FPT
parameterized by k + r + cover(M).

Towards showing our kernelization result for IN-
CLUSTERING-COMPLETION, we need to add back some
vectors that can be potential centers for the clusters contain-
ing vectors of M’. The main idea for the case of complete
data is the observation that every vector in M that can act as
a potential center for the instance on M’ must be within the
r-neighborhood of some vector in M’ and moreover among
all (potentially many vectors within the r-neighborhood of
a vector in M’), we can chose any vector, which is clos-
est w.r.t. the unimportant coordinates, i.e., the coordinates

in [d] \ Z(M'). This way the number of potential vectors
that can act as a center for a vector in M’ can be bounded
by the parameter. For the case of incomplete data we need
to consider an additional complication, namely, that the [
entries of the vectors in M’ (which can be changed without
increasing the Hamming distance to the vector), can increase
the size of the r-Hamming neighborhood of every such vec-
tor now significantly. For instance, the potential r-Hamming
neighborhood of a vector in M’\ Ry, increases by a factor of
2|Tm 1 and the potential 7-Hamming neighborhood of a vec-
tor Z in Ry, can only be bounded by 27(M)(IM'|=1) 3T |
since every important coordinate of Z could be a [J.

Lemma 11. Let (M,k,r) be an instance of IN-
CLUSTERING-COMPLETION and M’ C M with Ry C
M'. Then there is a set M" with M' C M" C M of size at
most |M'| + 31Tl pl Byl g 3217w |l Rav| 9 ymas (M) ([M]=1)
such that there is a set S C M with |S| < k satisfying
maxge - 0(S,¥) < if and only if there is a set S C M"
with |S| < k satisfying maxgear 6(S,9) < r. Moreover,
M" can be computed in polynomial time.

With Lemma 11 in hand, we can establish the fixed-
parameter tractability of IN-CLUSTERING-COMPLETION.

Theorem 12. IN-CLUSTERING-COMPLETION is FPT pa-
rameterized by k + r + cover(M).

We now proceed to the last of the three prob-
lems considered in this section, DIAM-CLUSTERING-
COMPLETION. Apart from the issue that we already had for
IN-CLUSTERING-COMPLETION and ANY-CLUSTERING-
COMPLETION that we require a sunflower of vectors with
all s in the same position, we now have the additional
complication that we can no longer assume that the [J-en-
tries of vectors that end up in the same cluster are com-
pleted in the same way; note that this is not an issue for
IN-CLUSTERING-COMPLETION and ANY-CLUSTERING-
COMPLETION since there one can always assume that all el-
ements in a cluster are completed the same way as the center
vector. We show that this problem can be handled by increas-
ing the size of the sunflower by an additional factor of 217!,
Because of the same issue, we also need to take into account
the potential distance between different vectors in the same
cluster arising from the possibility of different completions
of the coordinates in 7';. This leads to the following version
of Lemma 9 for DIAM-CLUSTERING-COMPLETION.

Lemma 13. Let k,r € N, and M C {0,1,0}% Then there
is a subset M’ of M with Ry; C M’ satisfying: (P1) For
every U € M \ Ry it holds that |N,.(¥) N (M’ \ Rar)| <
21T | (ST ) QI Twa | |y (-t | Tog ) +2)1) + 1; and (P2)
M has a completion with a partition into at most k clusters
of diameter at most v if and only if M' does. Moreover, M’
can be computed in time polynomial in M.

We can now prove that DIAM-CLUSTERING-
COMPLETION is FPT w.r.t. the three parameters.

Theorem 14. DIAM-CLUSTERING-COMPLETION is FPT
parameterized by k + r + cover(M).
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Lower-Bound Results

This section is dedicated to showing that the parameteriza-
tions used in the algorithms presented up to this point are
necessary to achieve (fixed-parameter) tractability. We do so
by providing a number of hardness reductions.

It is known that ANY-CLUSTERING is NP-complete for
r = 2 (Jiao, Xu, and Li 2004). Our first two hardness
results show that the other two clustering problems also
NP-complete even for fixed values of r. The results uti-
lize reductions from the DOMINATING SET problem on 3-
regular graphs (Kikuno, Yoshida, and Kakuda 1980; Garey
and Johnson 1979) and the problem of partitioning a K4-free
4-regular graph into triangles (van Rooij, van Kooten Niek-
erk, and Bodlaender 2013), respectively.

Theorem 15. IN-CLUSTERING is NP-complete for r = 4,
and D1IAM-CLUSTERING is NP-complete for r = 6.

Having ruled out fixed-parameter tractability when pa-
rameterizing only by r, we turn to the case where the
parameter is k alone. First of all, for k¥ = 1 ANY-
CLUSTERING is equivalent to CLOSEST STRING, a well-
studied NP-complete problem (Gramm, Niedermeier, and
Rossmanith 2003). Using a two-step reduction from 3-
COLORING on 4-regular graphs (Dailey 1980), we show that
DIAM-CLUSTERING is also NP-complete, even when re-
stricted to a fixed value of k.

Theorem 16. DIAM-CLUSTERING is NP-complete for
k=3.

Unlike the previous two problems, IN-CLUSTERING ad-
mits a simple polynomial-time brute-force algorithm for ev-
ery fixed value of k£ where the order of the polynomial de-
pends on k (i.e., the problem is in XP). However, we can still
exclude fixed-parameter tractability:

Theorem 17. IN-CLUSTERING is W[2]-complete param-
eterized by k and can be solved in time O(|M|*|M|kd).
Moreover, there is no algorithm solving IN-CLUSTERING in
time |M|°™%) unless the Exponential Time Hypothesis fails.

The above results already show that out of the three
considered parameters, k£ and r must both be used if one
wishes to obtain fixed-parameter algorithms for the clus-
tering problems under consideration. In the case of clus-
tering of incomplete data, the only two questions that re-
main are whether one also needs to use the covering num-
ber, and whether it is possible to extend the polynomial-
time algorithm for IN-CLUSTERING to IN-CLUSTERING-
COMPLETION. We resolve these last questions using reduc-
tions from 3-COLORING and CLOSEST STRING.

Theorem 18. For X €  {IN,ANYDIAM}, X-
CLUSTERING-COMPLETION is NP-complete even if
k = 3 and r = 0. Furthermore, IN-CLUSTERING-
COMPLETION is NP-complete even if k = 1 and there is
only one row containing Ul-entries.

Going Beyond Boolean Domain

In this section, we briefly discuss two generalizations of the
clustering problems under consideration that allow for larger

domain size, where each generalization is based on a differ-
ent way of measuring distance between vectors in higher do-
mains. In particular, we discuss the Hamming distance and
the Manhattan distance over a domain @ = {0,1,...,q —
1,0}, for some ¢ > 2. Our aim in this section is to ex-
tend our results from matrices over the Boolean domain to
these generalizations, and the main tools we use are two
encodings of domain values. We define the two encodings
o : [q)U{0} — {0, 1,0} and 3 : [q] U{0I} — {0,1,00}7,
where «(7) is the binary encoding of 2 and 3(i) is the unary
encoding of 7 if ¢ # O and a(i) = B(i) = 09, otherwise.
Moreover, for o € {0,1}%, we let a(¥) and 3(¥) be the
vectors in {0, 1}9¢ obtained from ¥ by replacing each coor-
dinate 7 € [d] with a block of q coordinates equal to «(%)
and f3(4), respectively. For example, if @ = {0,1, 2,0} and
d = 2, then «((0,2)) = (0,0,1,1,0,0) and 3((0,2)) =
(0,0,0,0,1,1).

It is easy to verify that there is a direct correspondence
between the vector distances in a matrix M over Q% and
the Hamming vector distances in the matrix over {0, 1, J}4¢
obtained by applying the respective encoding function to M.

Observation 19. For each @b € Q% it holds that
d(a,b) - 2 = §(a(a), a(db)) and that Zle la[t] — b[t]] =

5(B(a), B(b)).

Consider a matrix M obtained by applying « (or ) to
a matrix M’. A completion M* of M is block-preserving
w.r.t. a (respectively () if for each vector v € M™* the i-
th block of ¥ is equal to «(i) (respectively 3(i)) for some
i € Q. Equivalently, M* is block-preserving w.r.t. « (or /3)
if it can be obtained by applying « (or 3, respectively) to the
elements of some completion of the matrix M’.

For PROB € IN/ANY/DIAM-CLUSTERING-COMPLETION,
let PROB,, and PROBg be the adaptation of PROB to the case
where we additionally require the completion M* of M to
be block-preserving (w.r.t. a or ). Since both encodings
only increase the dimension of the vectors by a constant
factor, Observation 19 allows us to reduce the completion
problems over @ to the question of finding block-preserving
completions of Boolean matrices. It is easy to argue that all
the developed algorithmic techniques can be extended to the
block-preserving variants of the problems. As a corollary,
we obtain that all our FPT-results and XP-results also carry
over to the finite domain case.

Conclusion

We provided a systematic study of the parameterized com-
plexity of fundamental clustering problems for incomplete
data. Our results draw a detailed map of the complexity land-
scape for the studied problems and showcase a sharp con-
trast between the settings that are fixed-parameter tractable
and those which are not.

Finally, we believe that the insights and techniques show-
cased in this paper are of general interest. Indeed, in essence
they show that vectors over a bounded domain which are
packed in dense clusters have non-trivial combinatorial
properties that only become accessible through a suitable set
representation. We hope that these insights and techniques
turn out to be useful in other settings as well.
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